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On the coefficients of bounded real univalent functions

by J6zrF BaranNowioz (Lédz)

Abstract. Lot 88(a,) denote the family of all functions of the form
f&) =ayz+agef+.., ap=rtea;, (k=1,2,...); a>0,

univalent and regular in the circle K = {¢: |¢| < 1}, which are Lowner bounded (i.e.,
If(2)l < 1, 2¢ K) and whose first coefficient a4, has been fixed.

The aim of the paper is to give the relationships which define the set of the values
of the functional

F(f) = F(ag, a3, ay)
by the use of the para.metrioal-varistional method.

I. INTRODUCTION
1. Let 8%(a,) denote the family of all functions of the form
(1.1) f(2) = ayz+ay2*+..., ap=reqe, (k=1,2,...), a>0,

univalent and regular in the circle K = {2: |2{ < 1}, which are Lowner
bounded (i.e.,|f(2)]<<1,ze¢K) and whose first coefficient a, has been
fixed. Assign to every function feS7(a,) the number

(1.2) F(f) = F(a,, ay, a,),

where F (o, vy, 2) is an arbitrary analytic complex function of three real
variables defined in the region {(@,y,z2): 4| << oo, ly| < oo, |2| < oo}.

The paper aims at giving the relationships which define the set .D
of the values of funetional (1.2) when f is any function of the family §%(a,).

The method we shall apply is a combination of the parametric method
of representing some classes of univalent functions with the variational
method. Research in this field has been initiated by P. P. Kufarev [6]
and is being developed by I. A. Aleksandrov [1], M. I. Redkov [8].

2. It is easily verified that the family 8F(a,) is compact and connected
(i.e., arc-wise connected with the topology of close to uniform convergence).
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Thus it follows from the continuity of functional (1.2) that the set D is
compact and connected. The compactness of the set ), which is a subset
of the plane, means that this set is bounded and closed. Thus to character-
ise the set D, which in the sequel is called the region of values of functional
(1.2), it suffices to determine its boundary I". The function f*, for which
F(f*) eI, is called the boundary function with respect to functional (1.2).
The points of the boundary I" have the following property: for an arbi-
trary external point H of the region D there exists a boundary point
H, such that

(1.3) |H,—H| < |H—H|

for all points of the region D which belong to a sufficiently small neigbour-
hood of the point H,. The set of points of the type H,, I, is dense in the set
I’ (ef. [3]). Closing the first of them, we get the second. Hence it follows
that to characterize the region D it suffices to determine all the boundary
functlons ‘which correspond to the points of the set I".

II. THE DIFFERENTIAL EQUATION OF THE BOUNDARY FUNCTIONS

M. Schiffer and O. Tammi [9] have obtained a variational formula
valid in the family 8%(a,). This formula after simple modifications and
the change of markers can be written down in the form:

(2.1) fu(2) =f(z)+€b¢(z’ a) +eby(z, a')+0(8)1
where
1 2
(e, @) = 10—z oLfle), flal]—of () h P ate, o),
1 u? 1
v(z,8) = f(2) 5 —F wi(a) —1 [f( )r—] 2f'(2) ,(a() )1 (za'g)
with
a1 f@
"N = G he—im MY T @

e>0,lal<1,re b =0.

The extremal property (1.3) of the boundary points of the region D
together with the variational formula enables us to deduce the differen-
tial equation of the boundary function f* of the class S¥(a,) with respect
to functional (1.2).

Using the typical variational method (cf. e.g. [5]), we obtain the
following theorem.
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THEOREM 1. Bvery boundary function w = f*(2) = a,z2+a;2" +a32° +
+ay2*+... with respect to functional (1.2) defined in the family 8F(a,)
satisfies the equation

(2.2) [M (1) + 2] (%) = N(z)+4,

where

(2.3) M(w) = 2[a.U‘£<"<o w) +a,Uz*(0, 1/@)],
§m=2

4

(2.4) N(z) = D' [a,Vi®(0,2)+a,V¥(0,1/2)],
8=2

with

w2—1

U‘(C’ -w)= ‘DG(U,W), 14 (c, fv")= C‘vla(C) z)’ 0'(27, y) = (w_y)(m_lly)’

ay = fp, ay=4pgq, a =4pr,
. oF oF

’ =3 r=—-—
(a3,03.0) 0ay |(a3,03, a‘) 98, |(a3,03,03

v =f (C)’ v’ —f"(C),

p,18l =1, and 4, A =rel, are unknown parameters.

or

"~ day ’

III. THE PROPERTIES OF THE EQUATION OF THE BOUNDARY
FUNCTIONS AND OF ITS SOLUTIONS

1. The functions M(w) and N(2) appearing in equation (2.2) are'
rational functions of their arguments and therefore the function w = f*(2)
maps the circle K onto a region which is contained in the circle B = {w:
lw| < 1} whose boundary is interval-wise analytic [4].

Proceeding in the usual way we find that the function f*(2) maps
the circle K onto a region which is obtained from the circle R by removing
& finite number of analytic arcs one of which at least passes through
& point lying on the circumference 4 = {w: |w| = 1}.

2. Denote by B, the region onto which the boundary function f*(2)
maps the circle K and by L, the complement of the set of points of the
circumference 4 to the set G,o which is the boundary of the region By.
The set L, is the sum of analytic ares L{Y,..., L{¥ (1<p < oo) with
disjoint mtenors The point %, wed will be ca.lled the end-point of each
of the arcs Z{¥) (1 < k < p) which contain this point. If w = w(t"),a <"
< b is the equatlon of any of the ares, then the point w(t*),a<t*<b
does not belongs to any of the remaining arcs. If the point w(a) or w(b)-
belongs to two or more arcs, it will be called the end-point of each of them.
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If w(a) -:,éﬂ: (w(b) # w) and w(a) (w(b)) belongs to one arc only, then
w(a) (w(b)) will be called the origin of this arc.

3. Observe that (2.3) and (2.4) imply the identities

1 1

Thus the functions M(w) and N (2) are real on the circumferences
lwf =1, |2| =1, respectively. If the number % is a root of one of these
functions, then the number 1 /% is also its root.

IV. THE PARAMETRIC FORM OF THE EQUATION OF BOUNDARY FUNCTIONS

Let w = f(2) be a function of the class 8F(a,) which maps the circle
K onto the region H obtained by removing a Jordan arc J with the
equation w0 = w(t*), 0 < t* < ¢y, w(0)e 4, which does not pass through the
point w = 0, from the circle R. For fixed ¢, 0 < ¢ < ?,, consider the region
H, obtained by removing the arc J, = J with the equation w = w({"),
0 < t* < t, from the circle R. Denote by g(z, t) a function of the class 8¥(a,)
which maps the circle X onto the region H, with g,(0, t) = ¢~* [7]. Further,
let h(w, t) denote the converse function of the function w = g(z, #). With
the above notation the following relationships hold:

g(zr 0) =2, g(z,t) =f(2), h(w,0)=w, k[f(2),%]=rz,

Falf(2), 1] = [0y 07T, Wolf(e), 6] = s Bol,8) =
Let the set L, consist of one arc. Thus in the above argument we
may take the boundary function f*(z) for f(z), we find that g(z, t,) = f*(2),
which by the fact that f(z)eS8F(a,) yields the equality ¢, = logl/a,.

We apply the variational formula (2.1) to the funection g{(z,t), and
we get a function g,(z, t), in which we substitute k(w, t) for 2, which gives
the formula for the function g,[h(w, ), {]. Putting w = f(2), we get the
variation of the funection f,(z) = a.[r(f(2), 1), 1.

The variational formula thus obtained together with inequality (1.3)
enables us to deduce the differential equation of the function k(w, t)
converse to g(z, t) with g(z, ;) = f*(2),

(4.1)

1
THEOREM 2. The function h = k(w, t) with an arbitraryt, 0 < t < log—,
satisfes the equation t

2
#2) M)+ = (5 G, 9441
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where
4 .
(43) ¥, = D[arPo,n,0+81(0, 2,4,
with :
_ M@
T, kyt) = Walh(f (C)’t)’ tlr .

M(w), a,, a(@,y) are the same as in theorem 1 and A is a real parameter.

Finding the derivatives of the functions U({, w), T'({, k,t), with
respect to { ar the { = 0 (up to the fourth order inclusively) and making
use of the relationships

(4.4) f*0) =0, f¥(0)=uay, R[f*(0),8]1 =0, h,(0,?) =¢,
we obtain by (2.3) and (4.3)

{4.5) M(w) = ‘E»wﬂ+o:~w='+Ew+a-|-bl +c—1— +di,

w w3 w3

N(h nh®+-mh*+1h+ k ! 1 1

{4.6) (h,t) = 7h*+mh®+1h+ +17+mF+nF,
where

d =48fral, o =12fai(a,q+6r?"),
4.7) b = 4B[ajp +3a,qv” +r(4a,0"" +3(0"))],

a =2 ref(pv”’ +¢qv" +ro'),
and

n =de¥, m = ce®+24ate'h,(0,1),
(4.8) 1 =be'+12ate~*[h(0,1)]* —8a'hi(0, 1),
= 2reB[pS; (0, t) +g8¢"(0, 8) + 78V (0, 1)1+ u(t);  reu(t) = pu(t)

with
hLf* (L), 1]
holf*(0), 1]

Remark. One obtains analogous conclusions if the set I, is the
sum of an arbitrary finite number of ares.

o™ = f*®), k=2,3,4, B8(,¢) =

V. BASIC THEOREM

COonsider an arbitrary arc of the set J, which has an origin. Denote
this point by ;. The point x(t) = h(w;, t) on the circumference |z| =1
corresponds to w;. x(t) is a two-fold root of the function N (A, ¢) and thus
by (4.6) analytic arcs which form the set L, can have at most three origins.
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Oonsequently the set L,o consists of at most three analytic arcs which have
their end-points on the circumference 4.

Simultaneously a non-empty set W of points which are the origins
of the arcs belongmg to L, is assigned to L, . The following cases are
possible.

I. The set W has one element, then the set L, consists of one arc
C, (Fig. 1).

IL. W consists of two points; then L, consists of:
a) two disjoint arcs 0,, C, (Flg 2a) or

b) three convergmg arcs C,, G,, C, (Fig. 2b) (i.e., arcs whose common
end-point is some point w, weR).

l. .1 l.

Fig. 1 Fig. 2a Fig. 2b

II1. The set W contains three elements, then the following cases
are possible:

‘&) L, is the sum of three disjoint ares C,, C,, O, (Fig. 3a);
b) L, is the sum of disjoint elements: an arc C, and a curve C, which
in its turn is the sum of three converging arcs (Fig. 3b);

¢) L, consists of four converging arcs O, k=1,..., 4 (Fig. 3¢).

Fig. 3a Fig. 3b

Now we shall consider all the above cases.
I. In the first case the function N (2, t) may be represented in the form

7 (h—% (1) (b —dy) (h— a,)(h——)(h——
_ =

(5.1) N(h,t) =
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Equating the coefficients at A* (k = —3, —2, —1, 1, 2) in (5.1)
and in (4.6), we get a system of equations which results in the following
equation with the unknown function » = %(1)

(5.2) 37x® +-2mn® + 1x* — 1o —2mx —3n = 0.

In the case under consideration the function x(t) is continuous in the
interval 0 <t < logl/a, (cf. [7]). )

ITa. The function N (h,?) may now be written in the form

1
n(h— x (1))’ (B — %2 (1)) (b — dy) (h — 7)

3
3 '

Thus the function »{t), 0 < ¢ < logl/a,, has one discontinuity point
of the first kind ¢+ = s, which corresponds to the origin of one of the arcs
C,, C, and the end-point of the other of them. Thus the funetion x(?)
has the form

(5.3) N(h,t) =

%1(t), _0<t<8,

5.4 t) = 1
( ) #() #,(t)y 3<t<108'7.
1

Equating the coefficients in (5.3) and (4.6) and eliminating the par-
ameter d,, we get the system of equations

(5.5) 2Msey 209 (% + %5) Ty 2y — M) 20y —2N(2,%,) 2 (%, + %3) = 0,
. (%, + #a)" 1 % +T0(%,%9)" +1 — 1oty 9 — n("l + %9)* (%1 %)" — M3 =0
with %, = x%,(¢), %3 = #,(t) from which the function »(f) can be found.

IIb. Let three arcs converge at the point @ = w(s,), 0 < 8, < &,.

Thus, if ¢¢[0, 8,], then the function N (&, ¢) is of the form (5.1), while
if te(s,, logl/a,], it is of the form (5.3).

Thus the function x(#) shall be determined by equation (5.2) for
te[0, 8,], while for te(s,,log1l/a,] it will be of form (5.4), x,(?), %4(%)
being the solutions of the system of equations (5.5).

ITIa. In this case we have

n(h— %, (1)) (h— %o (1)) (R — x5 (2))

(5.6) N(h,t) =

B
and
#(1), 0 <9< 81y
x(t) = x(t), 8, <1< 8y,

1
#y(t), 8,< tglog';‘;
1

8,, 8, being the corresponding discontinuity points of the function ().



142 J. Baranowicz
The functions »; = x;(¢) (§j = 1, 2, 3) satisfy the system of equations

A =

~

(5°7) 2(”1+x2+9¢3) =

|
SIERRIEREIE

2”1"2”3(”1”2+”1“s+"2"3) = —

The above system is obtained by equating the coefficients in (5.6)
and (4.6) appearing at h™*, ™%, h®.

‘IIIb. T w = w(s,), 0 < 8, < logl/a,, denotes the point at which
the arcs (3’,,, k =1,2,3, converge, then for t¢[0, 8;,] the function N (A, ?)
is of form (5.1). On the other hand, if t¢(s,, 8,] (¢ = 8, corresponds to the

origin of one of the ares (5,, é, and to the end-pownt of the are C,), then
N(h,t) is of form (5.3) and for 8, < t < logl/a, again it is of form (5.1).
The function x»(¢) will be defined by equation (5.2) or it will be of form
(5.4) accordingly as 0<t< 85,8, <?<logl/a,, or 8 <it<s,. '

Ie. If w = w(sy), 0 < 83 < logl/a,, is a point at which the arcs
0., k =1,..., 4, converge, then the function »(¢) is defined by equation
(5.2) for ¢¢[0, 8] and it is determined by the functions »,(?) (j = 1, 2, 3),
which satisfy system (5.7) for te(sg, logl/a,].

Obserwe that in case ITa the function

% (1), 0<i<s,
x(t) = 1
Ml,(t)'r 8<t<10g—7
a
can be taken into account, to which, however, the same boundary function
corresponds as to function (5.4) (the same boundary function may cor-
respond to various functions x(?)). ,

It is known that to characterize the region D of values of functional
(1.2) detined in the family 8%(a,) if suffices to determine its boundary.
This aim can be achieved with the aid of the present results and of those
which follow from the Liéwner theory.

Let 8}%(a,) denote a subclass of functions f(z) which belong to the
family 8%(a,) and map the circle K onto the region obtained by removing
from the circle R a finite number of analytic arcs at least one of which
has its end-point on the circumference 6. (The class 8;%(a,) is not empty,
because f*¢S}F(a,).) The family 8;%(a,) is a dense subeclass of the class
S®(a,)[7]; thus to characterize the region D it suffices to determine its
boundary in the case where feS:F (a,).
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If f* e 8}E(a,), then it follows from the Lowner theory that the coef-
ficients of the function f*(z) have parametrical representations: namely,
they are expressed by some integrals of the function » = x(t). It is easily
verified that in the case of the family 87F(a,) we have the following re-
lationships (one has to use Lowner’s equation about function with real
coefficients, which were given by Bazilewic in [2]):

(5.8) al = 2a3J,,

(5.9) o} = 2a3(2T2 —J,),

(5.10) at = a*(—8J2+12J,J,—2J,—P),
where

ty ty to

Ji= [awéd, J, = [[2d*(t)—1]e*dt, J, = [ [4d°(t)—3d(t)]e"dt,
and ' ' § '
P = [ [2d*(1) —11 X (t)e*dt
with '
X(t) = 4¢ [a(e'ds, X(0) =0; d(t) =rex(t), 1, = 1og—21—.

The above considerations imply the following basic result of the paper.

THEOREM 3. The boundary of the region of values of functional (1.2)

defined in the family S¥(a,) is determined by the equation
Q =F(ay, 0y, ),

.

where a, al,a} are defined by relationships (5.8)—(5.10). The function
x(t), |%(t)] = 1, i a solution of equation (5.2) or it 18 determined by the sol-
ution of the system of equations (5.5) or (5.7) or it is determined by solving
simultaneously the equation and one of the systems.

Remark. When using the parametric-variational method here
presented, we easily obtain the results concerning the functional

F(f) = a,, feST(ay)
which were given by M. Schiffer and O. Tammi in [9].
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