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1. Introduction. In this paper we are interested in the quotient
quasi-uniform structure. It is well-known that the quotient topology
generated by a surjective map of a uniform space need not be uniformiz-
able. Isbell, in [1], provides such examples. Considering the problem
at the quasi-uniform level, we show that the difficulty is even more fun-
damental. Since every topological space admits a compatible quasi-
uniform structure, the generated quotient topology must also admit
such a structure. However, we show that it may not be a structure for
which the map is quasi-uniformly continuous. The problem is then ap-
proached from the other direction in that we consider a natural definition
of a quotient structure in the category of quasi-uniform spaces and quasi-
uniformly continuous maps. We show that such a structure does exist.

It is known that the direct image of a quasi-uniform space need
not be a quasi-uniform structure. We give necessary and sufficient con-
ditions for which it is and show that in this case it is the quotient structure.
g-maps are defined in a natural way and used to characterize the direct
image structure. Conditions are given for which the direct image structure
yields the direct image or quotient topology.

Definition 1.1. Let X be a non-empty set. A quasi-uniform structure
for X is a filter  of subsets of X X X such that:

(1) 4 ={(z,x): xeX} = U for each Ue %,

(2) for each U in % there exists a V in # with VoV < U.

Definition 1.2. If # is a quasi-uniform structure for a set X, let

lg = {0 c X: if ¢ 0, then there exists U in % such that U[x] < 0}.

Then %4 is the quasi-uniform topolegy on X generated by #. A quasi-
uniform structure # is said to be compatible with a topology provided
t=1t,.

An excellent introduction to quasi-uniform spaces may be found
in [3].
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2. Quotient structures. Let (X, %) be a quasi-uniform space and
f: X—Y with fsurjective. It is natural to ask if there exists a quasi-uniform
structure ¥~ for Y such that:

(a) f: (X, %) —>(Y,7") is quasi-uniformly continuous,

(b) t, is the quotient topology on Y.

The following example shows that it is not always possible to find
such a structure ¥ for Y.

Example 2.1. Let f: N—Y, where N denotes the natural numbers
and Y = {1, 2}. Define f by f(n) =1 if » is odd and f(n) = 2 if » is even.
Let # be the quasi-uniform structure on N generated by the base # =
{U,: ne N}, where

U, ={=,y): + =y or > n}.

% generates the discrete topology on N and the quotient topology
on Y is thus the discrete topology. Let ¥~ be a quasi-uniform structure
on Y for which f is quasi-uniformly continuous. Then if Ve ¥, f~(V)e %
and there exists a U, such that U, < f~'(V). (By f~!(V) we mean, where
V< Y X Y, the set {(a, b)e X X X: (f(a), (fb))e V}.) Then f(U,) = f(f~1(V))
= V. But f(U,) = Y x Y, therefore ¥ = {¥ X Y} and t, is the trivial
topology on Y.

Let 2 be the category of quasi-uniform spaces and quasi-uniformly
continuous maps. We say that (Y, %) is a quotient of (X, ) if there
exists an onto map f: X—Y with the property that if f = gh, where ¢
is one-to-one and onto, then g is an isomorphism.

Definition 2.1. Let f: (X, %)—>Y.Set W = \V/{V": f: (X, %)~>(X, ¥)
is quasi-uniformly continuous}. #" is called the gquotient structure for Y.

The above collection of quasi-uniform structures is non-empty since f
is quasi-uniformly continuous with " = {¥ x Y}. It is shown in [3]
that the least upper bound of a non-empty collection of quasi-uniform
structures is a quasi-uniform structure. f is clearly quasi-uniformly contin-
uous with respect to #°. However, as Example 2.1 shows, t,- need not
be the quotient topology. We return to this point later. #~ is the strongest
quasi-uniform structure on Y for which f is quasi-uniformly continuous.

THEOREM 2.1. Let f: (X, %) —>Y be surjective. Let W be the quotient
structure on Y. Then (Y, #°) is a quotient object in the category 2.

Proof. Suppose that f = gh, where ¢ is one-to-one and onto. Now
h: (X,%) (Y, %) and g: (Y', &) > (Y, #). We must show that if Se 7,
then ¢g(8)e# . Since g is one-to-one and onto, {g(8): Se¢ &} forms a quasi-
uniform structure on Y. Denote it by g(%). Now for each Se¢.¥ we have
f(9(8)) = h~'(8)e%. Thus f is quasi-uniformly continuous with respect
to ¢g(&) and hence ¢g(<%) < ¥ .

If f is a surjective mapping from a topological space X to a set Y,
the quotient topology on Y is defined as the strongest topology on Y
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for which f is continuous. It can also be characterized by O is open in Y
if and only if f~1(0) is open in X. This concept of the direct image topology
leads us to the following definition:

Definition 2.2. Let f: (X, #)—Y be surjective.Set 7" = {V <« Y x Y:
f Y (V)e}. ¥ is called the direct image of %.

It is well-known that the direct image need not be a quasi-uniform
structure. However, we give a necessary and sufficient condition for ¥~
to be a quasi-uniform structure and we prove that if it is a quasi-uniform
structure, then it is the quotient structure. First, for the convenience of
the reader, we provide an example to show that ¥" need not be a quasi-
uniform structure.

Example 2.2. Let X ={1,2,3,4} and Y = {1, 2,3} and let f be
defined by f(1) =1, f(2) = f(3) = 2, and f(4) = 3. Let % be the quasi-
uniform structure generated by the base consisting of the single set
U = 45x{(1,2),(2,3)} Now T = 4,U{(1,2),(2,3)}e”, since f~1(T)
= U. Suppose there exists an Se¢¥ with SoS < T. Then f~1(8)>U
and T = f(U) cf(f‘l(S)) = §. Hence ToT <= T, but this is impossible.
Therefore ¥~ is not a quasi-uniform structure on Y.

There is another very natural reason to consider the direct image
of a quasi-uniform structure. Let (X, %) be a quasi-uniform space and £
an equivalence relation on X. Let [z] denote the equivalence class con-
taining @. Set

U = {([=], [y]): there exists @’ [#] and y'e [y] with (2, y')e U}.

Let % = {U: Ue%}. Let p: X—>X|® be the canonical map. Then @
is the direct image of  under the map p.

THEOREM 2.2. Let f: (X, %) —>Y be surjective. If the direct image ¥~
18 a quasi-uniform structure, then ¥ s the quotient structure.

Proof. Let # denote the quotient structure on Y. If ¥ is a quasi-
uniform structure, then f is quasi-uniformly continuous with respect
to ¥ and, since # is the strongest such structure, we have ¥ < %". Now
suppose We ¥ ; then f~}(W)e % and We¥". Therefore ¥ = ¥ .

It is easy to show that the direct image ¥~ satisfies the definition
of a quasi-uniform structure except for condition (2). What we essentially
need is that f preserves composition, that is if Ue %, then f(U)of(U)
= f(Uo U). However, this is slightly stronger than what we must have.
The following theorem gives a necessary and sufficient condition for ¥~
to be a quasi-uniform structure.

THEOREM 2.3. Let f: (X, %) -Y be surjective. Set V" ={Vc ¥YxX:
YU VYew}. ¥ is a quasi-uniform structure on X if and only if for each
UeU there exists a Ve# with f(V)of(V) < f(Uo U).
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Proof. Necessity. Let Ue%. Then UoUe% and f(UoU)e 7.
Now there exists Te¥ with ToT < f(Uo U). Now f~}(T)e  and there
exists Ve# with V = f~!(T). Therefore f(V) < f(f~(T)) = T since f is
surjective and we have

fMof(V)ceToT <« f(Uo U).

Sufficiency. Let We?". Then f~'(W)e# and there exists Ue ¥
with Uo U < f~!(W). There exists Ve# with f(V)of(V)< f(Uo U).
Therefore

f(V)of(V) < f(UoU) = f(fH(W) =W.

Since f(V)e¥", we are through.

If f: (X, %) —-Y is surjective, set £ = {(x, y): f(x) = f(y)}. Then £
is an equivalence relation on X. Clearly, ¥ can be thought of as X /#
and the structure % is the direct image of # under f.

THEOREM 2.3. Let U and V belong to %. f(V)of(V) < f(UoU) if
and only if VoRoV c ZoUo UoXR.

This theorem together with Theorem 2.2 provides a necessary and
sufficient condition in terms of the equivalence relation % for  to be
a quasi-uniform structure on X/%.

Our next theorem characterizes the quotient structure. We have
already noted that the direct image fails to be a structure because it
requires that f(U) belong to it for each U in #. The theorem shows that
we must be more restrictive.

THEOREM 2.4. Let f: (X, #)—Y be surjective. Then

& ={f(U): Ue% and there ewists {V,, Vy,...} = % such that
f(V)of(Vy) « f(U) and (Vi) of (Vi) = f(Vy) for k=1,2,...}
is a subbase for the quotient structure ¥ .

The proof is straightforward and left to the reader.
We now suppose that ¥~, the direct image, is a quasi-uniform structure
and consider conditions for which it yields the quotient topology.

THEOREM 2.5. Let f: (X, %)—>(Y,¥"), where ¥ is the direct image
quasi-uniform structure. Each of the following conditions are sufficient for
t,- to be the quotient topology on Y:

(a) For each Ue¥ there exists a Ve# with oV < U.

(b) f ts finite to one. (Elementary identification maps, for example.)

(¢) % is saturated, that is % 1is closed under arbitrary intersections.

3. g-maps.

Definition 3.1. Let f: (X, %) > (X, #). f is a ¢g-map if for each Ue #
we have f(U)e 2. f is called g-open if for each Ue # there exists a Ve?
such that f(U[t]) = V[f(¢)] for each teX.
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It is clear that a ¢-map must be surjective.

THEOREM 3.1. A g-open map is an open map. A surjective g-open
map s a q-map.

Proof. Let f: (X, %) - (Y, ?) be a g-open map. Let Oe t, the topology
on X, with yef(0). Now there exists an xe¢ O with f(x) = y. Since O
is open, there exists a Ue % and U[x] < O. Since f is g-open, there exists
aVe? with f(U[t]) o V[f(t)] for each teX. Now yeV[f(x)] = f(U[x])
< f(O). Hence f(O)ets, and f is an open mapping.

Let Ue %, and suppose that f is surjective. Then there is a 12
with f(U[t]) = V[f(t)] for each te X. We show that f(U) o V. Let (a, b)e V.
Since fis onto, there exists an r¢ X with f(z) = a. Now be V [f(x)] = f(U [x]).
Hence there exists ye U[x] such that f(y) = b. Then (a, b)e f(U). Thus
flU) > Ve, and f is a g-map.

The following example shows that the converse of Theorem 3.1
does not hold.

Example 3.1. Let X denote the reals and Y denote the non-negative
reals. Define U, = {(a,b): a = b or a>1t}. Let % be the quasi-uniform
structure on X generated by the base consisting of all U, for te X. Similaly,
let ¥~ be the quasi-uniform structure on Y generated by the base consisting
of all U, for teY. Let f(t) = (2 for {¢X. Then f: (X, %) —(Y,?") is an
open ¢-map that is not g-open.

Putting the quotient structure % on the set ¥ in Example 2.1 provides
an example of a g-map that is not open. It is clear that an open map
need not be a g-map.

The following theorem shows that we can characterize the diicct
image structure in terms of ¢-maps:

THEOREM 3.2. Let f: (X, %) — (Y, ?) be a quasi-uniformly continnous
surjective map. Then P is the direct image quasi-uniform structure if and
only if f is a g-map.

Proof. Suppose £ is the direct image quasi-uniform structure and
Ue#. Then f~' (f(U)) > Ue % and f(U)e#. Thus f is a g-map.

Suppose f is a g-map. Let ¥ = {V<c YXY: f"Y(V)e#}). If Pe2,
then f~!(P)e # since f is quasi-uniformly continuous and Pe 7. Let Ve ¥;
then f~(V)e % and, since f is a g-map, f(f~(V))e2, but V = f(f~(1)).
Hence v = £.

The following theorem is analogous to Theorem 9 of Chapter 3 in [2],
except we use the direct image structure on the middle space rather
than the quotient structure: .

THEOREM 3.3. Let f be a quasi-uniformly continuous map of (X, «)
onto (Y, ¥") such that ¥ is the direct image structure. Then g: (Y, V") —(Z, 2)
is quasi-uniformly continuous if and only if the composition gf is quasi-
uniformly continuous.
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Proof. If g is quasi-uniformly continuous, it is clear that gf is quasi-
uniformly continuous. Now, let Re 2. Then, if gf is quasi-uniformly
continuous, we have f~'(97'(R)) = (¢f)"'(R)e . Therefore ¢~'(R)e?
and ¢ is quasi-uniformly continuous.
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