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On a class of extremal quasi-conformal mappings

by KENNETH P. GOLDBERG* (New York, N. Y.)

Abstract. In this paper I begin by defining two classes of functions as follows:

DEFINITION. A strictly increasing self-homeomorphism % of [0, oo) i8 said to be
ratto bounded if there are numbers L(u) and M (u) for which

zu’ ()
u ()

0 < Lu)< < M(u)< o ae.on (0, ).

DEFINITION. A function U mapping (0, o) onto itself is called linear radial if
U(z) = logu(e®), z¢[0, co0)

“for some function u satisfying
(i) w is ratio bounded and u(l) =1,
@) lim ~ @)
zro0 U(Z)
The major results of this paper are then
THEOREM. Let h be ratio bounded on [0, oo) with k(1) = 1, and let @ be the domain

= max {M (u), 1/L(u)}.

G={=x+tyl—c0o<x< 00,y>h(zl}.
Furthermore, let
F(2) = F(z+iy) = (signz) U (|z)) + iy
tn G, where U is linear radial. If G* = F (@), then F is extremal in the class of all quasi-
conformal mappings from G to G’ that agree with F on the boundary 6G. Moreover,
K(F) = max{M(u), 1/L(u)},

where K (F) represents the quasi-conformal dilatation of F on G.
CoRrOLLARY. If there is some &> 0 and some interval (@, b) < (0, o) on which

—Ql—_8< U'(Z) < 0_8’

then” F 48 extremal but not unigue exiremal.

* This material forms part of the author’s doctoral research performed at Mi-
chigan State University under the direction of Professor Glen Anderson. The authoer
is now Assistant Professor of Mathematica Education in the Department of Mathe-
matice Education, New York University.
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1. Introduction. Let @ be the domain @ = {z|y > |2|°} for z = z + iy
and a > 1. Further, let F be defined on G as F(z) = Ko+ iy for some
K > 1 and let @' = F(G).

It has been shown in both [3] and [4] that the function # defined
above is extremal in the class of all quasi-conformal mappings of & onto G’
that agree with F' on the boundary 0G of G. In this paper we will generalize
both the function F and the domain G and show that the functions in
this larger class are also extremal quasi-conformal for the boundary
homeomorphisms they induce. We then consider the question of uni-
queness and non-uniqueness for this class of extremal mappings.

2. Ratio bounded and linear radial functions. The following two

classes of functions will be quite useful later in the construction of our
extremal quasi-conformal mappings.

DEFINITION 1. Let u be a strictly increasing self-homeomorphism
of [0, oo). Then u is said to be ratio bounded on [0, o), or RB, if there
are numbers L, M, 0 < L < M < oo, such that

(1) L<aw (z) u(z) < M a.e. on (0, o).

The lower (upper) ratio bound L(u) (M (u)) of # on [0, oo) is defined
as the supremum (infimum) of all numbers L (M) satisfying (1).

DEFINITION 2. A function U mapping [0, oo) onto itself will be called
linear radial, or LR, if ‘
(2) U(x) =logu(¢®) for all ze [0, o),

where # is any function satisfying the conditions:
(i) « RB on [0, co) with %(1) =1,
(ii) 0O < L<auw(2) u(z) < M < oo a.e. on (1, o),
(iil) m [ou' (2)/u(2)] = Q = max{M,1/L}.
00

By its definition U is a continuous, strictly increasing map of [0, co)
onto itself with

0<L<USM<oo ae on(0,o0)

and
lim U’ () = Q = max{M, 1/L}.
00
3. Preliminary results. In this section we develop some of the prop-
erties of ratio bounded functions and linear radial functions that will
be needed in the proof of our main result.

THEOREM 1. If u is an RB function, then so is u~"', and

L™y =1/M(u), M(u™") =1/L(u).
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Proof. Let » = «7L It is obvious that the continuity and mono-
tonicity of # imply the same properties for . Since v is strictly monotonic
it is differentiable almost everywhere. Let y, be a point at which v is
differentiable. Then also 4 must be differentiable at x,, where x, = v(¥,).
Also v'(y,) = 1/u'(x,) implies that

1 _ ') _ "0 W) _ e

M(w) ~ (o) o @' (zy)  L(u)

a.e. on (0, o).

THEOREM 2. Let u be RB on [0, oo) with ratio bounds L, and M,.
Then

(b/aY" < w(b)/u(a) < (bja)™o

Jor all a, be (0, o0) with a < b.
Proof.

Ly < o’ (z) [u(2) < My=>Lofr < w' (@) [u(v) < Mz
=logz™ P < logu(z)]l < loga™e]®. (by integration)
~log (b/a)% < log[u(b) /u(a)] < log(b/a)™o

=(b/a)l < u(b)/u(a) < (b/a)™.

LEMMA 1, Let U be LR on [0, oo). Then for each € > 0 there ewvists
an N(e) > 0 such that

(1—¢&)Qr < U(g) for all x> N(¢).

Proof. Consider

x
U@ ofU (8)ds
Qz Qv
Since lim U’(z) = @, there is some # > 0 such that x> & implies
—>00
that U'(2) > @ —&, where ¢ — Q¢/2. Therefore

@z~ Qo + Qz
fU’(s)ds | f(Q—é)ds . iy
A L e
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~

Now since lim
z—+oo &

= 1, there exists an N(e) for which

(1—5)("";“') > (1--% —% —1—¢ for &> N(e).

Hence

UQ(:) >1—¢ for > N(e),

and the lemma is proved.

4. The main result. We are now ready to state and prove the main
result of this paper: .

THEOREM 3. Let h be an RB function on [0, oo) with ratio bounds L,
M, where 1 < L << M < oo, and with h(1) = 1. Let G be the domain

G={=z+iyl—0o<r< =,y > h(lz])}.

Finally, let
Ftz) = F(w+1y) = (signa) U(|2|)+1y

in G, where U is LR. If G = F(Q), then F 18 estremal in the class of all
quasi-conformal maps from G to @ that agree with F on the boundary of G.
Moreover,

E(F) =@ = max{M, 1/L},

where K (F) represents the quasi-conforma} dilatation of F o_ri G.

Proof. Clearly F is a homeomorphism so our first problem is to
prove that F is quasi-conformal. To do this we will use the analytic defi-
nition of quasi-conformality as given on p. 24 of [1]. We must show that F
is absolutely continuous on lines in G and that the maximal dilatation
of ¥ on @ is finite. The proof will be in three parts.

(i) F is absolutely continuous on all vertical lines in G: Fix », and
let #y+14y,, ®y+1y, be any two points on the line Rez = z, in G with
Y, < ¥,. Then

(B (o +1Ys) — F (2o +1y,)| = (¥ —Y)| = lYa— Wl
S0

|F (@ + 1Y5) — F (@ + 9, - Y2 — ¥l

; " =1.
(@ + 1Y 2) — (o + 1Y,)] (Y2 — Yl

Thus F is Lipschitz continuous, hence absolutely continuous, on each
vertical line in @.
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(ii) F is absolutely continuous on all horizontal lines in G: Fix y,
and let @, +1¥,, Z, + 9y, be any two points on the line Imz = y, in G with
0< 2, <2,. Then

|F (@2 +1Yo) — F (01 +1Yo)| = |U(@s) — U(w,)] = logu(e™2) —logu(e™)

= log [u(€)/u(e™)]
< log[e®/e®]¥  (by Theorem 2)
= M(z;—ux,).

A similar result holds if «;, < 2, < 0. If 2, < 0 < @,, then
[F(xg+ 1) — F (@, +€Yo)| < | F (024 1y,) — F (0 +1y,)| +
+|F(0+iyo) — F (2 + Y,
< M(z,—0)+M(0—x,) = M(zy—a,).
Hence
|F (@3 + 1Y 0) — F (2, + 1y,)| < M(z,—2,)
@3+ o) — (@390l (@— )

which shows that F is also Lipschitz continuous, and thus also absolutely
continuous, on each horizontal line in G.

(iii) # has finite quasi-conformal dilatation on G: As we will show
at the end of this proof,

=M< o,

A .
K(F)<Q =max{M,1/L} < ooc.

In fact, K(F) = Q. For now, however, all we need is the upper bound.
We have thus shown that F is indeed a quasi-conformal map from G
to @'.'We must now show that it is an extremal quasi-conformal mapping
as well. Hence let f: G—G be any K-quasi-conformal map of @ to G
that agrees with F on the boundary of G. Now choose any ¢ > 0. By
Lemma 1 there exists an N(g) > 0 such that U(x) > (1 —¢)@Qr whenever
&> N(e). Let y, = h(N(c)). Then for any 7> y,, we have h~'(y)>
h~'(y,) = N (&), so that
=)
@)  20-e)Qp (N <2WET ) <L) = [ If.+fldE,
)]
for any % > y,, where L(n) is the length of the f-image of the segment

vo = {#lImz = n, —h7'(n) < Rez < h™'(7)}.

Integrating (3) with respect to » from 0 to y for any y > y, gives

v h—Yn)

v Yy
2(1—6)Q [h'mdn< [ Lmdn< [ [ if.+f1deE.
Yo Yo

0 —rlm)
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Squaring and applying the Schwarz inequality gives

(20 [ - man) < f L) <[ [ [ [ 5 A

where J(2) = |f,|2—[f:|* and x(2) = f;/f. are the Jacoblan and complex
quasi-conformal dilatation, respectively, of f, and @, = GA{z|Imz < ¥}.
Clearly

U(z) = f U'(s)ds<stds =@z for any z> 0.
0 0

Hence, if 4(y) > 0 is the maximal upper deviation of f(y,) above
the horizontal line Imz = y, i.e. 6(y) = sup {Imf(x) —y}, then it is easy to

Tey.
8ee by considering the relevant areas that

v+&y) v+4()

[fatan<2 [ UEm)dn<2@ [ ()
Gy 0 0

and, using the same reasoning as on p. 354 of [3],

L+ %2 Y -1
ff — dsdngzz.fh (m)dn,

‘where (K —1)/(K +1) = esssup |y (2)|. Therefore
zeQ),

y+4v)

(21-e)@ [ p(n)dn) < 4KQ f 1 (n)dn f = () dy

or

v . v+3y)
¥ “fh‘ (n)dnof B~ (n)dn

— p)2 v
(1—e) (”f b= (n)dn)?

If we can show that the term in brackets in (4) approaches 1 as ¥
tends to oo, then we will have @ < K /(1 —¢). After this we can let ¢ tend
to 0 and achieve @ < K, from which it will follow that F' is extremal for
its boundary values. For convenience we will write

y v+4v) .
of b~ () dn f h™" () dn

{4) Q<

{b)
( fh Y(n)dn)?
v v+4v)
fh (n)dn S (n)dn vf b= () dy
L o ”

v
f h~t(n)dn fr~t () dn RO
Vo Yo Yo
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In order to simplify calculations, we will let 2~'(5) = g(n) in the
rest of this proof. Now by Theorem 1, since # is an RB function with

1< L<qh'(n)[h(n) <
it follows that ¢ is also RB w1th

(6) 1/M < ng'(n)lg(n) <1/L<1.
Clearly
v Uo
[ gtm)dn [ g(n)dn
lim*——— =1+4+lm*Y,—— =1
e [ g(n)dy v [ g(n)dy
Yo Yo

and, using (6) and integration by parts,

v+4v) v+4(v) v+4(v)

gydn< M [ ng'(n)dy = Mng(mB+P—M [ g(n)dn.
v v v

Thus
v+4(y)
(M +1) f g(n)dn < Myg(n)L+w
v
or
' v+8y) %
[ atnan <5 [lv-+owlaly + o) —vew)].
v
Similarly,
r L
f gOndn > 75 [W9() =Yg (¥a))-
Therefore, if we let ¢ = M(L+1)/L(M +1), then
y+&v)
(M o< J gtn)dn o W+Wlgly+ 8(y)) —yg(y)
T feman ¥9(9) — Y09 (3o)
Yo
-9 [(1+ 6<y))g(y+a(y)) _1]'
- %og (Yo) Y 9(y)
¥9(y)

But by Theorem 2

g(y+d(y) <(y+6(y))‘”‘ (+M)‘”‘
9y) y

5 — Annales Polonici Mathematiel 32.1
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Hence (7) gives

v+ v)

8) o< { gln)dn < c [(1+ 5—(?/)-)(L+I)IL —1]
- f g(n)dn h 1_(%5{(%)/3/9(@/)) » .
Yo

Now for any 5 > 1, Theorem 2 withw = ¢,b = n,a = 1and M, = 1/L
shows that g(7) < #"%, 1/L < 1. Hence, the proof on the top of p. 355

é
in [3] that lim% = 0 still goes through and so
y—>o :
F) 1+VL
y—+oo Yy
Moreover, since
C

li =0,
e (%09 (o) /¥g(w))

we conclude from (8) that

y+3(y)
g{n)dn
lim—¥Y —  — — .

v
T [a(mdn
Yo
Hence, by (5),

v v+4(y)
0fh"(n)dnf R () dy
i Py ~h
(yf b= (n) dn)?

so that Q < K. _

Therefore any quasi-conformal mapping f: G—>G@ agreeing with F
on the boundary of G must have quasi-conformal dilatation K(f)> Q.
But for the original function

U(a) +iy it >0,

F(z+1iy) =
(@+4) —U(—ox)+1y ifxrx<O,

it is clear from the form of the quasi-conformal dilatation given on p. 125
of [2] that the point dilatation of F at the point z = 44y is given by

D(z+1y)+1/D(z+y) = U'(l=) +1/U"(|@()
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wherever U’ exists (i.e., almost everywhere). Thus, since 0 < L < U’
< M < oo, we must have D(wr+iy)< max{M,1/L} =@ and hence
also

K (F) = esssupD(2) < @ < E(f).
ze@

That is, F is extremal quasi-conformal.

Remark. If, in Theorem 3 we take h(n) = % L>1, and U(z)
= @z, @ > 1, then we get the class of extremal quasi-conformal mappings
obtained in [3] and [4] as a special case.

5. A condition for non-uniqueness. The question of uniqueness and
non-uniqueness for the class of extremal quasi-conformal mappings intro-
duced in the last section is partially answered by the following result:

THEOREM 4. Let U and b satisfy the hypotheses of Theorem 3, so thai

the map I is exiremal for the boundary values it assumes. If there is some
e > 0 and some interval (a, b) = (0, co) on which

1/Q—e) < U'(2) < Q¢
then F is mot unique extremal.

Proof. The non-uniqueness will be proved by constructing a different
extremal mapping with the same boundary values as F. Let y, be so
-large that A~'(y,) > b. Define a map ¢g: -G as

(2%—?/ U(w)_i_%w(m)) +1y if yo <y < 2y,,

Yo 0

g(z+1iy) =

3
( Voo gy Y2 — 29 U(m)) +iy  if 29 < ¥ < 3o,
Yo Yy

0
F(x+1iy) ‘ if ¥¢ [¥e) 3%0],

where W(z) = U(x)+ o(2) for xe [0, ), W(z) = U(x) for £ < 0, and ¢
will be picked as we go along to have the following properties: a(x) > 0
on (a,b), o(z) =0 on [0,a] and [b, o), o(z) differentiable on (0, oo)
with |¢'| < L/2. Tt is clear that W () is strictly increasing so g is a homeo-
morphism. Also that g agrees with # on the boundary of G. We will use
the analytic definition of quasi-conformality again to show that g is also
an extremal quasi-conformal mapping of G to G'. Since o(z) > 0 on (a, d)
it is clear from the definition that g is different from F on a set of positive
measure, and this will prove the non-uniqueness.

(i) ¢ is absolutely continuous on all vertical lines in G: Fix @, and
look at the vertical line Rez = z,. If z,¢ (a, b), then ¢ = F on this line

and, as we saw in the proof of Theorem 3, ¢ is absolutely continuous
on this vertical line in @. Thus, we can assume that z,¢ (a, b). Let z,4 iy,
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@, + 1y, be any two points on this line with ¥y, < y,. If y, < ¥, < ¥, < 2y9,,
then

yﬁd%Hﬂ%—m)
o ()
Yy

0

lg (2o + 1Y) — g (@o+1y,)| = ' (y2

<| 2@ +M%—mn=ﬁ+
Yo

L
<@+ (- ”ym ¥1).-

If 29, <9< ¥:< 3yy, on the other hand, then

(Y2 —¥1)

) (Y2 — 1)

P} )d%Hﬂw —9y)

<( L‘")y.

Finally, if either y, < y; < ¥, or 3y, < ¥, < ¥, then we know from
the proof of Theorem 3 that

19 (®o +tY3) — g (2o +1¥,)| =

19(2o+1Y2) — 9(Zo+ Y1) = |F(2o+1Ys) — F (Do + Y1) < (Y2 —¥1)-
Hence, if we let

A =max{1,1+ M} =1+M<

oo )
29, 2Y,
then we have, by the triangle inequality,

E_(mo +iyg) — g (2o + ty,)|
(2o + 7Y 2) — (%o + Y1)

<4< oo,

for any points x4 1¥,, £,+ 1y, on the line Rez = x, with ¥, < y,. Thus g
is Lipschitz continuous, and so also absolutely continuous, on every ver-
tical line in @.

(ii) g is absolutely continuous on all horizontal lines in G': Fix y, > 0
and look at the horizontal line Imz = y,. If y,¢ (%o, 3y,), then g = F
and we know from the proof of Theorem 3 that ¢ is absolutely continuous
on Imz = y,. Thus we may assume that y, ¢ (Yo, 3¥,). Lot @, +1y,, .+ iy,
be any two points on this horizontal line with e < o, <2, <b. If y, < ¥,
< 2v,, then

lg(@s+1y,) — g(@, +1¥,)| = lU(mz)—' U(z,)+ (iyyi —1)(0'(9’11)_0'(3’1))
0

< |U(@a) — Ulmy)| + '(% —1)(0(%)—0(‘”1)) .
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But as we showed in the proof of Theorem 3
|U (25} — U(2y)| < M (24— 3y),

and it is easy to see that

‘(— —1)(0(:0,) —a(1,))| <

(I —1) (0(25) — o (ay))

L(z, —®,)

= 0(&,) —o(m,) < 5

(by the mean value theorem).

Hence
. . L
0o+ i) —g(en+ i) < (M4 ) 0a—3).

Similarly, we also find if 290 < ¥; < 3y, that
lg(®a+1y,) — g (2, +1y,)| < (M +L/2) (@, — 2,).-

Finally, if either z, <, < a or b < x, < x,, then by the proof of
Theorem 3 we know that

g (@2 + 1Y) — g(2; + 1Y) = |F(@e+1y,) — F (2, +19,)| < M (23 —2,).
If we now let A =max{M,M+L[2} = M+L[2< oo, then we
_have, by the triangle inequality,

lg (22 +4y,) — g (2, +19,)]
(22 +2yy) — (21 + 19,)]

<A<

for any two points z,+iy,, x,+1y, on the line Imz = y, with =, < =z,
and ¥, < ¥, < 3y,. Hence g is Lipschitz continuous, and thus absolutely
continuous, on all horizontal lines in G.

(iii) The quasi-conformal dilatation of ¢ on G is finite: Let @
=max{M,1/L}, and let x,+4y, be an arbitrary point of G. If either
z,¢ [a, b] or y,¢ [¥,, 3Y¥,), then there is some neighborhood of z,+ iy,
in which ¢ = F. Hence D,(x,+y,) = Dp(®,+1iy,) < @ except on a set
of measure 0, where D, and D represent the point dilatation of g and 7,
respectively. Now assume that z,¢ [a, b] and y,e [¥,, 29,]. We will treat
only this case since the case of y,e [2y,, 3y,] is similar. Since K(g) is not
affected by the behavior of g on a set of measure 0 and the set of points
with either x, = a, or @, = b, or ¥, = y,, or ¥, = 2y, or where U’ does
not exist form a set of measure 0, we may assume that x,e (a,b),
¥1€ (Yo, 2¥) and U’ (a,) exists.

It is clear that there is some neighborhood of x,+4 iy, in which
z,e(a, b) and y,e(y,, 2¥,), and that in this neighborhood the definition
of g simplifies to g(x+iy) = U(x)+(y/yo—1)o(x)+iy. We will use
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this simplified form of g and the form of the point dilatation D given
on p. 125 of [2] to calculate D(z, + 1y,).
1 ! y 7
D+ =T (w)—}-(—y— —1)0 (z)+

1
U'(w)+(l —.1) o' ()
Yo
(“(m)/yo)z .
U () + (—;L —1) o' ()

[)]
From the hypotheses of this theorem we know that 1/(Q —e) < U’ (x)
< @ —e. Hence, by choosing both ¢(x) and |o'(2)| small enough we can
insure, for an arbitrarily given & > 0, that

-+

4+

0@+ (L ~1) )+ - ! <@gty
Yo v (m)+(—y— —1) o (2)
- Yo
and . R
(U(m)/yo) <_3_
y 2

U (m)+(— —1) o (z)
Yo
Letting & tend to 0 this shows that D+1/D < @ +1/Q, or equivalently
D<@, at the point x,+y,. Therefore

K(g) = esssupD(z) < Q < o0,
2

which shows that g is quasi-conformal. In the proof of Theorem 3, however,
we showed that any quasi-conformal mapping of G to G' that agrees
with F on the boundary must have dilatation greater than or equal to
Q@ =max{M,1/L}. Hence g must also be extremal with K(g) = K(F)
=@, and g # F on-a set of positive measure. This proves that while #
is extremal it is not unique extremal.
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