1976

FASC. 1

QUOTIENT STRUCTURES FOR QUASI-UNIFORM SPACES

 $\mathbf{B}\mathbf{Y}$

JOHN W. CARLSON (EMPORIA, KANSAS)

1. Introduction. In this paper we are interested in the quotient quasi-uniform structure. It is well-known that the quotient topology generated by a surjective map of a uniform space need not be uniformizable. Isbell, in [1], provides such examples. Considering the problem at the quasi-uniform level, we show that the difficulty is even more fundamental. Since every topological space admits a compatible quasi-uniform structure, the generated quotient topology must also admit such a structure. However, we show that it may not be a structure for which the map is quasi-uniformly continuous. The problem is then approached from the other direction in that we consider a natural definition of a quotient structure in the category of quasi-uniform spaces and quasi-uniformly continuous maps. We show that such a structure does exist.

It is known that the direct image of a quasi-uniform space need not be a quasi-uniform structure. We give necessary and sufficient conditions for which it is and show that in this case it is the quotient structure. q-maps are defined in a natural way and used to characterize the direct image structure. Conditions are given for which the direct image structure yields the direct image or quotient topology.

Definition 1.1. Let X be a non-empty set. A quasi-uniform structure for X is a filter $\mathscr U$ of subsets of $X \times X$ such that:

- (1) $\Delta = \{(x, x) : x \in X\} \subset U \text{ for each } U \in \mathcal{U},$
- (2) for each U in $\mathscr U$ there exists a V in $\mathscr U$ with $V \circ V \subset U$.

Definition 1.2. If \mathcal{U} is a quasi-uniform structure for a set X, let

 $t_{\mathscr{U}} = \{ O \subset X : \text{ if } x \in O, \text{ then there exists } U \text{ in } \mathscr{U} \text{ such that } U[x] \subset O \}.$

Then $t_{\mathscr{U}}$ is the quasi-uniform topology on X generated by \mathscr{U} . A quasi-uniform structure \mathscr{U} is said to be *compatible with a topology* provided $t = t_{\mathscr{U}}$.

An excellent introduction to quasi-uniform spaces may be found in [3].

- **2. Quotient structures.** Let (X, \mathcal{U}) be a quasi-uniform space and $f: X \rightarrow Y$ with f surjective. It is natural to ask if there exists a quasi-uniform structure \mathscr{V} for Y such that:
 - (a) $f: (X, \mathcal{U}) \to (Y, \mathcal{V})$ is quasi-uniformly continuous,
 - (b) $t_{\mathscr{C}}$ is the quotient topology on Y.

The following example shows that it is not always possible to find such a structure $\mathscr V$ for Y.

Example 2.1. Let $f: N \to Y$, where N denotes the natural numbers and $Y = \{1, 2\}$. Define f by f(n) = 1 if n is odd and f(n) = 2 if n is even. Let $\mathscr U$ be the quasi-uniform structure on N generated by the base $\mathscr B = \{U_n: n \in N\}$, where

$$U_n = \{(x, y) \colon x = y \text{ or } x > n\}.$$

 \mathscr{U} generates the discrete topology on N and the quotient topology on Y is thus the discrete topology. Let \mathscr{V} be a quasi-uniform structure on Y for which f is quasi-uniformly continuous. Then if $V \in \mathscr{V}$, $f^{-1}(V) \in \mathscr{U}$ and there exists a U_n such that $U_n \subset f^{-1}(V)$. (By $f^{-1}(V)$ we mean, where $V \subset Y \times Y$, the set $\{(a,b) \in X \times X : (f(a),(fb)) \in V\}$.) Then $f(U_n) \subset f(f^{-1}(V)) = V$. But $f(U_n) = Y \times Y$, therefore $\mathscr{V} = \{Y \times Y\}$ and $t_{\mathscr{V}}$ is the trivial topology on Y.

Let \mathcal{Q} be the category of quasi-uniform spaces and quasi-uniformly continuous maps. We say that (Y, \mathcal{W}) is a *quotient* of (X, \mathcal{Q}) if there exists an onto map $f: X \rightarrow Y$ with the property that if f = gh, where g is one-to-one and onto, then g is an isomorphism.

Definition 2.1. Let $f: (X, \mathcal{U}) \to Y$. Set $\mathcal{W} = \bigvee \{ \mathcal{V} : f: (X, \mathcal{U}) \to (Y, \mathcal{V}) \}$ is quasi-uniformly continuous. \mathcal{W} is called the *quotient structure* for Y.

The above collection of quasi-uniform structures is non-empty since f is quasi-uniformly continuous with $\mathscr{V} = \{Y \times Y\}$. It is shown in [3] that the least upper bound of a non-empty collection of quasi-uniform structures is a quasi-uniform structure. f is clearly quasi-uniformly continuous with respect to \mathscr{W} . However, as Example 2.1 shows, $t_{\mathscr{W}}$ need not be the quotient topology. We return to this point later. \mathscr{W} is the strongest quasi-uniform structure on Y for which f is quasi-uniformly continuous.

THEOREM 2.1. Let $f: (X, \mathcal{U}) \to Y$ be surjective. Let \mathcal{W} be the quotient structure on Y. Then (Y, \mathcal{W}) is a quotient object in the category 2.

Proof. Suppose that f = gh, where g is one-to-one and onto. Now $h: (X, \mathcal{U}) \to (Y', \mathcal{S})$ and $g: (Y', \mathcal{S}) \to (Y, \mathcal{W})$. We must show that if $S \in \mathcal{S}$, then $g(S) \in \mathcal{W}$. Since g is one-to-one and onto, $\{g(S): S \in \mathcal{S}\}$ forms a quasi-uniform structure on Y. Denote it by $g(\mathcal{S})$. Now for each $S \in \mathcal{S}$ we have $f^{-1}(g(S)) = h^{-1}(S) \in \mathcal{U}$. Thus f is quasi-uniformly continuous with respect to $g(\mathcal{S})$ and hence $g(\mathcal{S}) \leq \mathcal{W}$.

If f is a surjective mapping from a topological space X to a set Y, the quotient topology on Y is defined as the strongest topology on Y

for which f is continuous. It can also be characterized by O is open in Y if and only if $f^{-1}(O)$ is open in X. This concept of the direct image topology leads us to the following definition:

Definition 2.2. Let $f:(X, \mathcal{U}) \to Y$ be surjective. Set $\mathcal{V} = \{V \subset Y \times Y : f^{-1}(V) \in \mathcal{U}\}$. \mathcal{V} is called the *direct image* of \mathcal{U} .

It is well-known that the direct image need not be a quasi-uniform structure. However, we give a necessary and sufficient condition for $\mathscr V$ to be a quasi-uniform structure and we prove that if it is a quasi-uniform structure, then it is the quotient structure. First, for the convenience of the reader, we provide an example to show that $\mathscr V$ need not be a quasi-uniform structure.

Example 2.2. Let $X = \{1, 2, 3, 4\}$ and $Y = \{1, 2, 3\}$ and let f be defined by f(1) = 1, f(2) = f(3) = 2, and f(4) = 3. Let \mathscr{U} be the quasi-uniform structure generated by the base consisting of the single set $U = \Delta_X \cup \{(1, 2), (2, 3)\}$. Now $T = \Delta_Y \cup \{(1, 2), (2, 3)\} \in \mathscr{V}$, since $f^{-1}(T) = U$. Suppose there exists an $S \in \mathscr{V}$ with $S \circ S \subset T$. Then $f^{-1}(S) \supset U$ and $T = f(U) \subset f(f^{-1}(S)) = S$. Hence $T \circ T \subset T$, but this is impossible. Therefore \mathscr{V} is not a quasi-uniform structure on Y.

There is another very natural reason to consider the direct image of a quasi-uniform structure. Let (X, \mathcal{U}) be a quasi-uniform space and \mathcal{R} an equivalence relation on X. Let [x] denote the equivalence class containing x. Set

 $\tilde{U} = \{([x], [y]): \text{ there exists } x' \in [x] \text{ and } y' \in [y] \text{ with } (x', y') \in U\}.$

Let $\tilde{\mathcal{U}} = {\tilde{U} : U \in \mathcal{U}}$. Let $p: X \to X/\mathcal{R}$ be the canonical map. Then $\tilde{\mathcal{U}}$ is the direct image of \mathcal{U} under the map p.

THEOREM 2.2. Let $f: (X, \mathcal{U}) \to Y$ be surjective. If the direct image \mathscr{V} is a quasi-uniform structure, then \mathscr{V} is the quotient structure.

Proof. Let \mathscr{W} denote the quotient structure on Y. If \mathscr{V} is a quasi-uniform structure, then f is quasi-uniformly continuous with respect to \mathscr{V} and, since \mathscr{W} is the strongest such structure, we have $\mathscr{V} \leq \mathscr{W}$. Now suppose $W \in \mathscr{W}$; then $f^{-1}(W) \in \mathscr{U}$ and $W \in \mathscr{V}$. Therefore $\mathscr{V} = \mathscr{W}$.

It is easy to show that the direct image $\mathscr V$ satisfies the definition of a quasi-uniform structure except for condition (2). What we essentially need is that f preserves composition, that is if $U \in \mathscr U$, then $f(U) \circ f(U) = f(U \circ U)$. However, this is slightly stronger than what we must have. The following theorem gives a necessary and sufficient condition for $\mathscr V$ to be a quasi-uniform structure.

THEOREM 2.3. Let $f: (X, \mathcal{U}) \to Y$ be surjective. Set $\mathscr{V} = \{V \subset Y \times Y : f^{-1}(V) \in \mathcal{U}\}$. \mathscr{V} is a quasi-uniform structure on X if and only if for each $U \in \mathscr{U}$ there exists a $V \in \mathscr{U}$ with $f(V) \circ f(V) \subset f(U \circ U)$.

Proof. Necessity. Let $U \in \mathcal{U}$. Then $U \circ U \in \mathcal{U}$ and $f(U \circ U) \in \mathcal{V}$. Now there exists $T \in \mathcal{V}$ with $T \circ T \subset f(U \circ U)$. Now $f^{-1}(T) \in \mathcal{U}$ and there exists $V \in \mathcal{U}$ with $V = f^{-1}(T)$. Therefore $f(V) \subset f(f^{-1}(T)) = T$ since f is surjective and we have

$$f(V) \circ f(V) \subset T \circ T \subset f(U \circ U)$$
.

Sufficiency. Let $W \in \mathscr{V}$. Then $f^{-1}(W) \in \mathscr{U}$ and there exists $U \in \mathscr{U}$ with $U \circ U \subset f^{-1}(W)$. There exists $V \in \mathscr{U}$ with $f(V) \circ f(V) \subset f(U \circ U)$. Therefore

$$f(V) \circ f(V) \subset f(U \circ U) \subset f(f^{-1}(W)) = W.$$

Since $f(V) \in \mathcal{V}$, we are through.

If $f: (X, \mathcal{U}) \to Y$ is surjective, set $\mathcal{R} = \{(x, y): f(x) = f(y)\}$. Then \mathcal{X} is an equivalence relation on X. Clearly, Y can be thought of as X/\mathcal{R} and the structure $\tilde{\mathcal{U}}$ is the direct image of \mathcal{U} under f.

THEOREM 2.3. Let U and V belong to \mathscr{U} . $f(V) \circ f(V) \subset f(U \circ U)$ if and only if $V \circ \mathscr{R} \circ V \subset \mathscr{R} \circ U \circ U \circ \mathscr{R}$.

This theorem together with Theorem 2.2 provides a necessary and sufficient condition in terms of the equivalence relation \mathcal{R} for $\tilde{\mathcal{U}}$ to be a quasi-uniform structure on X/\mathcal{R} .

Our next theorem characterizes the quotient structure. We have already noted that the direct image fails to be a structure because it requires that f(U) belong to it for each U in \mathscr{U} . The theorem shows that we must be more restrictive.

THEOREM 2.4. Let $f: (X, \mathcal{U}) \rightarrow Y$ be surjective. Then

$$\mathcal{S} = \big\{ f(U) \colon \ U \in \mathcal{U} \ \ and \ \ there \ \ exists \ \{V_1, \ V_2, \ldots\} \subset \mathcal{U} \ \ such \ \ that \\ f(V_1) \circ f(V_1) \subset f(U) \ \ and \ f(V_{k+1}) \circ f(V_{k+1}) \subset f(V_k) \ \ for \ \ k = 1, 2, \ldots \big\}$$

is a subbase for the quotient structure W.

The proof is straightforward and left to the reader.

We now suppose that \mathscr{V} , the direct image, is a quasi-uniform structure and consider conditions for which it yields the quotient topology.

THEOREM 2.5. Let $f: (X, \mathcal{U}) \to (Y, \mathcal{V})$, where \mathcal{V} is the direct image quasi-uniform structure. Each of the following conditions are sufficient for $t_{\mathcal{V}}$ to be the quotient topology on Y:

- (a) For each $U \in \mathcal{U}$ there exists a $V \in \mathcal{U}$ with $\mathcal{R} \circ V \subset U$.
- (b) f is finite to one. (Elementary identification maps, for example.)
- (c) & is saturated, that is & is closed under arbitrary intersections.

3. q-maps.

Definition 3.1. Let $f: (X, \mathcal{U}) \to (Y, \mathcal{P})$. f is a q-map if for each $U \in \mathcal{U}$ we have $f(U) \in \mathcal{P}$. f is called q-open if for each $U \in \mathcal{U}$ there exists a $V \in \mathcal{P}$ such that $f(U[t]) \supset V[f(t)]$ for each $t \in X$.

It is clear that a q-map must be surjective.

THEOREM 3.1. A q-open map is an open map. A surjective q-open map is a q-map.

Proof. Let $f: (X, \mathcal{U}) \to (Y, \mathcal{P})$ be a q-open map. Let $O \in t$, the topology on X, with $y \in f(O)$. Now there exists an $x \in O$ with f(x) = y. Since O is open, there exists a $U \in \mathcal{U}$ and $U[x] \subset O$. Since f is q-open, there exists a $V \in \mathcal{P}$ with $f(U[t]) \supset V[f(t)]$ for each $t \in X$. Now $y \in V[f(x)] \subset f(U[x]) \subset f(O)$. Hence $f(O) \in t_{\mathcal{P}}$, and f is an open mapping.

Let $U \in \mathcal{U}$, and suppose that f is surjective. Then there is a $V \in \mathcal{P}$ with $f(U[t]) \supset V[f(t)]$ for each $t \in X$. We show that $f(U) \supset V$. Let $(a, b) \in V$. Since f is onto, there exists an $x \in X$ with f(x) = a. Now $b \in V[f(x)] \subset f(U[x])$. Hence there exists $y \in U[x]$ such that f(y) = b. Then $(a, b) \in f(U)$. Thus $f(U) \supset V \in \mathcal{P}$, and f is a q-map.

The following example shows that the converse of Theorem 3.1 does not hold.

Example 3.1. Let X denote the reals and Y denote the non-negative reals. Define $U_t = \{(a, b): a = b \text{ or } a \geq t\}$. Let $\mathscr U$ be the quasi-uniform structure on X generated by the base consisting of all U_t for $t \in X$. Similarly, let $\mathscr V$ be the quasi-uniform structure on Y generated by the base consisting of all U_t for $t \in Y$. Let $f(t) = t^2$ for $t \in X$. Then $f: (X, \mathscr U) \to (Y, \mathscr V)$ is an open q-map that is not q-open.

Putting the quotient structure \mathscr{W} on the set Y in Example 2.1 provides an example of a q-map that is not open. It is clear that an open map need not be a q-map.

The following theorem shows that we can characterize the direct image structure in terms of q-maps:

THEOREM 3.2. Let $f: (X, \mathcal{U}) \to (Y, \mathcal{P})$ be a quasi-uniformly continuous surjective map. Then \mathcal{P} is the direct image quasi-uniform structure if and only if f is a q-map.

Proof. Suppose \mathscr{P} is the direct image quasi-uniform structure and $U \in \mathscr{U}$. Then $f^{-1}(f(U)) \supset U \in \mathscr{U}$ and $f(U) \in \mathscr{P}$. Thus f is a q-map.

Suppose f is a q-map. Let $\mathscr{V} = \{V \subset Y \times Y \colon f^{-1}(V) \in \mathscr{U}\}$. If $P \in \mathscr{P}$, then $f^{-1}(P) \in \mathscr{U}$ since f is quasi-uniformly continuous and $P \in \mathscr{V}$. Let $V \in \mathscr{V}$; then $f^{-1}(V) \in \mathscr{U}$ and, since f is a q-map, $f(f^{-1}(V)) \in \mathscr{P}$, but $V = f(f^{-1}(V))$. Hence $\mathscr{V} = \mathscr{P}$.

The following theorem is analogous to Theorem 9 of Chapter 3 in [2], except we use the direct image structure on the middle space rather than the quotient structure:

THEOREM 3.3. Let f be a quasi-uniformly continuous map of (X, \mathcal{U}) onto (Y, \mathcal{V}) such that \mathcal{V} is the direct image structure. Then $g: (Y, \mathcal{V}) \to (Z, \mathcal{P})$ is quasi-uniformly continuous if and only if the composition gf is quasi-uniformly continuous.

Proof. If g is quasi-uniformly continuous, it is clear that gf is quasi-uniformly continuous. Now, let $R \in \mathscr{P}$. Then, if gf is quasi-uniformly continuous, we have $f^{-1}(g^{-1}(R)) = (gf)^{-1}(R) \in \mathscr{U}$. Therefore $g^{-1}(R) \in \mathscr{V}$ and g is quasi-uniformly continuous.

REFERENCES

- [1] J. R. Isbell, *Uniform spaces*, American Mathematical Society Mathematical Surveys 12 (1964).
- [2] J. L. Kelly, General topology, Van Nostrand, Princeton 1955.
- [3] M. G. Murdeshwar and S. A. Naimpally, Quasi-uniform topological spaces, Noordhoff Series A (1966).

KANSAS STATE TEACHERS COLLEGE EMPORIA, KANSAS 66801

Reçu par la Rédaction le 3. 6. 1975