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Abstract. Congsider bounded and normalized univalent functions
f(z) = ba+bya?+ ...,
|2 < 1, If2)l <1,

b
be(0,1], ay, =—;‘-.

For them coefficient regions have been studied mainly by aid of Lowner — and
variational methods. It appears, that also the Power inequality
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implies information of the coefficient regions and characterizes the boundary functions
in cases where they satisfy the necessary equality condition

N

N
zylogf+ zl; z,f* = ZNykz"-

In the lowest case N = 1 results concerning (a4, a;) can be described in detail

and they are comparable to those of Schaeffer and Spencer. N = 3 gives analogous
but more complicated information of the next coefficient region (a,, a3, ay).

1. Power inequality. We consider bounded and univalent functions f

defined in the unit dise U = {2¢C||2| < 1} and normalized according
to the following notations:

f(2) =bz+b22+ ...,
If(2)l <1,

bn
be(0,1]; —~=a, (b, =Db).
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The class of functions, for which the leading coefficient b is constant, is
denoted by S8(b).

For these functions one can derive an effective inequality by starting
from Green’s identity and from the inequality implied in it:

0< [[1g1de = = [ Reglw)-g (w)iw.
D ¢ oD

Here the domain of integration D is determined as follows. Let 0K, be
a circle in U, center at the origin and radius r (< 1). Its image under f
is C = f(8K,). The ring which is bounded by C and the unit circumference
0K, in the w-plane is cut open by a properly chosen slit and the result is
the domain D.

The function g, which we call the generating function, is defined to be

N
g(w) = mplogw+ Y s (»#0linZ; N =1,2,...).
s

Here the numbers o, are free complex parameters with the assumption that
woe R, This limitation is unessential for the inequality resulting; the in-
equality can easily be extended to concern complex s, too.

By applying Green’s identity to the pair (D, g) we obtain an in-
equality which, further, allows the limit process r—1. The result is called
the Power inequality or shortly Py-inequality and reads as follows:

- -] N
Zklyk|2+2Rel(§i,yo) < Dklmr (V =1,2,...).
-N -N

Here the numbers y,, mean the combinations
k
= ) eaw, (k>—N),
r=—YN

which are got from the expansion

g(f(2) = wologz—[—Zy,,z"..
=~

The numbers ¢, are called the Power-coefficients and are defined as
coeficients of the following expansions

f(2) = Zc,kz", logf—(:l =Z°okzk-

kmy k=0
In applications we utilize the truncated form of the Power-inequality

N N
D klyil* +2Re(Zyye) < ) klayl2.
-N -N
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This can further be transformed by aid of Schwarz inequality, under the
assumption that Re(Z,y,) = 0, to the following bilinear form

N N
lzk(y—kyk+w—kmk), < Zk(ly—k|2+ [2,]2) .
T T

Equality in these transformations is preserved provided that yy.,
= ... = 0. Therefore, we get for the possible extremum function a nec-
essary condition, by comparing the generating function and the corres-
ponding expansion:

N N .
@olog f -+ 2 2,7 = mlogz+ Z Y,2° .

-N -N

This means, that only such problems can be sharply solved by aid of
the Power inequality, which have an extremal function satisfying a con-
dition of the above type. There appears, that many interesting coef-
ficient problems are of this nice character. We are going to illustrate this
by considering two first coefficient bodies in S(b) by aid of this Power
inequality method.

2. The optimized P,-inequality for f(z). The quadratic P, -inequality
reads
2Re(ZyYo) + |y11% < 12412+ (1 — ) Ju,y |2,
where
Y_, = —u,; 18 a parameter;
Yo = Wologb + u, ay,
Y1 = Uy (ay—a3) + 2,0, + @, b.

If we suppose that @, = 0, the ratio o, /u, is left as a parameter in
the inequality. Denoting %, = 1 we thus get for the combination

é = ay—a;
the condition
|8+ b, |2 — || — (1 — %) < 0.

If , # 0 we similarly way take #, = 1 and obtain
|#y 0+ ay+@,b|%— |2, — (L — b2} |uy|* —2Re(u,a,) —2logh < 0.

In both the cases, the left-hand side is quadratic in some complex
variables and can, of course, be explained quadratic in real variables too
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by splitting the complex variables in real and imaginary parts. It is a very
natural procedure to optimize the inequality by choosing variables so that
the left-hand side is maximized. In the case z, #* 0, the optimal choice
appears to be the following:

(1—b%a,+da,

u1 = — |6|2_(1_b2)2 ) .’1)1 = bﬂlo
This gives to the inequality the form
2
a, |l@,|?
— < R: _— — 1 _—p2 = ]
=8I <Ej & =gins E=1-b+oon

Geometrically this means that & lies in a disc having center at 64, and
radius R. The parameter values found show, that

r_, = —%, Y_,= —¥Y.

Thus, equality is reached provided that the following condition defines
a §(b)-function:

logf+b(a@f—u,f") = 1082’ + %z —u 27 Y.

If z, = 0, we obtain similar equality condition, without the logarithmie
terms.

The functions defined by the above condition can be completely
determined by aid of boundary correspondence and the monodromy the-
orem. There appears, that if |a,] < 2b]logd| the whole boundary of the é-
disc is reached by extremal functions. From this limit upwards only
a shrinking part of the boundary is connected to S(b)-functions.

In the case where a,¢R, we are led to a 3-dimensional coefficient-
region by letting the J-disc move in the direction of the a,-axis.

Especially, if all the coefficients a,, a,, ... are real, we get an intersec-
tion of the previous figure. In this case the coefficient body can be deter-
mined completely by filling the caps left by aid of Lowner’s method.

The family of extremal functions is an interesting one, consisting
of symmetric and non-symmetric two-slit domains.

The reason for the cap left is obvious. The extremal domains belong-
ing to the cap are expected to be of one-slit or forked slit type. The
Power inequality is not constructed to fit with such extermal cases.

3. The optimized P,-inequality for Vm It is a very natural and
interesting question to check possibilities of generalizing the preceding
results for higher coefficients. The next step is the coefficient region
(a4, ag, a,) which can be studied by applying the P;-inequality to the function
F(z) = I/W The expressions involved are much more complicated and
almost too difficult to handle if we use the quadratic inequality. The
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bilinear form is more reasonable. When studying preservation of equality
in the use of Schwarz inequality we end up to the conditions
b_, = _En Yy, = _.77"

Because these were true in the preceding extremum case, we have all
reasons to expect sharp results from the bilinear P4-inequality.
As before, use as parameters

U, = —vy_, (‘V=1,2,3)

and apply the symmetric choice

together with

This implies
Uy =0; Yp=Y,=0
and the bilinear Pgj-inequality assumes the form

VAL

3

Re(u,y; +uays) — U2 — < 0.

Here is
Y1 = Oy Uy + Uy + Ay Uy + €, Uy,

Ya = ity 2,7, -+ dyuy 1 e37y;

473
a’l=?7
a 3 .
d1='2_3“§a§’
b _
¢ =5a21
a ' 13
d; = ?4‘ aa“a+ﬂ a3,
b| B b3
€y = — |a,|2+ —
3 7% T 3

Again, we optimize the inequality by choosing %, and u; so that
the left-hand side is maximized. The result is a complete generalization
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-of the preciding one and reads as follows. Let a, and a4 be given. Then dg
lies in a dise

|ds+d, A +e pul < 1/3_33"‘11!‘“611,
‘where

3
Ez(aa ~ 7 aﬁ) +2b(1—b)a,

S YT Yy N PR R

ba: +2(1—b) (aa — %-af,)
[2(1—b)]*— |a,|?

’_‘:

"The boundary points of the ds-disc can be located by aid of the parameter
ug = ¢ s0 that at the boundary

dst+dyA+ep = (1/3—e;—d,p—e A)uz’.

Equality holds if F(z) = l/f(z2) defines a 8(b)-function f, when F is deter-
mined by the condition

b3/2
e (g F? —ug F )+ b2 (5F —sF ™) = L(wy2® —ug2 %)+ 5 —uy 27

a
Uy, = Aug+pug, 8 = ul—i——; Uy.

In the extremum case the conditions

Y1 = —Y1y Y3 = —Us

appear to be true, as was to be expected. ,

The extremum condition is much more complicated than that for
(a3, a,). In general, we can not interprete it without numerical calcula-
tions. However, the special case a,, a,, a,e R, can be completely solved
in closed form. @, is maximized at the point %, = 1:

1 b 1 (a;— 1a; +ba,)?
<la-m-ta-l y
s g A=) —Fa— G h)—a,

'The domain which gives boundary functions, i.e. for which equality is
attained, lies inside the coefficient body (a,, ;) and is bounded by two
parabolas. This domain is divided by a parabola in two parts connected
‘to 3-slit or forked slit extremum domains.

I have verified that also in the complex case several boundary points
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of the d,-disc give sharp results. However, complete analysis in the com-
plex case seems t0 me to involve too many parameters.

The above results are included in two joint papers with R. Kortram,
published 1974 in the Annales of the Finnish Academy of Sciences.
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