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1. Imtroduction. Ordinary random or stochastic integral equations
play a major role in the characterizations of many problems in life sciences
and engineering (see, e.g., [1] and [4]-[8]). It is only recently that a con-
certed effort has been made to develop and unify the theory of such
equations, see Bharucha-Reid [1].

The object of the present paper* is to introduce a study of a random
or stochastic functional integral equation in the subject area. To the
knowledge of the authors there have been no studies of such equations
from the stochastic point of view. More specifically, we shall be concerned
with a stochastic functional integral equations of the form

t
(1.1) a(1; ©) = h(t; o)+ [ k(t, 7; 0)f(7, 2.(0))dr,
(1.2) (t; ) = h(t; o)+ [ k(t—7; 0)f(7, z,(0))dr,
where '

(i) teR,, and we 2, the supporting set of a complete probability
measure space (2,4, u);

(ii) #(¢; w) is the unknown random function defined for teR., and
we2;

(ili) A(?; w) is the stochastic free term defined for t¢R, and we;

(iv) k(t, r; o) is the stochastic kernel defined for 0 <7< t< o
and wef;

(v) @4(w) is the restriction of the function z(r) to the interval [0, ¢],
t> 0, with zy(w) = 2(0; w)eL,(2, A, u).

Note that the similar case where z; denotes the restriction of the
function z.(w) to the interval [t—,t], with fixed r > 0, can also be
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studied analogously. Of course, in this case we need an initial condition
of the form z(f; w) = ¢(t; w), te[ —7,0], wel2.

In this study we shall state several existence theorems and significant
special cases concerning equations (1.1) and (1.2). A deterministic version
of the stochastic functional integral equation (1.1) has been studied by
Corduneanu [2], using functional analytic techniques. Stochastic function-
al integral equations occur quite often in the study of feed-back systems
with hysteresis, [2] and [3], among others.

In Section 2 we shall state some definitions and the fixed-point
theorem of Schauder and Tychonoff which are essential in the study.
The main results are given in Section 3.

2. Preliminaries. The function space which provides a natural
framework is the space C.[R,, Ly(2, A, u)] defined as follows:
Definition 2.1. C.[R,, Ly(2, A, u)] will denote the space of all
continuous maps x(¢; w) from R, into L,(2, 4, u) with the topology
defined by the family of semi-norms
e (t; @)lla = sup ( [ 12(t; ©)2du ()™,

o<i<n Q

It is known that this space is locally convex and that the topology
is metrizable. For convenience, we write

{ [ 12(t; w)l2du(e)}”™ = (5 ©)lzy0,40-

Throughout the study of equations (1.1) and (1.2) we shall assume
that h(t; w)eC,[R,, L,(2, A, u)] and the stochastic kernel is product
measurable in all the variables, u-essentially bounded, continuous from
the set 4 = {(t,7): 0 <7t <t< oo} into L(R2, A, pu). We write

&, =5 o)lll = #-esgsuplk(t, 7; )|

Definition 2.2. We shall call z(¢; w) a random solution to equa-
tion (1.1) if, for every fixed teR, , #(t; w)eL,(R2, A, u) and satisfies equa-
tion (1.1) w-a.e.

THEOREM 2.1 (Schauder and Tychonoff). Let W be a closed, bounded
conver set in a Banach space, and let T be a completely continuous operator
on W such that T(W) c W. Then T has at least one fixed point in W. That
8, there is at least one x*e W such that T (x*) = x*.

3. Main results.

THEOREM 3.1. Let the stochastic functional integral equation (1.1) satisfy
the following conditions:

(i) the mapping z(t; o) — f(t, 2,(w)) is a completely continuous map
Jrom C.[R,, L,(2, 4, u)] into C,[B,, Ly(2, A, u)l;
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(ii) there exist two continuous mon-negative real functions g(t) and l(t),
defined for teR_, such that

(a) (s 2 (0)llzyo,a,m < L)  whenever |@(t; @)lLya,4,s < 9(?)
and
t
(b) 12 (t; ©)ya,am+ [ N1E(E, 75 @)IIl(r)dr < g(1), teR,.
(1]

Then there exists at least one solution x(t; w) of (L.1) in the space
CIIR,,L,(2, A, u)] such that

lle (25 @)z, (0,.4,m < (1), teR, .
Proof. In the space C,[R,, L,(2, A, )] consider the set

4 = {z(t; w): lz(t; Oly0,4,m < 9(t), teR, }.

It is clear that A is a closed convex set. For each (#; w)eA, Wé define
the operator U by

¢
(U2)(t; @) = h(t; 0)+ [ k(t, 75 0)f(r, 2(w)) dr.

It is obvious that U maps A into C,[R,, L,(2, A, u)]. We show
that U4 < A.
Let x(t; w)eA. Then

t
I(Ux)(t; w)“Lz(Q,A,p) < Ik (t; w)lle(Q,A,y)+f‘lk(t7 75 w)f(t, wr(w))”LZ(D,A,y)df
0

¢
< R(t; 0)lizya,am+ [ I1(E, 75 @)l1E(z)dr < g(2),
0

by assumption (ii) (b). Thus U4 < A.

From the behavior of k(t, v; w) and assumption (i) it can be easily
shown that U, as a map from A into 4, is continuous. Furthermore, since f
is completely continuous, it follows that UA is relatively compact in
C.[R,,L,(2,A,u)]. This allows us to apply the Schauder-Tychonoff
fixed-point theorem to the pair (A, U), which proves that there exists
at least one random solution to the stochastic functional integral equa-
tion (1.1) in A.

As an application to Theorem 3.1 we shall consider the problem of
obtaining sufficient conditions for the second moments of the random
solutions to be bounded.

COROLLARY 3.1. Assume that the random functional iniegral equa-
tion (1.1) satisfies the following:
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(i) condition (i) of Theorem 3.1;
(i) |k (2; w)||L2(g,A,,,) 18 bounded on teR_;
(i) ||£(2, 2i(0))|y0,4, < A(B) @ (@), where A(t) is a positive con-
tinuous function on B, and

llz ()] = sup |lz(s; w)”Lz(Q,A,;A);
oot

(iv) there exists a real number m < 1 such that

¢
[k, 75 w)IA(8)ds <m, teR,.

0

Then, there exists at least one random solution of equation (1.1) in
C.[R,, L, (2, A, )] such that |lx(t; o)llp 04, < M for some real number
M>0.

Proof. We need to show that condition (ii) of Theorem 3.1 is satisfied.
‘Choose g(t) = M and let I(t) = MA(t), where M is some sufficiently large
positive real number. Then (ii) (a) is trivially verified. Also,

¢
Wk (t; w)“L2(n,A,,;)+ f Nk, v; w)llll(z)dr < Solllt) h(t; w)”Lz(n,A,u)-f‘mZ"[ <M
0 <

f M>(1 —m)_l{su}) (25 @)Ly, 4,m) -
<

=

Hence, the assertion now follows from Theorem 3.1.

We shall now state a corollary concerning the exponential decay
of the second moments of the random solutions of equation (1.1).

COROLLARY 3.2. Assume that equation (1.1) satisfies the following:
(1) condition (i) of Theorem 3.1;
(ii) Nl (2; O)llzy0,4,m < hoe™ %, teR,, hy,a> 0;
(iii) “f(t7 wl(w))”Lz(!),A,p) < Le |y, teR,, with a < g, L>0;
(iv) k(75 o)l < ke™¢=9, 0 < T <t < oo.
Then there exists at least one random solution to equation (1.1) such that

(25 ©)llpyo,1 < ve~ %  teR,,

provided hy+ KLy(f—a)™' < y.

For the proof, choose g(t) = ye~* and 1(t) = yLe™™. The result fol-
lows from the application of Theorem 3.1.

We now consider the stochastic functional integral equation (1.2)
whose stochastic kernel of the convolution type is important in
.applications.
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THEOREM 3.2. Assume that equation (1.2) satisfies the following con-
ditions:

(1) Soul‘) 1B (25 @)lzyo,a,m < M, MeR_;
<

(ii) k(t; w) s u-essentially bounded and continuous from R, into
L,(2,A, u), and such that

[ ik (t; @)llldt < oo
0
(iii) f: z > f(t, ;) i8¢ a completely continuous map from the space
C.[R,, L, (2, A, u)] into C,[R,, L,(2, A, u)] such that
e (25 ©)lzyo, 4 < M+ Ko (M) implies |f(t, z(0))||rya, 4.0 < 9(M), teR,,
where K = [ |[|k(t; w)|lldt, and ¢(M) is a positive real-valued function
0
defined for sufficiently large M.

Then there exists at least one random solution to equation (1.2) in
C.[R,, Ly(R2, A, n)] such that |lx(t; o)Ly 0 4,, 18 bounded.

Proof. We shall sketch the proof, since the details are similar to
those of Theorem 3.1. Write

A = {o(t; 0): o(t; 0)eC,[Ry, Ly(2, 4, p)]
and |#(8; @)z, < M+VEp (M)
and

(Uz)(t; @) = h(t; 0)+ [ k(t—7; 0)f(7, 2,(0))dz.

In view of assumptions (ii) and (iii), it follows that U is continuous.
Algo, if z(t; w)ed, then

I(U=)(t; w)”L2(D,A,y) < Jlh(t; CU)||L2(9,-A,,4)+ IU k(t—; w)f("y wf(w))dt“Lz(a,A,y)
0

S M+ Ko(M),

which implies U4 < A. The rest of the proof is similar to that of Theo-
rem 3.1.
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