

STUDIA MATHEMATICA, T. LVIII. (1976)

A convolution approximation property for $L^1(G)$

by

LOUIS PIGNO (Manhattan, Kans.)

Abstract. In this paper we define a certain convolution approximation property and give some examples of subspaces which have this property with respect to $L^1(G)$. We exhibit a connection between subspaces with the approximation property and multipliers of Fourier transforms. A result on (p,p) multipliers over noncompact LCA groups is also obtained.

Throughout this paper G is a LCA group, Γ the group dual to G, M(G) the convolution algebra of bounded Borel measures on G and $\hat{\Gamma}$ the Fourier-Stieltjes transformation. Denote by $L^1(G)$ the space of Haar integrable functions on G and D(G) any subspace of $L^1(G)$ with

$$D(G) \supset \{f \in L^1(G) : \operatorname{supp} \hat{f} \text{ is a compact set}\}.$$

Suppose that whenever $\sigma_n \epsilon L^1(G)$ $(n=1,2,\ldots)$ with $\limsup_{n \to \infty} \|\sigma_n\|_1 = \infty$ there exists a $k \epsilon D(G)$ such that $\limsup_{n \to \infty} \|\sigma_n * k\|_1 = \infty$. Then D(G) is said to have the convolution approximation property with respect to $L^1(G)$. It is not difficult to see that $L^1(G)$ itself has the convolution approximation property with respect to $L^1(G)$; see Example I.

By adapting and generalizing some methods in [1] and [3] we give an example of a rather small space D(G) with the convolution approximation property whenever G is a noncompact LCA group. It turns out that spaces with the convolution approximation property admit a solution to a wide class of multiplier problems. A function φ on Γ is said to be a multiplier of type (D, L^1) if whenever $f \in D(G)$ there corresponds a $g \in L^1(G)$ such that $\varphi \hat{f} = \hat{g}$.

THEOREM 1. If D(G) has the convolution approximation property, then $\varphi \in (D, L^1)$ if and only if $\varphi = \hat{\mu}$ for some $\mu \in M(G)$.

Proof. One half of the Theorem is obvious. For the converse let $\varphi_{\epsilon}(D,L^1)$. For any $k_{\epsilon}D(G)$ with $\operatorname{supp}\hat{k}$ a compact subset of Γ put

$$\sigma(x) = \int_{\Gamma} \varphi(\alpha) \hat{k}(\alpha) \alpha(x) d\alpha \quad (x \in G).$$

Then $\varphi = \hat{\mu}$ for some $\mu \in M(G)$ if and only if no matter what be k (as defined above) there exists an $M \in N$ (the natural numbers) such that

$$\|\sigma\|_1 \leqslant M$$

whenever $||k||_1 \leq 2$. To prove sufficiency let $p(x) = \sum_{i=1}^n c_{\alpha_i} \alpha_i(x)$ be any trigonometric polynomial on G with $||p||_{\infty} \leq 1$. Now by [4], p. 53, there is a $k \in D(G)$ such that \hat{k} has compact support,

$$||k||_1 \le 2$$
 and $\hat{k}(a_i) = 1$ $(i = 1, 2, ..., n)$.

So,

$$\left| \sum_{i=1}^{n} c_{a_{i}} \varphi(a_{i}) \right| = \left| \sum_{i=1}^{n} c_{a_{i}} \hat{k}(a_{i}) \varphi(a_{i}) \right|$$

and we obtain

$$\Big| \sum_{i=1}^n c_{a_i} \varphi(a_i) \Big| = \Big| \sum_{i=1}^n c_{a_i} \hat{\sigma}(a_i) \Big|.$$

Thus

$$\left|\sum_{i=1}^n c_{a_i} \varphi(a_i)\right| \leqslant \|p\|_{\infty} \|\sigma\|_{\mathbf{1}} \leqslant \|\sigma\|_{\mathbf{1}}.$$

So

$$\left|\sum_{i=1}^n c_{a_i} \varphi(\alpha_i)\right| \leqslant M$$

for all trigonometric polynomials $p(x) = \sum_{i=1}^{n} c_{a_i} a_i(x)$ with $||p||_{\infty} \leq 1$ and this in turn implies by the Bochner–Eberlein Theorem ([4], p. 32) that $\varphi = \hat{\mu}$ for some $\mu \in M(G)$ since φ is continuous.

Let us now suppose that $\varphi \notin M(G)$. We shall force a contradiction: By the preceding argument there exists a sequence $k_n \in D(G)$ such that for each $n \in \mathbb{N}$, $||k_n||_1 \leq 2$, \hat{k}_n has compact support and

$$\sigma_n(x) = \int\limits_{n} \hat{k}_n(\alpha) \varphi(\alpha) \alpha(x) d\alpha \quad (x \in G)$$

satisfies

$$\limsup_{n\to\infty}\|\sigma_n\|_1=\infty.$$

Since D(G) has the convolution approximation property, there is a $k \, \epsilon \, D(G)$ such that

$$\limsup_{n\to\infty} \|\sigma_n * k\|_1 = \infty.$$

Observe that

(i)
$$(\sigma_n * k)(x) = \int_{\Gamma} \hat{h}(\alpha) \hat{k}_n(\alpha) \alpha(x) d\alpha$$

for some $h \in L^1(G)$ since $\varphi \in (D, L^1)$. Thus by the Inversion Theorem ([4], p. 22)

$$\sigma_n * k = h * k_n$$
.

Inasmuch as $||h*k_n||_1 \leq 2 ||h||_1$ we have

$$\limsup_{n \to \infty} \|\sigma_n * h\|_1 \leqslant 2 \|h\|_1.$$

Since (ii) says, in particular, that $\limsup \|\sigma_n * k\|_1 < \infty$ this contradicts (2) and completes the proof.

We next present some examples.

EXAMPLE I. Let G be a LCA group. Then $L^1(G)$ has the convolution approximation property with respect to $L^1(G)$. This follows immediately from the Uniform Boundedness Principle and the fact that $L^1(G)$ has a bounded approximate identity.

As a consequence of Theorem 1 we obtain that $(L^1, L^1) = M(G)^{\hat{}}$; this is, of course, well known. Our next example is more interesting.

EXAMPLE II. For G a noncompact LCA group put

$$A^{0}(G) = \{ f \in L^{1}(G) : \hat{f} \in \bigcap_{0$$

Then $A^0(G)$ has the convolution approximation property with respect to $L^1(G)$. To see this fix $f \in L^1(G)$. Now given $\varepsilon > 0$ there is a $k \in L^1(G)$ such that: \hat{k} has compact support;

$$(1) \qquad \qquad \|k*f-f\|_1\leqslant \varepsilon/2 \quad \text{ and } \quad \|k\|_1\leqslant 1.$$

For $K*f \in L^1(G)$ there is a $g \in L^1(G)$ such that g has compact support K and $||g - k*f||_1 \le \varepsilon/2$.

Then, if we assume that G contains a copy of Z, it follows by the noncompactness of G that there is an $a \in G$ such that the sets

$$na+K \quad (n \in \mathbb{Z})$$

are pairwise disjoint. Following [3], p. 129, put

(2)
$$k_n(x) = \frac{1}{n} \sum_{i=0}^{n-1} k_{ia}(x) \quad (x \in G).$$

Then for some θ and all $n \in N$

(3)
$$||f||_1 = ||k_n * f||_1 + \theta \varepsilon \quad (|\theta| \leqslant 1).$$

Now

144

$$\hat{k}_n(\gamma) = egin{cases} rac{1}{n} \left(rac{1-\overline{\gamma(a)}^n}{1-\overline{\gamma(a)}}
ight) \hat{k}(\gamma), & \gamma(a)
eq 1, \ \hat{k}(\gamma), & \gamma(a) = 1. \end{cases}$$

Since the annihilator of the copy of Z has Haar measure zero in Γ , the expression above shows $\hat{k}_n(\gamma) \to 0$ a.e. Notice that $|\hat{k}_n(\gamma)| \leq |\hat{k}(\gamma)|$, hence it follows by the Lebesgue Dominated Convergence Theorem that

$$\|\hat{k}_n\|_p \to 0 \qquad (0$$

Thus when G contains a copy of Z we have that given $\sigma_n \in L^1(G)$ and $\varepsilon_n > 0$ $(n \in \mathbb{N})$ there correspond $g_n \in A^0(G)$ such that

Furthermore, the g's in (5) may be chosen to satisfy

(6)
$$\|\hat{g}_n\|_{1/n} \leqslant 1$$
 and $\|g_n\|_1 \leqslant 1$.

Using structure theory for LCA groups it can be shown that (5) and (6) hold for every noncompact LCA group.

Observe that since p may lie in (0,1), Banach space techniques are not available to us (cf. Theorem 3.1 of [2], p. 188). To show that $A^0(G)$ has the convolution approximation property we modify and generalize an argument of Doss ([1], pp. 184–185) given for G = R. We reproduce some details from [1] for the readers' convenience.

Suppose that $\sigma_n \in L^1(G)$ and

(7)
$$\limsup_{n\to\infty} \|\sigma_n\|_1 = \infty.$$

In (5) set $\varepsilon_n = \frac{1}{4} ||\sigma_n||_1$ for all $n \in \mathbb{N}$.

Let $\langle g_n \rangle_1^{\infty}$ satisfy (5) and (6). For any subsequence $\langle g_{n_0} \rangle_1^{\infty}$ define

(8)
$$g(x) = \sum_{q=1}^{\infty} g_{n_q}(x)/3^q \quad (x \in G).$$

Since by (6) $||g_{n_q}||_1 \leq 1$ for all n_q , we conclude that $g \in L^1(G)$ and $||g||_1 \leq 1$. We now prove that $\hat{g} \in \bigcap_{A \in G} L^p(\Gamma)$.

Given $p \in (0, \infty)$ choose $n \in \mathbb{N}$ such that 1/n < p. Then $\|\hat{g}_m\|_{1/n}^{1/n} \le 1$ for all $m \ge n$ since $\|\hat{g}_m\|_{\infty} \le 1$. Put

$$\hat{s}_N(\gamma) = \sum_{q=1}^N \hat{g}_{n_q}(\gamma)/3^q.$$

Recall that for f_1 and $f_2 \in L^{1/n}(\Gamma)$

$$||f_1+f_2||_{1/n}^{1/n} \leqslant ||f_1||_{1/n}^{1/n} + ||f_2||_{1/n}^{1/n}.$$

Thus for all N > n

$$\|\hat{s}_N\|_{1/n}^{1/n} < \sum_{j=1}^n (\frac{1}{3})^{j/n} \|\hat{g}_{n_j}\|_{1/n}^{1/n} + 1/3(1/3^{1/n} - 1).$$

Inasmuch as \hat{s}_N converges uniformly to \hat{g} we have by the Fatou Lemma that $\hat{g} \in L^{1/n}(\Gamma)$ and this implies since $\|\hat{g}\|_{\infty} \leq 1$ that $\hat{g} \in L^p(\Gamma)$.

We shall show there is a subsequence of $\langle g_n \rangle_1^{\infty}$ such that $\limsup_{n \to \infty} ||g * \sigma_n||_1$ = ∞ where g is defined by (8): Observe that if, for some $k \in \mathbb{N}, g_k$ satisfies

$$\limsup_{n\to\infty}\|g_k*\sigma_n\|_1=\infty,$$

then we are done. So suppose that given $k \, \epsilon \, N$ there corresponds an $M_k \, \epsilon \, N$ such that for all $n \, \epsilon \, N$

For any sequence $\langle g_{n_0} \rangle_1^{\infty}$ and corresponding g defined by (8) we have

$$\|g*\sigma_{n_q}\|_1 \geqslant \frac{1}{3^q} \, \|\sigma_{n_q}*g_{n_q}\|_1 - \sum_{i < q} \frac{1}{3^i} \, \|\sigma_{n_q}*g_{n_i}\|_1 - \sum_{i > q} \frac{1}{3^i} \, \|\sigma_{n_q}*g_{n_i}\|_1.$$

From (5) and our choice of ε_n

$$\|g*\sigma_{n_q}\|_1\geqslant \frac{3}{4}\ \frac{\|\sigma_{n_q}\|_1}{3^q}-\sum_{i< q}\frac{\|\sigma_{n_q}*g_{n_i}\|_1}{3^i}-\sum_{i> q}\frac{1}{3^i}\|\sigma_{n_q}*g_{n_i}\|_1$$

and by (9)

$$\|g*\sigma_{n_q}\|_1\geqslant \frac{3}{4}\ \frac{\|\sigma_{n_q}\|_1}{3^{d}}-\sum_{i< q}\frac{M_{n_i}}{3^{i}}-\sum_{i> q}\frac{1}{3^{i}}\|\sigma_{n_q}*g_{n_i}\|_1.$$

Finally, since

$$\|\sigma_{n_{g}}*g_{n_{i}}\|_{1}\leqslant\|g_{n_{i}}\|_{1}\,\|\sigma_{n_{g}}\|_{1},$$

we have via (6) the inequality

$$||g*\sigma_{n_q}||_1 \geqslant \frac{3}{4} \frac{1}{3^q} ||\sigma_{n_q}||_1 - \sum_{i \neq q} \frac{M_{n_i}}{3^i} - ||\sigma_{n_q}||_1 \sum_{i \neq q} \frac{1}{3^i} .$$

Thus,

(11)
$$||g * \sigma_{n_q}||_1 \geqslant \frac{1}{4} \frac{||\sigma_{n_q}||_1}{3^q} - \sum_{i \leq q} \frac{M_{n_i}}{3^i} ;$$

and this inequality holds for all subsequences $\langle g_{n_q} \rangle_1^{\infty}$. Inasmuch as $\limsup_{n \to \infty} \|\sigma_n\|_1 = \infty$, (11) permits the construction of a subsequence $\langle g_{n_q} \rangle_1^{\infty}$ such that g satisfies $\limsup \|g*\sigma_n\|_1 = \infty$. Our discussion is complete.

146

As a consequence of our Theorem it follows that when G is a noncompact LCA group $\varphi \in (A^0, L^1)$ if and only if $\varphi = \hat{\mu}$ for some $\mu \in M(G)$, cf. Theorem 3.1 of [2], p. 188. This result has also been obtained by S. Saeki (private communication). Notice that $A^0(G)$ does not have the convolution approximation property when G is compact since $(L^2, L^2) = L^{\infty}(\Gamma)$.

For G a noncompact LCA group and $1 \le p \le 2$ put

$$A_1^p(G) = \{ f \epsilon L^p(G) \colon \hat{f} \epsilon L^1(\Gamma) \}.$$

Recall that $A_i^p(G)$ is a Banach space when equipped with the norm $||f||_p +$ $+\|\hat{f}\|_1$, $f \in A_1^p(G)$. Denote by (A_1^p, L^p) the Banach space of all bounded linear maps from $A_i^p(G)$ to $L^p(G)$ which commute with translation.

By $M_p^p(G)$ we mean the space of all continuous linear operators from $L^p(G)$ to $L^p(G)$ which commute with translation. The proof of the following result may be of some interest and does not seem to be widely known:

THEOREM 2. For $G = \mathbf{R}$ the operator $T \in (A_1^p, L^p)$ if and only if T extends to an operator in $M_n^p(\mathbf{R})$.

Proof. One half of the Theorem is obvious. For the converse we have by the continuity of T a constant K > 0 such that

$$||T(f)||_p \leqslant K\{||f||_p + ||\hat{f}||_1\} \quad (f \epsilon A_1^p(\mathbf{R})).$$

Let $f \in A_1^p(\mathbf{R})$, then

$$\lim_{a\to\infty} \|f + \frac{1}{2}f_a + \frac{1}{2}f_{-a}\|_p = (1 + 1/2^{p-1})^{1/p} \|f\|_p$$

and since T is linear and commutes with translation

$$\lim_{a\to\infty}\|T(f+\tfrac{1}{2}f_a+\tfrac{1}{2}f_{-a})\|_p = (1+1/2^{p-1})^{1/p}\|T(f)\|_p.$$

Now

$$(f+\frac{1}{2}f_a+\frac{1}{2}f_{-a})\hat{}(\alpha) = \left(1+\frac{\alpha(a)}{2}+\frac{\overline{\alpha(a)}}{2}\right)\hat{f}(\alpha)$$

and since the kernel $\left(1+\frac{\alpha(a)}{2}+\frac{\alpha(a)}{2}\right)$ is non-negative, we obtain by the Riemann-Lebesgue Lemma that

$$\lim_{a\to\infty}\int\limits_{R}|\hat{f}(a)|\left|1+\frac{a(a)}{2}+\frac{\overline{a(a)}}{2}\right|da=\int\limits_{R}|\hat{f}(a)|da.$$

We conclude therefore that

$$\|T(f)\|_p \leqslant K\{\|f\|_p + (1+1/2^{p-1})^{-1/p}\|\hat{f}\|_1\}.$$

Iterating the process n times we have

$$||T(f)||_p \le K\{||f||_p + (1+1/2^{p-1})^{-n/p} ||\hat{f}||_1\}.$$

Well, this means since $n \in \mathbb{N}$ is arbitrary that

$$||T(f)||_p \leqslant K\{||f||_p\} \qquad (f \epsilon A_1^p(\mathbf{R}).$$

Since $A_1^p(\mathbf{R})$ is dense in $L^p(\mathbf{R})$ we may extend T in the desired fashion. This completes the proof.

It is easy to see that the proof of Theorem 2 generalizes to a wide class of noncompact LCA groups.

References

- [1] R. Doss, On the multiplicators of some classes of Fourier transforms, Proc. London. Math. Soc. (2) 50 (1949), pp. 169-195.
- A. Figà-Talamanca and G. I. Gaudry, Multiplier and sets of uniqueness of Lp. Michigan Math. J. 17 (1970), pp. 179-191.
- [3] G. I. Gaudry, Topics in Harmonic Analysis, Lecture Notes Dept. of Mathematics, Yale University, 1969.
- W. Rudin, Fourier Analysis on Groups, Interscience, New York 1962.

KANSAS STATE UNIVERSITY