FASC. 1

ON PRODUCTS OF NEAT STRUCTURES

 \mathbf{BY}

J. TOMASIK (WROCŁAW)

In this note we give some extensions of Theorems 1 and 2 of [2]. It is a result of a discussion on the seminar on model theory in Wrocław.

0. Let C = (C, T) denote the Cantor discontinuum. If A is a non-empty set, then A^{C} denotes the set of all continuous functions from C into A regarded as a discrete space. If \mathfrak{A} is a relational structure, then \mathfrak{A}^{C} is the substructure of \mathfrak{A}^{C} with the universe A^{C} . It is obvious that if A is infinite, then $|A^{C}| = |A|$.

An autonomous system (see [1]) is a triple $\{S, \pi, \varrho\}$ such that S is a set of formulas which form a partition of logical unit and π is a commutative and associative function from $S \times S$ into S with the property that for every relational structures $\mathfrak A$ and $\mathfrak B$ and every a, $\beta \in S$, if $\mathfrak A \models a$ and $\mathfrak B \models \beta$, then $\mathfrak A \times \mathfrak B \models \pi(a, \beta)$. We do not quote the properties of ϱ , since we are not going to use it.

It was proved by Galvin [1] that for every formula φ there is an autonomous system $\{S, \pi, \varrho\}$ such that $\vdash \varphi \leftrightarrow \bigvee S_1$, where S_1 is a subset of S.

A relational structure $\mathfrak A$ is *neat* if for every formula φ of the language of $\mathfrak A$ there is in this language a predicate R_{φ} such that $\mathfrak A \models \varphi \leftrightarrow R_{\varphi}$.

1. THEOREM 1. If $\mathfrak{A}_0, \ldots, \mathfrak{A}_{n-1}$ are relational structures which are atomic and neat, then the direct product $\mathfrak{A} = \mathfrak{A}_0 \times \ldots \times \mathfrak{A}_{n-1}$ is atomic.

Proof. Let $a \in A^k$. We are going to prove that there is an atom α of $F_k(\operatorname{Th}(\mathfrak{A}))$ such that $\mathfrak{A} \models \alpha[a]$. To simplify the notation we assume k=1 (it is obvious how to generalize this proof to arbitrary $k < \omega$).

Let $a = (a_0, \ldots, a_{n-1})$. Since \mathfrak{A}_i is atomic, for every i < n there is an atom a_i of $F_1(\operatorname{Th}(\mathfrak{A}_i))$ such that $\mathfrak{A}_i \models a_i[a_i]$. Moreover, we can assume that, for every i, j < n,

$$\mathfrak{A}_{i} \models \exists x a_{i}(x) \quad \text{iff } \mathfrak{A}_{i} \equiv \mathfrak{A}_{i}.$$

In fact, if $\mathfrak{A}_i \equiv \mathfrak{A}_j$ does not hold, then there is a sentence φ_{ij} such that $\mathfrak{A}_i \models \varphi_{ij}$ and $\mathfrak{A}_j \models \neg \varphi_{ij}$. If we put

$$a'_{i} = a_{i} \land \land \{\varphi_{ij} : \mathfrak{A}_{i} \not\equiv \mathfrak{A}_{j}, i \neq j < n\} \quad \text{for } i < n,$$

then a'_{i} is an atom and (1) is satisfied for every i, j < n.

Let us consider the formula

$$a = R_{\vee \{a_i: i < n\}} \land \land \{ \neg R_{\neg a_i}: i < n \}.$$

Let n^n denote the set of all functions of n into n and S_n be the set of all permutations of n. Then we have

(2)
$$R_{\vee \{a_i: i < n\}}^{\mathfrak{A}} = \bigcup_{f \in n^n} (R_{a_{f(0)}}^{\mathfrak{A}_0} \times \ldots \times R_{a_{f(n-1)}}^{\mathfrak{A}_{n-1}})$$

and

(3)
$$a^{\mathfrak{A}} = \bigcup_{f \in S_n} (R^{\mathfrak{A}_0}_{af(0)} \times \ldots \times R^{\mathfrak{A}_{n-1}}_{af(n-1)}).$$

It is clear that $\mathfrak{A} \models a[(a_0, ..., a_{n-1})]$. We shall prove that α is an atom of $F_1(\operatorname{Th}(\mathfrak{A}))$.

Let γ be a formula of $F_1(\operatorname{Th}(\mathfrak{A}))$ such that

$$\mathfrak{A} \models (\gamma \to \alpha).$$

In particular, we have

$$\mathfrak{A} \models \gamma \to R_{\vee \{a:: i < n\}}.$$

We shall check that $\gamma = a$.

Let S_{γ} be an autonomous system for γ . We can assume that $\gamma \in S_{\gamma}$ and $\mathfrak{A} \models \gamma[(a_0, \ldots, a_{n-1})]$. It follows from the definition of an autonomous system that there are formulas $\gamma_0, \ldots, \gamma_{n-1} \in S_{\gamma}$ such that

$$\mathfrak{A}_i \models \gamma_i[a_i]$$

and

(7)
$$\pi(\gamma_0,\ldots,\gamma_{n-1})=\gamma.$$

By (5) and (6) we have $\mathfrak{A}_i \models \gamma_i \to (\alpha_0 \lor \ldots \lor \alpha_{n-1})$ for every i < n and, since α_i is an atom of $F_1(\operatorname{Th}(\mathfrak{A}_i))$, we get

(8)
$$\mathfrak{A}_{i} \models (a_{i} \rightarrow \gamma_{i}) \quad \text{for } i < n.$$

Consequently,

$$\mathfrak{A}_{i} \models \gamma_{i} \longleftrightarrow (\alpha_{i_{0}} \lor \ldots \lor \alpha_{i_{k-1}}),$$

where $k \le n$, $i_j < n$ for j < k and, for some j < k, $i_j = i$. We claim that, for every i < n,

(10)
$$\mathfrak{A}_i \models (\gamma_i \leftrightarrow a_i).$$

Suppose to the contrary that this does not hold. Then by (8) there is $j < n, j \neq i$, such that a_j is an atom of $F_1(\operatorname{Th}(\mathfrak{A}_i))$ and $\mathfrak{A}_i \models (a_i \vee a_j) \rightarrow \gamma_i$.

Consequently, if

$$B = R_{a_0}^{\mathfrak{A}_0} \times \ldots \times R_{a_i}^{\mathfrak{A}_i} \times \ldots \times R_{a_i}^{\mathfrak{A}_j} \times \ldots \times R_{a_{n-1}}^{\mathfrak{A}_{n-1}},$$

then $B \subseteq \gamma^{\mathfrak{A}}$ and, by (4), $B \subseteq \alpha^{\mathfrak{A}}$. This contradicts (3) and completes the proof of (10).

By the commutativity of π , for every $f \in S_n$ we have

$$\gamma = \pi(a_{f(0)}, \ldots, a_{f(n-1)}).$$

Consequently, by (3), $\alpha^{\mathfrak{A}} \subseteq \gamma^{\mathfrak{A}}$ and, by (4), $\mathfrak{A} \models (\gamma \leftrightarrow \alpha)$. The proof is completed.

We say that a relational structure $\mathfrak A$ is neat with respect to atoms if for every $n<\omega$ and every formula a, which is an atom of $F_n(\operatorname{Th}(\mathfrak A))$, there is a predicate R_a in $L(\mathfrak A)$ such that $\mathfrak A\models(a\leftrightarrow R_a)$.

By an easy modification of the proof of Theorem 1 we can get the following

COROLLARY. If $\mathfrak{A}_0, \ldots, \mathfrak{A}_{n-1}$ is a sequence of relational structures which are atomic and neat with respect to atoms and which are mutually non-elementarily equivalent, then the direct product $\mathfrak{A} = \mathfrak{A}_0 \times \ldots \times \mathfrak{A}_{n-1}$ is atomic and neat with respect to atoms.

2. In [2] (see Theorem 1) Pacholski proved that if $2_{\mathfrak{F}}^{I}$ is atomless and \mathfrak{A} is prime and neat, then $\operatorname{Th}(\mathfrak{A}_{\mathfrak{F}}^{I})$ has a prime model. We shall prove that \mathfrak{A}^{C} is such a model.

It is well known that $Th(\mathfrak{A}^{C}) = Th(\mathfrak{A}^{I}_{\mathfrak{F}})$ (see, e.g., [5]).

THEOREM 2. If A is neat and prime, then AC is a prime model.

Proof. Let \mathfrak{A} be a relational structure which is neat and prime. Then, by Theorem 3.5 of Vaught [4], \mathfrak{A} is atomic and countable. By Vaught [4], p. 303-321, it suffices to check that $\mathfrak{A}^{\mathbf{C}}$ is atomic.

As in the proof of Theorem 1 we restrict ourselves to the case k=1. Let $f_0, \ldots, f_{n-1} \in A^C$. We are going to prove that there is an atom a in $F_n(\operatorname{Th}(\mathfrak{A}^C))$ such that

$$\mathfrak{A} \models a[f_0, \ldots, f_{n-1}].$$

Since for i < n the function f_i has only finitely many values, there is a decomposition $\{U_0; \ldots; U_{k-1}\}$ of C into a finite number of closed and open sets such that functions f_0, \ldots, f_{n-1} are constant on every U_i (i < k).

Let us assume, for i < k, that a_i is an atom of $F_n(\operatorname{Th}(\mathfrak{A}))$ such hat $\mathfrak{A} \models a_i[f_0(x), \ldots, f_{n-1}(x)]$ for $x \in U_i$. We put

$$a = R_{\vee \{a_i: i < k\}} \land \land \{ \neg R_{\neg a_i}: i < n \}.$$

The proof that α is an atom of $F_n(\operatorname{Th}(\mathfrak{A}^C))$ is exactly the same as the proof of case 1 in the proof of Theorem 1 in [2].

REFERENCES

- [1] F. Galvin, Horn sentences, Annals of Mathematical Logic 1 (1970), p. 389-422.
- [2] L. Pacholski, On products of first order theories, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 17 (1969), p. 793-797.
- [3] and C. Ryll-Nardzewski, On countably compact reduced products I, Fundamenta Mathematicae 67 (1970), p. 155-161.
- [4] R. L. Vaught, Denumerable models of complete theories, Infinitistic methods, Warsaw 1959.
- [5] J. Waszkiewicz and B. Weglorz, On *0-categoricity of powers, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 17 (1969), p. 195-199.

INSTITUTE OF MATHEMATICS OF THE WROCŁAW UNIVERSITY

Reçu par la Rédaction le 11. 4. 1975