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Abstract. Let S be the class of regular and univalent functions in K, (X,
= {z: |2| < r}) such that f(0) = 0, f'(0) = 1 and let 8*, §° be the subclasses of functions
feS starshaped w.r.t. the origin and convex, resp. Let S denote the class of all functions
feS such that

KR < f(Kl)'

The intersections S*N Sk, 8N Sk will be denoted S§ and 8% resp.
It is well knowa that if a function g¢S*, then ‘

z
t
M o= [1Pa
0

belongs to the class S°.
This note deals with the following problem: given g<S¥g, find “the best possible” o
(depend on E only) such that the function f of form (1) belongs to §%.

1. Introduction. Let 8* denote the class of functions

(1.1) z+4 2 a,z"
n=2

analytic in |2| < 1 and such that each geS* maps |2| < 1 one-to-one onto
a domain starshaped with respect to the origin. This is equivalent to the
29'(2)
g(2)

analytic condition: re >0 in |2|< 1.

An analytic function f of form (1.1) is said to be convea (feS°) if it
maps |2| < 1 one-to-one onto a convex domain. Analytically this is equiv-
alent to that re (l—l— f}f; (2)

(=)
It is very easy to check that the integral

)>0 in 2| <1.

1‘2 _—d

transforms S* onto the class 8¢ of all convex functions of form (1.1). ' -
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Suppose that K, = {z: |2 < 7}. Let 8 (} < R< 1), 8 = 8¢ denote
the class of starlike functions g satisfying

(1.3) Ky < g(K,y).
Moreover, let S; (3 < o0 < 1) be the class of convex functions f satisfying
(1.4) K, < f(K,).

We recall that 87, = 8*, 8§, = 8¢, 8§ = 8{ = {2} (cf. [3], p. 3, 13, 80).

This means that the integral (1.2) transforms the classes S;"M, ST onto
852, 85 resp.

In this communication I shall present the connection hetween the
class S; and 8¢ under transformation (1.2). In the further considerations
-we shall use the following lemmas.

LEMMA 1 [2]. Suppose geSy (3 < R< 1). Then

(1.5) —G(—7]) < g(2)| < G(J2l),

where .
_ 4 [+ 424" =

(1.6) Gle) = (24+a)" [1+24+4(2)]* (1—2)°

with

Mz) =[1+(a*=2)2+22 "%, O0<a<?.
The connection between a and R is given by
(1.7) R =4[(2—-a)* %2 +a)**]712,

The function G maps the unit disk K, onto starshaped domain being
the sum of the K, and the angle {w: |[Argw| < ma/2} (see [6]).
Let us put
C G (E)

(1.8) P(z) = | —2Lgg,
. &

with G defined by (1.6). Examining the behaviour of the boundary of
G (K,) under transformation (1.2) we find that F'(K,) is the convex circu-
lar domain symmetric w.r.t. the real axis whose boundary consists of
an arc situated on the boundary of the disk K, and two half straight-
lines (or segments) starting from the end points that arc and tangent to
0K, (see [7]). Of course, ¢ depend on R. That dependence is given by the

formula
0

@t
(L.9) o — f—:ldt.

-1
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After some calculations we obtain that

(24+a)t*+2—a it
2 +a)’t*—(2—a)*

. l/2—a
7= 2+4+a
LeMMA 2 [7]. Suppose that feS; (3 < o < 1). Then
(1.11) —F(— lzl) < If(RI< F(l2]),

1
(1.10) 0 = pla) = 16aqf v

where

where F' is given by (1.8).

The'method of the proofs of Lemmas 1, 2 is based on the fact that the
problem of determining the extremal values of |f(2)| is equivalent to the
extremal problem for the Green’s function in a class of domains which
satisfy some additional conditions (cf. [1], [4]).

2. Main results.

THEOREM 1. Suppose that

gelh, fw)==j“5¥§1ds.

Then fe8;, where o is defined by (1.9) or (1.10).
Proof. Let zeK,. The length of the segment [0, f(z)] is equal to
|f(z)]. On the other hand

f) = [If(2)lidel, where L ={z: 2 =f(&), £[0,f(2)]}.

L

Changing a parametrization of the curve L we obtain:

il I} i
f(2)] = f ' (re) dr = f l g‘“: APS
Now, from (1.5) we have:
12| 12| 0 -
_ Flgte? —G(—r) . G
If(z)l _of { r dr> of ___T—— dr = _Jz' —t—dt.

Hence, letting |2|—>1 gives min|f(2)| > ¢. Consequently, K, < f(K,)
and finaly feS5. tel=1

Remark. From Theorem 1 we obtain that integral (1.2) transforms S%
into 87 with connection between K and ¢ given by (1.7) or (1.10).

It follows from (1.10) that (1) =;+;In2 = 0.855 ...
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THEOREM 2. If ¢ > o(1), then 8 is the class of bounded convew func-
tions.

Proof. If p = p(a) > ¢(1), then p corresponds a, 0 < a < 1. It follows
that for feS;

12|
G
F@I<F(ed = | —-i—t-)—dt.

From (1.6) we get the following inequality:
If(2)) < M[1—(1—[21))"°] which yields |f(2)I < M.

Let us denote by H” (p > 0) the class of functions f(z) analytic in
|2 < 1 and such that the integral

2n
[ Iftre*)1P a8

is bounded in 0 < r< 1.

THEOREM 3. Suppose that R >§l/3_ = 0.76 ...
Then geS* implies g belongs to H*.

14
Proof. Let f(z) = g(%df with geSy. We point out that feS:

0
with ¢ > o(1) so that f is bounded.

Now
2rn 2n
[ lg(re®)ia6 = r [ |f (") |6
0 0

and right-hand side of the above equality denotes the length of convex
curve onto which |2| = r is mapped by f. Thus

2%
f lg(re®®)|d0 is bounded in O0<r<1.
0

The proof is complete.
Let us denote M(r,T) = Max|T(2)]. From the estimations (1.5),
(1.11) we obtain Il =r

COROLLARY. Suppose that geSy, feS;. Then for r—1-

1
M(r, g9) = O(W),

0((T—-11')—°_1) PTO’D?:ded o< 9(1) (1 <a< 2),
M(r,f) =

) provided o = o(1) (a = 1).

{ 0(log 1—7
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From the result of Corollary we can obtain an asymptotic behaviour

of the coefficients a, in Taylor expansion (1.1) if 24 )’ a,2" belongs to Sg
or 8 (see [5]). n=2

References

[11 Z. Bogucki and J. Waniurski, On univalent functions whose values cover a fized
disk, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, 22/23/24 (1868/1969/1970),
p. 39-43.

[2] — — On bounded spiral-like functions whose values cover a fized disk, Bull. Acad.
Polon. Sci., Math. Astr. et Phys. 19 (1971), p. 983-988,

[3] W. K. Hayman, Multivalent functions, Cambridge 1958.

(4] J. Krzyzi, Distortion theorems for bounded convex functions II, Ann. Univ. Mariae
Curie-Sklodowska, Sectio A, 14 (1960), p. 7-18.

[6] Ch. Pommerenke, On starlike and conver functions, J. London Math. Soc. 37
(1962), p. 203-224.

[6] T. Sheil-Smail, Starlike univalent funmctions, Proe. London Math. Soc. 21 (1970),
p. 677-613.

[7) J. Waniurski, 4 nole on extremal properties for cerlain family of ®onvex map-
pings, Ann. Univ. Mariae Curie-Sklodowska, Sec. A, 29 (1975).



