ANNALES

POLONICI MATHEMATICI

XXXIII (1976)

CONFERENCE ON ANALYTIC FUNCTIONS

Some relations between starlike and convex functions

by Józef Waniurski (Lublin)

Abstract. Let S be the class of regular and univalent functions in K_1 ($K_r = \{z \colon |z| \leqslant r\}$) such that f(0) = 0, f'(0) = 1 and let S^* , S^c be the subclasses of functions $f \in S$ starshaped w.r.t. the origin and convex, resp. Let S_R denote the class of all functions $f \in S$ such that

$$K_R \subseteq f(K_1)$$
.

The intersections $S^* \cap S_R$, $S^c \cap S_R$ will be denoted S_R^* and S_R^c resp. It is well known that if a function $g \in S^*$, then

$$f(z) = \int_{0}^{z} \frac{g(t)}{t} dt$$

belongs to the class S^c .

This note deals with the following problem: given $g \in S_R^*$, find "the best possible" ϱ (depend on R only) such that the function f of form (1) belongs to S_ϱ^c .

1. Introduction. Let S^* denote the class of functions

$$(1.1) z + \sum_{n=2}^{\infty} a_n z^n$$

analytic in |z| < 1 and such that each $g \in S^*$ maps |z| < 1 one-to-one onto a domain starshaped with respect to the origin. This is equivalent to the analytic condition: re $\frac{zg'(z)}{g(z)} > 0$ in |z| < 1.

An analytic function f of form (1.1) is said to be convex $(f \in S^c)$ if it maps |z| < 1 one-to-one onto a convex domain. Analytically this is equivalent to that re $\left(1 + \frac{zf''(z)}{f'(z)}\right) > 0$ in |z| < 1.

It is very easy to check that the integral

$$(1.2) \int_{0}^{z} \frac{g(\xi)}{\xi} d\xi$$

transforms S^* onto the class S^c of all convex functions of form (1.1).

Suppose that $K_r = \{z \colon |z| < r\}$. Let $S_R^* (\frac{1}{4} \leqslant R \leqslant 1)$, $S_R^* \subseteq S^*$, denote the class of starlike functions g satisfying

$$(1.3) K_R \subset g(K_1).$$

Moreover, let $S_{\varrho}^{c}(\frac{1}{2} \leqslant \varrho \leqslant 1)$ be the class of convex functions f satisfying

$$(1.4) K_a \subset f(K_1).$$

We recall that $S_{1/4}^* = S^*$, $S_{1/2}^c = S^c$, $S_1^* = S_1^c = \{z\}$ (cf. [3], p. 3, 13, 80).

This means that the integral (1.2) transforms the classes $S_{1/4}^*$, S_1^* onto $S_{1/2}^c$, S_1^c resp.

In this communication I shall present the connection between the class S_R^* and S_ϱ^c under transformation (1.2). In the further considerations we shall use the following lemmas.

LEMMA 1 [2]. Suppose $g \in S_R^*$ ($\frac{1}{4} < R < 1$). Then

$$(1.5) -G(-|z|) \leqslant |g(z)| \leqslant G(|z|),$$

where

(1.6)
$$G(z) = \frac{4}{(2+a)^a} \frac{\left[a(1+z) + 2\lambda(z)\right]^a}{\left[1+z+\lambda(z)\right]^2} \frac{z}{(1-z)^a}$$

with

$$\lambda(z) = [1 + (a^2 - 2)z + z^2]^{1/2}, \quad 0 < \alpha < 2.$$

The connection between a and R is given by

(1.7)
$$R = 4[(2-\alpha)^{2-\alpha}(2+\alpha)^{2+\alpha}]^{-1/2}.$$

The function G maps the unit disk K_1 onto starshaped domain being the sum of the K_R and the angle $\{w: |Argw| < \pi a/2\}$ (see [6]).

Let us put

(1.8)
$$F(z) = \int_{0}^{z} \frac{G(\xi)}{\xi} d\xi,$$

with G defined by (1.6). Examining the behaviour of the boundary of $G(K_1)$ under transformation (1.2) we find that $F(K_1)$ is the convex circular domain symmetric w.r.t. the real axis whose boundary consists of an arc situated on the boundary of the disk K_{ϱ} and two half straightlines (or segments) starting from the end points that arc and tangent to ∂K_{ϱ} (see [7]). Of course, ϱ depend on R. That dependence is given by the formula

(1.9)
$$\varrho = \int_{-1}^{0} \frac{G(t)}{t} dt.$$

After some calculations we obtain that

(1.10)
$$\varrho = \varrho(a) = 16a \int_{a}^{1} t^{a} \frac{(2+a)t^{2}+2-a}{[(2+a)^{2}t^{2}-(2-a)^{2}]^{2}} dt,$$

where

$$q = \sqrt{\frac{2-a}{2+a}}.$$

LEMMA 2 [7]. Suppose that $f \in S_{\varrho}^{c}$ ($\frac{1}{2} < \varrho < 1$). Then

$$-F(-|z|) \leqslant |f(z)| \leqslant F(|z|),$$

where F is given by (1.8).

The method of the proofs of Lemmas 1, 2 is based on the fact that the problem of determining the extremal values of |f(z)| is equivalent to the extremal problem for the Green's function in a class of domains which satisfy some additional conditions (cf. [1], [4]).

2. Main results.

THEOREM 1. Suppose that

$$g \in S_R^*, \quad f(z) = \int_0^z \frac{g(\xi)}{\xi} d\xi.$$

Then $f \in S_{\varrho}^c$, where ϱ is defined by (1.9) or (1.10).

Proof. Let $z \in K_1$. The length of the segment [0, f(z)] is equal to |f(z)|. On the other hand

$$|f(z)| = \int\limits_{t} |f'(z)| \, |dz| \,, \quad ext{ where } \quad L = \{z \colon z = f^{-1}(\xi), \, \xi \, \epsilon \, [0\,, f(z)] \} \,.$$

Changing a parametrization of the curve L we obtain:

$$|f(z)| = \int\limits_0^{|z|} |f'(re^{i\theta})| dr = \int\limits_0^{|z|} \left| \frac{g(er^{i\theta})}{r} \right| dr.$$

Now, from (1.5) we have:

$$|f(z)| = \int_0^{|z|} \left| \frac{g(re^{i\theta})}{r} \right| dr \geqslant \int_0^{|z|} \frac{-G(-r)}{r} dr = \int_{-|z|}^{\theta} \frac{G(t)}{t} dt.$$

Hence, letting $|z| \to 1$ gives $\min_{|z|=1} |f(z)| \ge \varrho$. Consequently, $K_{\varrho} \subset f(K_1)$ and finally $f \in S_{\varrho}^c$.

Remark. From Theorem 1 we obtain that integral (1.2) transforms S_R^* into S_ϱ^c with connection between R and ϱ given by (1.7) or (1.10).

It follows from (1.10) that $\varrho(1) = \frac{4}{9} + \frac{16}{27} \ln 2 = 0.855...$

THEOREM 2. If $\varrho > \varrho(1)$, then S_{ϱ}^c is the class of bounded convex functions.

Proof. If $\varrho = \varrho(a) > \varrho(1)$, then ϱ corresponds a, 0 < a < 1. It follows that for $f \in S_a^c$

$$|f(z)| \leqslant F(|z|) = \int\limits_0^{|z|} rac{G(t)}{t} dt.$$

From (1.6) we get the following inequality:

$$|f(z)| \leqslant M[1-(1-|z|)^{1-\alpha}]$$
 which yields $|f(z)| \leqslant M$.

Let us denote by H^p (p>0) the class of functions f(z) analytic in |z|<1 and such that the integral

$$\int\limits_{0}^{2\pi}|f(re^{i\theta})|^{p}d\theta$$

is bounded in $0 \le r < 1$.

THEOREM 3. Suppose that $R > \frac{4}{9}\sqrt{3} = 0.76 \dots$ Then $g \in S^*$ implies g belongs to H^1 .

Proof. Let $f(z) = \int_0^z \frac{g(\xi)}{\xi} d\xi$ with $g \in S_R^*$. We point out that $f \in S_\varrho^c$ with $\varrho > \varrho(1)$ so that f is bounded.

$$\int\limits_{0}^{2\pi}|g(re^{i\theta})|\,d\theta\,=\,r\int\limits_{0}^{2\pi}|f'(re^{i\theta})|\,d\theta$$

and right-hand side of the above equality denotes the length of convex curve onto which |z| = r is mapped by f. Thus

$$\int\limits_0^{2\pi} |g(re^{i heta})|\,d heta$$
 is bounded in $0\leqslant r<1$.

The proof is complete.

Let us denote $M(r, T) = \max_{|z|=r} |T(z)|$. From the estimations (1.5), (1.11) we obtain

Corollary. Suppose that $g \in S_R^*$, $f \in S_Q^c$. Then for $r \to 1^-$

$$M(r,g) = O\left(\frac{1}{(1-r)^a}\right),$$

$$M(r,f) = \begin{cases} O\left(\frac{1}{(1-r)^{a-1}}\right) & provided \ \varrho < \varrho(1) \ (1 < a < 2), \\ O\left(\log\frac{1}{1-r}\right) & provided \ \varrho = \varrho(1) \ (a = 1). \end{cases}$$

From the result of Corollary we can obtain an asymptotic behaviour of the coefficients a_n in Taylor expansion (1.1) if $z + \sum_{n=2}^{\infty} a_n z^n$ belongs to S_R^* or S_a^c (see [5]).

References

- Z. Bogucki and J. Waniurski, On univalent functions whose values cover a fixed disk, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 22/23/24 (1968/1969/1970), p. 39-43.
- [2] On bounded spiral-like functions whose values cover a fixed disk, Bull. Acad. Polon. Sci., Math. Astr. et Phys. 19 (1971), p. 983-988.
- [3] W. K. Hayman, Multivalent functions, Cambridge 1958.
- [4] J. Krzyż, Distortion theorems for bounded convex functions II, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 14 (1960), p. 7-18.
- [5] Ch. Pommerenke, On starlike and convex functions, J. London Math. Soc. 37 (1962), p. 203-224.
- [6] T. Sheil-Smail, Starlike univalent functions, Proc. London Math. Soc. 21 (1970), p. 577-613.
- [7] J. Waniurski, A note on extremal properties for certain family of convex mappings, Ann. Univ. Mariae Curie-Skłodowska, Sec. A, 29 (1975).