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Abstract. A complete description of non full rank in general g-variate minimal
stationary processes over discrete Abelian groups are given. This result subsumes the
minimality theorems of various authors in special cases.

1. Introduction. In his fundamental paper [1] A. N. Kolmogorov
introduced the important concept of minimal processes. Next the concept
have been extended to the g-variate case (cf. [2] and [6], Section 10).
The interpolation problem for g-variate stationary processes over groups
was studied by H. Salebhi and J. K. Scheidt [8] and by A. Weron [9], [10].

* Purthermore in those papers characterizations of g¢-variate minimal
processes are also given. In [8] a generalization of Masani’s minimality
theorem for full rank processes is obtained. Two characterizations of
non-full rank processes are given in [10], but unfortunately one of which
([10], Theorem 5.7) contains an error. In this paper a counter example for
this (see Example 5.3) and a correct statement of this theorem (see Theorem
4.6(d)) is given. Moreover, we will get a general theorem on characteriz-
ations of g-variate minimal (not necessary full rank) processes.

Section 2 is devoted to the preliminary results on the spaces
Loy —of square integrable matrix-valued functions and H,, — of
Hellinger square integrable matrix-valued measures. Section 3 treats
on g-variate stationary processes over a discrete Abelian group. Using
methods of the earlier work [10] on stationary processes over locally
compact Abelian (LCA) groups, we obtain an analytical characterization
of a subspace N, which is important in the minimality problem. In Section
4 we discuss the minimality problem and give some characterizations
of minimal processes. As a corollary we then deduce Kolmogorov’s and
Masani’s mininality theorems. Finally in Section 5 we give several
examples to show that conditions in the presented theorems are essential
ones as well as to illustrate them.

' 2. L, and H, ,'spaces. Let B be a o-algebra of subsets of a space

0 and let @ = [py), 1<1,j<¢, be a matrix-valued function on .
Troughout this paper all matrices have complex entries and C denotes
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the set of complex numbers. A function @ is B-measurable if each function
@y is B-measurable. If m is a non-negative real-valued measure on %,
then by L, we denote the class of all B-measurable functions & guch
that each ¢y is integrable with respect to (abbreviated to “w.r.t.”) m.
For Dely,, we pub

f Ddm = [ f qoijdm].
2 2

By a matrix-valued measure on a o-algebra B we shall mean o function
M from B into the set of all ¢ x g-matrices over ¢, the complex numbers,
such that for every disjoint sequence of sets Ay, 44, ... in B with union

A, M(A) = 3 M(A,). Obviously, M = [M] is a matrix-valued. measure
k=1

if and only if each of its entries M, is a complex-valued measure on B.
It m is a non-negative o-finite measure on B, we say that M is absolutely
continuous w.r.t. m (M < m) if each entry M, is absolutely continuous
w.r.t. m.

Let now @ and ¥ be B-measurable matrix-valued functions on Q
and let M be a matrix-valued measure on B. If m iy non-negative o-finite
measure on B such that M < m and if S (dM /dm)Y/*sI}l,m, then we define

[ @AM = [ B |am)* am,
2 2

where A* denotes the conjugate transpose of A. It iy Lknown ([5], 8.1)
that [@dMP™ is independent of the choise of m.
2

(2.1) ProPoSITION ([3], p. 406). The four equations AXA = A,
XAXY = X, (AX)* = AX, (XA)* = X4 have a unique solution for amy
matriz A. 7 .

The unique solution of these equations is called the generalized inverse
of A and written X = A4,

Let #(4) = {y: y = w4} will denote the range of 4 and A4 (4)
= {#: 24 = 0} will denote the null space of 4. P .« Will denote the ortho-
gonal projection matrix onto the subspace 4 = 02 Tf A4 iy the generalized
inverse of 4, then from [4], p. 355, we have

(2.2) A4F = Po gy = Py,

(23) A¥ A = Py =Py,

(2.4) (AFWF = 4,

(2:5) (A" = (a4,

(2.6) Let H be Hermitian and ¢ = AHA* Then #(H) < #(4) if
and only if AX G(A#)* = 7

We note that (2.1)—(2.5) implies
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(2.7) If A is non-negative and Hermitian, then AH is also non-negative
and Hermition and #(A) = &(AX).

Let M and N be maitrix-valued measures on 9. Following [4], p. 361,
we say that N is strongly absolutely continuous w.r.t. M (N K M) if exists
a non-negative o-finite measure m such that M <m, N <m and
(AN [dm) = R(AM [dm) m-a.e. We say that the matrix-valued functions
@ and ¥ are equivalent w.r.t. M (9 = ¥(mod M) it [(6—P)dM = 0 for
all HeB. bof

(2.8) PrOPORIMION (¢t [4], 5.4). et M and N be matris-valued measures
on B. Then N LM if and only if ewists @ matriz-valued Sfunction @ such
that @ el y ond N (H) =Ef§[)dM Jor all BeB. This & is unique (mod M):
in fact, ® = (AN |dm)(dM |dmyH » where m is any non-negative measure
such that M < m.

The next Cramér’s decomposition is an easy consequence of [4], 6.14.

(2.9) ProrosirIoN. Let N be a non-negative Hermitian matriv-valued
measure and let-m be a non-negative o-finite measure on B. Then there ewist
unique matris-valued measures N° (the absolutely continuous part) and N°® (the
singular part) such that N = N®+N° N® < m, N°*.Lm and N®, N® are
non-negative Hermition matriz-valued measures.

Let M, N and F be matrix-valued measures on B. If m is a non-
negative o-finite measure on B such that M <« m, N <m, P <m and
it (M [dm) (dF |dm)H (AN [dm)*e L ,,, then we define the Hellinger integral

[aMaN*|aF = [ (@M |am)(aF|am)¥ (N [dm)* dm.
o 2

It is well known ([7]) that [dMdN*/dF is independent of the choise
of m. : 2

(2.10) DmrivrrIoN (cf. [5], [7]). Let I be a non-negative Hermitian
matrix-valued measure on B.

(a) By M, we denote the class of all matrix-valued measures M on
B for which the integral (M, M)p = r’[ AM aM* [aF exists and M is strongly
absolutely continuous w.r.t. J.

(b) By Iy wo denote the class of all B-measurable matrix-valued
functions @ on £ for which the integral (@, @)y =f2f BIFD* exists.

We remark that our definition of H, space is different from original
one, given Ly IL. Salehi ([7]). Example (5.1) shows that Theorem 2(b)

‘in [7] is not true without the assunption M {(( F and therefore we add

it in the definition.

(2.11) Trmormm (cf. [7], Theorem 2). Let I be a non-negative Hermitian
mairig-valued measure on B. Then MeH, yif and only if there exists a function
D in Ly such that M(H) =Lj BAF for each HeB.
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Proof. Let MeH, . Since M (({F, then by (2.8) there exists
a function @el, p such that M(H) = [@dF for each HeB. In fact, &
I
(A [dm)( dF/dm f(mod F), where m is any non-negative o-finite
measure on B such that ¥ < m (for example, m = tr#). Obviously,
(2.12) [AMAM*[dF = f(dM/dm)(dF/dm)”F(dM/dm)*dm = [ DA,
Q2 2 Q

Hence Pelly p.
Conversely, let M (B) = f(DdF for all BeB and Pely . Then Pely p

(see[5]) and, by (2.8) M(({F Accoulmg to (2.12), the integral fdeM*/dF
exists and. therefore MeH, . 1

(2.13) COROLLARY. Let F be as before. Then M is zero in Hy p if and
only if M(E) =0 for each EB.

Proof. The sufficiency is trivial. For necessity let us consider M eH, p

such that f am dM*/dF = 0. By (2.11), there exists a function Pel,

such that M
D=0 (modI‘) Hence M(BE

f@dF BeB. Since (0, B)p = (M, M)p, from ([5])
[cbdl’ =0 for each HeB. W

3. Stationary processes. Let G be any discrete Abelian group with
multiplication. Then I, the dual group of @, is a compact Abelian group
under compact-open topology. We will denote the elements of G by ¢ and
those of I" by y. The value of yeI" at g¢G will be denoted by <{g, ¢>. The
Borel field of a topological group is the minimal o-field generated by
closed subsets. Throughout this paper the letter B will denote the
Borel field of I. On every locally compact Abelian group there exists
a non-negative measure, finite on compact sets and positive on non-empty
open sets, the so-called Haar measure of the group, which is translation-
invariant. We denote by dg and dy the Haar measures on ¢ and I'. Without
loss of generality, we will assume dy(I") = 1.

(3.1) DEFINITION. A g-variate stationary process over G is a function
(X,)gee Such that:

(a) X,<H? for all geG (H is a fixed comwplex Hilbert space) and

(b) the Grammian matrix (X,, X;) = (Xp-1, X,) = K (gh™) depends
only on gh~* for all g, heG.

K(g) is positive-definite and, in view of Bochner’s theorvem, can be
written in the form

(8.2) K(y) =(X,, X,) = [{g, y>aF, where F is the non-negative
7

Hermitian matrix-valued measure on B, the so-called spectral measure
of (X,),cq- This ¥ is unique.

Let M denote the time domain of the stationary process (X,)jq;
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i.e., the closed subspace of H® spanned over the elements X,, g:@, with
qx% g~mzm,r1x coefficients.

(3.3) Tumorem (cf. [10], Theorem 3.7). If ( X)peq 18 @ g-variaie
stationary process over G, with the spectral measure F then the spaces M,
Ly amd H, p are isomorphic, where

(a) the mapping Vy: X, L-><g, v>I, I denoting the unit matriz, induces an
isomorphism between M and Ly p,

(b) the mapping Vy: Pr>My, for any mairiz-volued funot'wn DeLy, p
with values on the set of measures M on B given by M (B f DAL, is an
isomorphism between Ly p and H, p.

Let ¢ be a fixed element of @. By M, we will denote the closed subspace
of H® spanned by X, b % ¢, and

R, =MSM, .

The following theorem in the general case of locally compact Abelian
groups is proved. in [9], 2.8.

(3.4) TrmormM. Let (X,),q be o g-variate stationary process over @,
and I its spectral measure. Then VoV M, consists of all mairiz-valued
measures N 4 from the space Hy n, where N ,(H) = Ady(B) for each E<B,
and A is any g X g-motris. '

Remark. Let XeMR,. From the diagram which is presented in
[10], p. 175, it follows that, for each HeB,

(3.8) Mx(B) = Nix,x,)(B) = (X, X,)dy(H), where Ux =7V,V,X.

Let F* and F° denote the absolutely continuous and singular parts
of I in the Cramér’s decomposition (2.9) w.r.t. the Haar measure dy and
let ' denote the dervivative of % If we put & = V, X, then, by (3.3)
and. (3.5), we have ‘

(X, Xy = Mx(E
I
Since 1] dy, we conclude that
DB = (X, X,)dy-a.0.,
Py =0 on §, where § denotes the support of F*.
(3.7) LimmmA. Let I be the spectral measweofaq-varia,te stationary process

(X)gewr OvOr G andlet N4 = Ady, where A is any q'x g-matriz. Then N 4eHy p
if and only +f A(A) < R(F')dy-a.e. and the integral fA P A*dy ewists.

Proof. Necessity. Let N eH, p. Then N 4 <K< F and by (2.11) there

f@xcw f(bXdF“ f@xdlf’“

(3.6)

- exints a funetion @4 el, p such that for each HeB

Ny(B) = [&,aF.
I
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Since, for all EeB,

Ady(B) = N, (B U @,aF = f @, dy -+ f @ 44T,

we conclude that @, F' = A dy-a.e. and 4 = 0 on §, where § = supp F*.
Thus Z(A4) = Z(DF') < R(F') dy-a.e. Furthermore

deAde‘;/dF = fchdF(Dj = f@AF’(I{‘;dy = fA(zﬂ')Jf?A*dy

and consequently the integral f A (T A*dy exists. The sufficiency is
trivial. M

4. The minimality theorem. Let (X)), be a g-variate stationary
process over discrete Abelian group G and F its spectral measure. The
derivative of the absolutely continuous part of F in the Cramér’s decom-
position w.r.t. the Haar measure dy will be called the spectral density

f (X,)pee and will be denoted by F'.

(4.1) DepINitIoN. We say that the stationary process (X),.q is
minimal if X,¢ M,."

For the proof of the minimality theorem, we need the following
lemmas.

(4.2) Leyma ([4], 3.2). Let B be a measurable set and let & be a non-
negative Hermitian matriz-valued fumction on £ such that Ef Ddm ewists.
Then

(a) for almost all » in B JV(dem) < N (P(w)),
(b) for almost all w in B .91’(45 (w)) = .%(fdidm)

(¢) if for almost all o in B, 2(®(

)c M, where M is @ subspace
of 0% then Z([®dm) c 4.
K

The following lemma is easy to prove.

(4.3) Lmvpa. Let @ be a matriv-valued function on Q and let A, B be
any matrices. Then

(a) the integral ,;f ADdm exists if and only if the integral { Py 4y D
ewists; if these imtegrals ewist, then

f Addm = A f Py Gim,

(b) the integral f DBdm exists if and only if the integral f PP gy A

exists; if these 'mteg'mls exist, then

[ ®Bam = [ OPpigim-B.
Q2 2
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(4.4) Liemma (cf. [10], p. 181). If @ is a non-negative Hermitian matriz-
valued function, then the integral f Pdm ewists if and only if the integral
"tr Ddm ewists.

Let ¥, be the orthogonal projection of X, onto 9t,. The letter J will
denote the orthogonal projection matrix onto the range of (¥,, ¥,).
Now, we prove the following theorem which gives a charactemza,tmn of
the space #((Y,, T,)).

(4.5) TuworeM. Let (X,),.q be a g-variate stationary process over
discrete Abelian group G with the spectral measure F. The range 2((X,, X))
18 a mawimal closed linear subspace A of C% satisfying the following conditions :

(a) the integral fPJ, X VP 4y evists,

(b) A = Z(F)’ dy a.e.,

e) w(rjpﬂ(ﬂ')%ﬁpﬂdy) =
Proof. Let M = V,V,Y,. By (3.5), M(H) = X Y,)dy(B) = (Y

Y,)dy(H) for all HeB. Furthermore, by (3.7), Z((X,, X,)) = Z(F') dy-a. e
and the integral f J(B) & Jdy exmba, J = Pg((y )" These facts in combi-

) (2.3) imply ‘

= (Yo, Y (U, M)p(X,, XX

= (Yo, T [ (X, T)EWH(T,, T,)dy(Y,, T
Ir

nation with (2.
(X, T

= [J(EWJay.
r

COonsequently, by 2.7, 2((¥,, ¥,)) = %( rfJ(F')’Wde)..Thus, conditions

(a), (b), (e) hold for # =& ((X,, X,)).
Let . be a closed linear subspace of (¢ satisfying conditions (a), (b), (c).
We shall show that . <% ((Y,, ¥,)). Put B= fPJ ¥ P 4dy. By (3.4)

and (3.7), NpeV,V, N, where Nzp(H) = de(E) for all HeB. Let Y be
an element of M, such that Ngz = V,V,Y; then, by (3.8), B = (¥, X,).
Since YeM,, ¥ = ¥, D for any matrix D. Hence
R((Y, X)) > (X, D, X,) =%(B) = 4. R

Now we stato the main result of this paper.

(4.6) Trmormar. The following properties of q-variate stationary prooess
(Xp)geq over a disorete Abelian group G are equivalent:

(a) the process (X, eq 18 minimal,

(b) the Hellinger integral: f AN ;AN |dF exists and is non-zero, where

for each BeB, N,(B) = Jd;f(w
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(c) there emsts o linear closed subspace M < Z(F') dy-a.e. such thai

the integral f P FVKP,dy exists and is non-zero,

(d) there 6msts a matriz A with #(4) c Z(T') dy-a.e. such that the
integral f te{A (P)H A% dy ewists amd is non-zero.

Proof First of all we remark that in view of (4.4) we may use also
the trace in the integrals in conditions (b) and (c).

(a)=(b). Let (X,)geq be minimal. If we denote M = V,V,Y,, then
by assumption and by (3.8), (M, M)y = (¥,, ¥,) # 0. Using the same
argument as that 'in the proof of (4.53), we obtain

(4.7) (YMY = fJ X Jay = deJdNJ/dF.

Hence, the integral f AN ,dN ;a7 exists and is non-zero.
(b)=(c). Suppose that f AN ;AN ;/dF exists and is non-zero. Put

M= R((X,, ¥,)). From (4. .)) M= R((¥,, X,)) = R(F") dy-a.e. Since
f P (PP dy = f AN ,AN ;/aF, the first integral exists and. is non-zero.

¢)=(d). Let us suppose that (¢) holds. If we put A = P, then it

is obvious that the integral l{ tr {4 (B A*}dy exists and Z(d) = A

< Z(F') dy-a.e. Since ¥ is the non-negative Hermitian function, then,

by (2.7), A(F)¥ A*is also non-negative and Hermitian. By the inequality

0 P (tr?)I which is satisfied for any non-negative and Ier-

mitian matrix, we deduce that the integral [tr{4 (# A*}dy is non-zero.
7

(d) = (a). Let now 4 be any matrix such that (d) is satistied. We put
Y= A (¥ A* By (4.4), follows that Pe L, 4, Put B= fp,,eu) (B Py 4y dy

(by (4.3) this integral exists). Since 0 5= [tr {4 (F «)v[’ A*}dy and
7
[tfdEF A ay =t [ AT F A ay) = r(ABAY),
I Fa

B is non LGlO Clearly, by (4.2)(c), #(B) « #(4) = #(F') dy-a.e. If
put Np( f Bdy for all BeB, then from (3.7) and (3.4) it Lollows tham

NgeV, V1 N,. We note that (2.13) in combination with the fact B#0
implies that Ny is non-zero in H, ». In view of the isomorphism theorem
(3.3), the space M, is non-zero. Concluding, the process (X,),.q is minimal. W

This result implies the univariate minimality theorem (¢, [1]) and
the theorem by H. Salehi and J. K. Scheidt ([8], 3.6) for g-variate full
Tank processes over groups.

(4.8) CoROLLARY (Kolomogorov’s minimality theorem). Let (X,,) ez be

icm
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o univariale stationary process over the group % of mtegem, and F' its spectral

density. Then (X,),ez is minimal if and only if f dy [T (y) < co.

Proof. This assertion is an easy consequence of (4.6)(c) and the fact
that . is & closed linear subspace of ¢ if and only if /# = {0lor 4/ =0C. W

(4.9) CoROLLARY (Masani’s minimality theorem). Iet (Xplgea be
o g-variate stationary process over discrete Abeliam group G and I its spectral
density. Then (X,)peq i minimal and rank (Y, Y,) =q if and only if
(I ewists dy-ae. apd (F')eL ,,.

Proof. Let (X,),e be minimal and rank (¥,, ¥,) = q. Then by the
proot of (4.5), #((¥,, ¥,))< #(F") dy-a.e. and the integral fJ YR dy

exists, J = Pgy,y,. Since #((¥,, ¥,) = 0% it followﬁ that (F')~?
exists dy-a.e. and (F")" eI, 4, '

Conversely, let (F')~* exist dy-a.e. and (F')~ TeL, - By (4.5) and
(4.2)(b), .%((Y,,, Ye) = (% Hence the process (X,)pe@ 15 minimal and
mnk (Y, Y,)=¢ M

Finally we give the formulas for the linear interpolation. Let (X)) gea
be a g-variate stationary process over discrete Abelian group @. Suppose
that all X for b # g are known, ¢ is a fixed element of . We say that X,
is a prediction of X, based on observations from the complement of the
element g if X)W, and

X, — X} = min |X,—X]|.

Xeﬂ]lg
It follows that X} is the projection of X, onto M,. Wé note that the closed
subspace of IN ﬁpmmecl by X,— X} is exa.etly the space M, which was
defined in Section 3. Thus, X X Y,, jwhere, as before, ¥, denotes
the orthogonal projection of X onto SYt If we put @)= leg, M,
= V,®; then, from (4.7) and (2.6),

(Yo, Xo) = ( [T (@ Tay. |
Ir

Consequently, by (3.3), (3
the prediction:

(4.10)

.B), (3.6), we have the following formulas for

MyE) = 1(B) = ([T@ W I8 ay ), Bes,

(4.11) B(y) = I— ( f J(F) %?de) (T ()% (mod F),
where J denotes the orthogonal projection matrix onto the range of
(X, T,).

It iy well known that if {U,},.e is a shift groups of unitary operators
on M defined by equality U,X; = X;,, ¢, he@, then for each ge@ and

4 -~ Studia Mathematica LIX.1
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Y, ViU, XY =g, V.Y. Consequently, from the obviously equality
X5 = U,X:, we obtain

(412) B(y) = (g, v> Do(y) (mod F),
(4.13) MyB) = [{g, v>aM,.
I

Let us note that the space %((¥,, ¥,)) used in these formulas has the
characterization given in (4.5).

5. Examples. In this section we will give several examples illustrating
the above results.

(5.1) Exampri. Let M, N be the real-valued measures on the Borel
field of [0, 2x), absolutely continuous w.r.t. the Iaar measure df, and
let theirs derivatives be given by

M () =T m()y  N'(1) = Iinam(®),

v

te[0, 27),

27
where 1, (t) denotes the indicator of A. Obviously, the integral [ d MdM"*[dN
0
exists. But does not exist a function @ such that for each measurable
in )
set B, M(H) = [®()dN (t). Therefore the assumption M is gtrongly absol-
0 .

utely continuous w.r.t. N in (2.11) is essential one.

(8.2) Examerm. Let (X,)pez and (¥,),.z be mutually orthogonal
stationary processes over the group 7, of the integers, with the absolutely
continuous spectral measures F; and Fy. Let F (1) = Zjg (1), F5(t) = L om (8),
te[0,2x). Then W, = [X,, ¥,], neZ, is a bivariate stationary process
over Z with the spectral density given by

Zip,m(t) - 0
0 ’Z[‘J’C,Zﬂ)(t)
From the univariate Kolmogorov’s minimality theorem we have that

the processes (X,)nez 2and (Y, )n.z are not minimal, and - therefore the
process (W,)p.z 18 not minimal. We note that

-Z[u,n) ”) 0 l
0 1[1:,271)('5)_

is integrable w.r.t. di, but does not exist a non-zero closed linear subspace
M < 02 guch that 4 < Z(F') dt-a.e. Tt shows that the assumplion
M= Z(F') dy-a.e in (4.6)(c) is essential.

(8.3) Bxamprm. Let (X,),.z and (Y,)..; be mutually orthogonal
univariate stationary processes over Z, with the absolutely continuous
spectral measures F, and F,. Let 7 (1) =1, Fy(1) =1, te[0, 2n). Then

(1) =[ ], te[0, 2m).

(P (1) = [

icm
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Wy =[X,; X,], neZ, is a bivariate stationary process over Z with the
gpectral density

t 0
F' (1) = € 7).
(®) [o 1], te[0, 27)

Bince V' = [0, X,]¢ M, and V = 0, it follows that the process (Widnez 18
2

minimal. But the integral f (F’)ﬂH’ d¢ does not exist. Hence, the theorems
0

[6];, 10.2, and [10], 5.7, are not true, but their correct version is given
in (4.6)(d). It iy clear that if we put 4 = C,, where the number at
the bottom is numbering of the axes in the product 0? = (0, x C,, then
condition (¢) of (4.6) is satisfied.

In the last example we show how to cbtain the prediction formulas
in some special cage.

(5.4) BXAMPLE. Let (W), be a5 in (5.3). Since (F)# 1) = (F')" ()
and (F")"'¢L, 4, we have, by (4.5),

00
J = .
According to formulas (4.10) and (4.11) we obtain:

(@I dt) (1) = o te[0, 2m);
0 0 0 H b H

. 10
Py (1) = 0ol te[0, 2m).
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The range of vector measures into Orlicz spaces

by
WERNER FISCHER and ULRICH SCHOLER (Bonn)

Abstract. It is shown that the range of a c-additive vector measure having
values in an Orlicz space L, (X, 4, p), where ¢ is unbounded and satisties condition
4y, is bounded. This implies that every scalar-valued, bounded measurable funetion
can be integrated with respect to any vector measure taking values in such a space
Lg(X, A, p). In the special case of the sequence spaces I?, 0 < p <.1, the range i§
relatively compact, and the closure is even convex and compact if the measure is
nonatomic. .

1. It is known that the range of every o¢-additive vector measure
with values in a locally pseudoconvex vector space iy bounded (cf. [1]).
On the other hand P. Turpin has shown in [11] that there exists a non-
locally pseudoconvex F-space and a vector measure having unbounded,

“range in that space. With regard to integration theory it would be im-

portant to know whether a vector measure has always bounded range
in an Orlicz space L, (X, 4, u) (¢f. [8]). P. Turpin states this question
in [9] and [11].

In this note we answer the question positively for the class of Orlicz
spaces L,(X, A, u), where ¢ is unbounded and satisfies condition 4,.
It is done by showing that every normbounded, convex set in L, (X, 4, u)
is bounded and then uging the fact that the convex hull of the range of
such a vector measure is normbounded. The latter follows from an in-
equality for Orlicz spaces, which is essential for the proof that in these
spaces unconditional convergence is equivalent to bounded multiplier
convergence ([4], [10]).

Ag a consequence every scalar-valued, bounded measurable function
can be integrated with respect to any vector measure taking values in
such a space Ly(X, A, p).

In the special case of the sequence spaces ¥, 0 < p < 1, the range
is even relatively compact. When such a vector measure is also nonatomie,
the closure of its range is compact and convex.

2. Throughout the paper, 2 will denote a set and T a o-algebra of
subsets. Let ¥ be an F-tpace (i.e. a complete metric topological linear
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