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Abstract. The radius of boundedness R(x) of a numerical function u defined in
a normed space E, at a point z in F, is the least upper bound of all numbers » such
that u is bounded above in z + rB, where B denotes the unit ball in E. If f is entire,
the radius of boundedness of u =log|f| is called the radius of convergence of f. We have

A) IR(2)— E@)I < lz—yll,
and if % is plurisubharmonic,
(B) —log R is plurisubharmonic.

It is shown that there exist for E = I?, 1 < P < + oo, .functions R: E-1]0,1]
satisfying (A) and (B) such that R is not the radius of boundedness of any plurisub-
harmonic function in E, a fortiori not the radius of convergence of any entire function.
It is conjectured, on the other hand, that any function R satisfying (A) and (B) in
E = 1! is the radius of convergence of some entire function, and partial results which
support this conjecture are given.

Let T be a topology on E. The T-local radius of boundedness Rp(x) of u is the
supremum of all numbers » such that » is bounded above in (z +rB)NW for some
T-neighbourhood W of z. It is shown that, for reasonable T, —log Ry is also plurisub-
harmonic when # is plurisubharmonic. The above-mentioned results rely on an analy-
gis of the relation between Ry and R for T = o (¥, E’), the weak topology.

1. Introduction. Let £ be a complex normed space and f: E—C
an entire function (i.e. f i8 continuous and its restriction to any finite-
dimensional subspace of ¥ is entire). The radius of convergence R(z) of f
at #¢F is the least upper bound of all numbers  such that the Taylor
expansion of f at « converges uniformly in the ball of radius » and center .
It is well known that R has the following two properties:

(1.1) R is Lipschitz continuous with Lipschitz constant at most one:
1B(y) — E(2)] < lly —all;

(1.2) —~log R is plurisubharmonic.
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It is natural to ask if a radius of convergence has other properties.
Josefson [4] has shown that (1.1) and (1.2) are not sufficient for R to
be the radius of convergence of some entire function in ¢,. In analogy
with this we shall give in Propositions 3.9 'and 3.11 a necessary condition
(relating the behavior of R at an arbitrary point to its decay at infinity)
for R to be the radius of boundedness of some plurisubbarmonic function
inI?, 1< p<< + o0, or ¢. (For ¢, we get Josefson’s condition.) Here the
radius of boundedness of a function u: E—[ — oo, 4 oo[ at a point # in E
is defined as the supremum of all r such that % is bounded above in
{y; lly —a| < r}; it is well known that if f is entire, then the radius of con-
vergence of f and the radius of boundedness of log|f| coincide (see Nachbin
[7], . 26).

Conversely one may try to construct an entire funetion with given
radius of convergence. Simple examples like f(2) = X}, mec,, show that
the radius may well be finite (in the case mentioned it is equal to 1 every-
where). More generally, Dineen [2], Proposition 5, has shown that in
any complex Banach space E such that there is a sequence in the dual
space which tends to zero in the weak star topology but not in norm,
there is an entire function on F whose radius of convergence is finite.
By refining the construction of [2], Aron [1] proves that there exists
an entire function on F such that its radius of convergence becomes
arbitrarily small in $he unit ball. A theorem of Josefson [5] shows that
the hypothesis in [2] and [1] concerning the dual is always satisfied in
an infinite-dimensional Banach space. .

In Section 4 of this paper we shall consider the problem of construct-
ing an entire function with given radius of convergence. All evidence
so far supports the conjecture that on E = I* any function R: 1*->]0, + oof
satisfying (1.1) and (1.2) is the radius of convergence of some entire func-
tion. Theorem 4.4 gives a partial result in that direction: if B depends
only on finitely many coordinates in I* and satisfies (1.1) and (1.2), then
it is a radius of convergence. In the other coordinate spaces 17,1 < p << + o0,
and ¢,, the problem can be solved approximately in the sense that if R
depends on finitely many variables and satisfies (1.1) and (1.2), then there
is a radius of convergence R, such that

2-1tPR < R, < R.

As to the methods used in this paper we only remark here that the
crucial concept is that of the local radius of boundedness. We give its
definition in Section 2 and its relation to the radius of boundedness in
Theorem 3.8. The inner and outer moduli which measure the unit ball
locally with respect to some (weak) topology are introduced in Section 3.

2. The local radius of houndedness. Let E be a normed space, t a top-
ology on F and u: E—>[ — oo, + oo[ a numerical function on E. The z-local



Radius of convergence of an entire function 41

radius of boundedness of u at a point » in F is the least upper bound of
all numbers r such that « is bounded above in (@ + rB)NW for some z-neigh-
bourhood W of #. Here B is the closed unit ball of E, so that, with the
usual conventions concerning operations in vector spaces, @+ 7B is the
ball of radius r centered at #. We shall write E,_,(#) for the number just
defined; when 7 is the chaotic topology on E we get the radius of bound-
edness and we shall then write R,(x). If u is locally bounded above for
the norm topology we have 0 < R, , < + oo; if 7 is weaker than the norm
topology, K, , is clearly lower semicontinuous with respect to the latter.

We shall investigate the geometric relation between E,, that is
R, , for = chaotic, and K, , for some other topology z. If E is reflexive the
weak topology v = o(&, E') will be of interest; if £ is the dual of E,
the weak star topology r = ¢(F, E,) may be used instead. The impor-
tant property is that the unit ball in E is r-compact in these cases. In
any space we may use T = o(E, G), where @ is a subspace of F of finite
codimension; hence B is r-quasi-compact (r is non-separated in all cases
of interest).

A:-numerical function % defined in a subset £ of a complex vector
space E will be called submedian if

27

f u(w+e°y)do

0‘

(2.1) u(z) <

T

for all #, y<E such that » +tyeQ for all complex numbers ¢ with |¢| <1
Here [ denotes the Lebesgue lower integral. When E is normed, and 2
[

open in B, u: Q—[ — oo, + oof will be called plurisubharmonic, in symbols
uePSH (), if » is submedian and upper semicontinuous with respect
to the norm topology (the integralin (2.1) is then equal to the greatest lower

27
bound of o f ¢(6)d6, where ¢ is continuous and ¢(8) > u(2-+ €“y)).
T 0

A holomorphic function. is by definition a continuous function f: 2—-C, 2
being open in FE, such that its restriction to 2N F is holomorphic in the
usual sense whenever F is a finite-dimensional subspace of E; the class
of all such functions will be denoted by 0(R2). If fe0(L), then log|f|
ePSH(Q). The notion of a pseudoconvex open set is extended in the
same way : an open set 2in a complex normed space ¥ is called pseudoconvew
if Q cuts every finite-dimensional subspace F in a pseundoconvex set in ¥

Lelong [6], p. 176, has proved that —logR, is plurisubharmonic
if  is. We generalize his result as follows.

THEOREM 2.1. Let E be a complew normed space, T a vector space top-

ology on E which is weaker than the norm topology, and u a plurisubharmonto
function on E. Then —logR,, is plurisubharmonic.
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The theorem is a consequence of the following more precise result.
PROPOSITION 2.2. With E, v and u as in Theorem 2.1, define

U (®,1) = sup(u(@+y); yetW, lyl < tl), 2B, teC,
v

where W is a t-neighbourhood of the origin. Then
1

u, = inf 4y = limuy
w w

is plurisubharmonic in the interior Q of the set where it is less than + oo.
Moreover, Q2 is pseudoconves.

Proof. Consider the analytic map ¢,: ¥ X C—E defined by ¢,(=, t)
= o +ty. The function uog, is plurisubharmonic in E x C so the upper
regularization wy, of

Uy = SBUP %OQ,
veWnB
is plurisubharmonic in the open set {2y, where the family vog,, ye WNB,
is locally bounded above. We claim that u, = infuy = infuj, in 2 so
that in particular u, is upper semicontinuous there. Let (z,,f,) be an
arbitrary point in 2, a set which is open by definition. Pick é > 0 such
that (@, |ty| + ) e 2. The logarithmic convexity of u, in the variable (¢
implies that
U (Boy 8) < Co+Chloglt]  if  1f] < 1] <[] + 6,

where the constants are chosen to yield equality when || = |{,] and when
It] = |t,| + 6. Hence wu,(®y,1)<<a = u,(x,,t)+¢e when || < ||+ 6, for
some d; > 0, £ being given. By the definition of u, there exists a 7-neigh-
bourhood W of the origin such that

u(wy+vy)<<a when ye(lty + 6,)(WnNB).
Hence '
(2.2) u(@+y)<a when yet(W,NnB)

provided |@ — x|l < 85, |t—1| < 8, and 8, is so small that 24, < 4, and
tW,+6,B < (jt,| +9,)W for all ¢t with |t—1,| < 8,, W, being a suitable
r-neighbourhood of the origin. It is possible to achieve this if 7 is a vector
space topology weaker than the norm topology. Now (2.2) implies that
U, (#,1) <& when [B—a|i< 8, and [t—1| < &y, hence wup (2o, %) < a
= u (@, t) +¢. This proves that u, = infu;, and hence %, is an upper
semicontinuous function. To see that u, is also submedian, consider
elements 2, ¥y of F and complex numbers ¢, 8 such that (@ +(y,?4(8)e 2
for all { with |{| < 1. By a compactness argument there is a 7-neigh-
bourhood W of the origin such that (@+ly,t+(8)e2y when |{]<<1.
Clearly, there is a denumerable family of r-neighbourhoods W; such
that W;,, « W, « W and

infu;,,j(m+e"°y, t+e%s) = u,(@+e’y,t+e’s)
i
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for all 8¢[0, 2x], ®, ¥y, t and s being fixed. From this we get by mono-
tone convergence

2r . 2n
1 : : 1 ]
inf—f Uy (@4 €y, 1+ e 8)db = —f infup, (2 + €y, t+¢s)do
j 2w o 1 2% PO Y

2mn

f u (o + ey, t+6°8)do.

0

1

C 2=n
On the other hand, the fact that u‘,'yj is plurisubharmonic in £y shows
that

2r
1 . ,
u, (@, t) < infuy, (v, 1) < 'mf—f uy (@ + Py, t 4 ¢Ps)do
i J P 27 ¥ i

so combining these formulas we obtain that », is submedian.
Finally, let

Qy = {(@,1)eE % C; u(x+1ty) < k},
a pseudoconvex open set in E X C. Put

'QW,k =( m 'Qk,y)o
a:nd veWnRB

Q = U ‘QW,k'
W,k

It is well known that these operations preserve pseudoconvexity in a finite-
dimensional space, and the proof extends to the case considered here.
It is easily verified that 2 = Q' so Proposition 2.2 is proved.

Remark. It is the source of some difficulty that «, need not tend
to 4 oo at the boundary of Q. In fact, putting
u(w) = supjloglz;|, wec,y,
i=1
we have if 7 is the chaotic topology {3, ¢},
log|t| if <1
w0,y — [logM W<,
+ o0 it |t >1,
and
2 ={(m,t)ecox C; |t} < 1}

so that (0, 1)¢ 2 even though %.(0,1) = 0.

Proof of Theorem 2.1. With £ as in the statement of Proposi-
tion 2.2 we know that —logd((, t), (%) is plurisubharmonic in 2, where.
d((2, 1), [ Q) is the distance from (=, t) to the complement of £ measured
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along the direction (0, 1). It is clear that if (@, t)e 2, then % (2,t) < + oo
and R, ,(®) > |¢|; on the other hand, if R, ,(x) > |t|, then %.(@,?) < + oo
and the first part of the proof of Proposition 2.2 shows that (o, 8)e
for all s with |s|< |t| so that d((®,0),(2)> |t|. Thus d((@,0),(Q)
= R, ,(#) which proves the theorem.

3. Necessary conditions. Let as before E be a normed space (for the
moment real or complex) and let B be its unit ball. If 7 is a topology on E, 4,
and A4, two subsets of E, and @ a point in E, we shall say that A, is t-lo-
cally contained in A, at @, in symbols 4, <, 4,, if

ANW c A,

for some 7-neighbourhood W of @#;in other words, if the inclusion relation
holds between the r-germs of A, and A4, at #. To measure how the unit
ball tapers off we introduce the inner and outer moduli of E, written m (o)
and M (@), respectively. To define them, consider positive numbers m
and M such that

(3.1) @+mB <, , B,
and
(3.2) Bc,,2+MB.

Then m(®) is the least upper bound of all m such that (3.1) holds, and
M (@) is the greatest lower bound of all M such that (3.2) holds.

If all balls #+¢B are r-neighbourhoods of # we clearly have m(w)
= 4 o0 and M(») = 0 for ||z|| < 1, so this case is without interest. If, on
the other hand, every z-neighbourhood of # contains a line through a,
such as with the various weak topologies one considers in an infinite-
dimensional space, then

(3.3) 1-loli<m(e) < M(o) <1+l for |zl <1.

In general we cannot improve these inequalities:
Exampre 3.1. If E = L'(]0, 1[), then

m(@) =1—lol, M@ =1+|w| for oi<i,

where the moduli are taken with respect to the weak topology o(%, E’).

ExampLE 3.2. If £ =1*(J), the space of all bounded functions on
an arbitrary infinite set J, then

m(®) = 1—limsup |o;], M(®#) =1+limsuple;| forlwi< 1.

Here we may use the weak topology o(E, E’) or the even weaker top-

ology o(E, ®C) of pointwise convergence (or any between these). The.
limits are with respect to the Fréchet filter on .J.
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ExampLE 3.3. Let J be an arbitrary infinite index set, and E = I?(J),
1<p< +o, or £ = ¢y(J). Then

(3.4) m(@) = M(@) = (1—2I”)'* for o<1, 1<p< +oo,
and
(3.6) m(w) = M(®) =1 for o<1, E = ¢y(J)-

(The case p =2 covers all infinite-dimensional Hilbert spaces.) Here,
again, we may use any topology weaker than o(F, E’) but stronger than
that of coordinatewise convergence. For p > 1 they agree on bounded
sets so there is in fact no choice; for p =1 we may take v = o(I?, ¢,)
or v = o(l*, I°).

LEMMA 3.4. If 7 18 a locally convem vector space topology on E, then
the inner modulus m with respect to v is concave on B and m(t») is a decreas-
ing function of t= 0.

Proof. Let »,, #, be elements of the open unit ball B° and take
m; such that 0 < m; < m(a;), j = 0,1. Then by the definition of the
inner modulus there is a r-zero-neighbourhood W, which we may assume
convex, such that

@;,+m;(BnW) < B, j=0,1;

hence if @ = (1 —A)wy+ 4w, and m = (1 —A)my+im,, 0 < A< 1, we get

o +m(BAW) = (1 — )@+ A2, + (1 — A)mo(BAW) + Am, (BNW)
= (1~ A)(wp+mo(BAW)) + A(, +my (BAW)) = (1—1)B+AB = B.

Therefore m (@) > m = (1 —A)my-+Aim, and letting m; tend to m(z;) we
see that m is concave on B°. Since m = 0 on the unit sphere the concavity
on B follows. Finally, m( —o) = m(2) so we see also that ¢ — m(t®) de-
creases for ¢ > 0. This proves the lemma.

Concerning the outer modulus M we note that M (tw)(1—t)~" is
increasing in t¢[0, 1[ if |l#|| =1 and v is locally convex. We shall not
need this, however, and omit the simple proof. ‘

We shall now prove our first relation between the radius of bound-
edness and the r-local radius of boundedness.

ProrosITION 3.5. If % 48 any numerical funclion on a normed space
E, locally bounded above, then

Iyit<1 m(y)
Jor all @e¢E, m denoting the inner modulus of E with respect to some locally
convew topology . o

Proof. Let @, y<E be fixed with |ly|| < 1. Pick r < m(y)R,(»). Then
in view of Lemma 3.4 there is a number A < 1 such that »r < m (A~ 'y) R, ()

> R, (o)



46 C. 0. Kigelman

and hence there exists a r-neighbourhood W of the origin such that
A7'y+(rR,(2)'BNW) < B,
or, after multiplying by AR,(») and adding o,
o+ EB,(0)y +(rABNW,) < @ +AR,(®) B,

with W; = AR, (9)W a new neighbourhood of the origin. Since % by defi-
nition is bounded above in @+ AR, (w)B we get R, (0+R,(2)y)>ri,
and letting r tend to m(y)R, (@) and A to one we arrive at the desired
conclusion.

We shall now consider the inequality opposite to (3.6). Here it becomes
necessary to impose some condition on 7.

ProrosITION 3.6. If T is a locally convew topology on a normed space E
such that the unit ball i8 T-quasi-compact, then

. o Boy(@+2y)
3.7 inf ——— <A
(8.7) wi<t  M(Y)

Sor every o< E and every A > R, (@). Here M denotes the outer modulus of F
with respect to t, and u i8 any function on E.

Proof. Fix weF and A > R,(2). If (3.7) does not hold we can find
numbers 7, and 7, such that

Rr,u(m + }4/) .

inf — >r,>1A>1r, > R, ().

<t M(y)
We shall prove that is bounded above in @ +7r,B which contradicts
the inequality r, > R,(®). Since @7, B is r-quasi-compact, it suffices
to prove that « is r-locally bounded above in @ + 7, B. So let a be an arbi-
trary point @+ r,B. Then a = @+ Ay where |y|| = |[(a—a)/A|< /i<
s0 that by our hypothesis
R, .(a)
M(y)

By the definition of the 7-local radius, % is bounded above in

a+ ('r,M(y)BnWI)

> 73

for some 7-zero-neighbourhood W,, and by the definition of the outer
modulus, since 7,A7! >1,

Bn(y+W,) < (y+r,d~ " M(y)B)0(y + W)),

for some 7-zero-neighbourhood W,. We may of course assume that AW,
< W,. Multiplying the last inclusion relation by A and adding # we obtain

(#+AB)N(a+W,) < (a"l'rzM(?/)B)n(a'l‘Ws) = a-|-(r,M(y)BnW,),
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where Wy = AW,; hence
(@+rB)n(a+W,) < af"l‘(TzM(?/)BnWa)

which shows that the restriction of % to 4+ r,B is bounded above in a z-
neighbourhood of a. This proves the proposition.

While the quasi-compactness requirement in Proposition 3.6 is of
course necessary for (3.7) to hold for all functions « we do not know if
(3.7) holds when # = log|f|, f entire, and ¥ is (e.g.) I* or ¢, and ~ is the
weak topology. Sometimes the following refinement of Proposition 3.6
will serve instead:

PROPOSITION 3.7. Assume in addition to the hypotheses of Proposition
3.6 that there i8 a projection = in E of norm one such that all T-open sets are
of the form ="' (=(W)) for some v-open set W. Then

. o Beu(@+1y)
3.8 inf —— . K
(3.8) gl <2 M(y)
yen(E)

for 2 en(E) and A > R, (o).

Proof. We need only note that in the proof of Proposition 3.6 it
now suffices to prove that the restriction of » to @+ r, B is bounded above
in some r-neighbourhood of an arbitrary point aex(@+r, B) = @+ ryn(B).

We now assume that F is a complex normed space and introduce
the open set in E x C

(3.9) Q = {(@,t)eE X C; |t| < R, ,()}.

It is easy to see that £ is pseudoconvex if and only if —logR,, is
plurisubharmonic, and this is the case, by Theorem 2.1, if » is pluri-
subharmonic. It then follows that if d((@, t), () is the distance to the
complement of 2 measured in some more or less arbitrary way, then
—logd((a:, t), [:.Q) is plurisubharmonie. In particular, we shall let E,
denote the space E X C normed by taking as the open unit ball

(3.10) {(@,0)eE X C; |wll < 1, [|t| < m(®)};

similarly E, shall be the normed space obtained by taking as the open
unit ball the convex hull of

(3.11) {(,t)eExC; |2l < 1, t|< M(2)}.

The identity mapping E,—FE, then has norm one, and its inverse E, ~FE,
norm at most three (see (3.3)). We can now rephrase Propositions 3.5
and 3.6:

THEOREM 3.8. Is u: E—~[—oco, +oo[ is a nmumerical function in
a (real or complew) normed space E which is locally bounded above for the
norm topology, and v a locally convex vector space topology on E such that
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the closed unit ball is T-quasi-compact, then
(3.12) dy (@, 0), 62) < R, (2) < dy (2, 0), §2),

where 2 is the open set defined by (3.9) and d,((w, 0), [ Q) is the distance
from (v,0)eE; to (2, measured by the norm in E;, j =1, 2.

For Hilbert spaces, and more generally for the spaces I*(J), 1 < p
< + oo, where the inner and outer moduli coincide by (3.4), (3.12) turns
into an equation for R,.

We shall conclude this section by giving an explicit necessary con-
dition for a function in one of the classical coordinate spaces to be the
radius of boundedness of some plurisubharmonic function (and a fortiori
the radius of convergence of some entire function).

ProPOSITION 3.9. Let E =17(J), 1< p< +o0, and let ue PSH(E)
be such that

liminf || R, (2) > 0

[lzl—>c0 *

for some a>0. Then
R, (x) > ¢(llo), el

where @ (|lx])) is the distance from (x, 0) to the boundary of
o = {(,t)eEy; |t| < Ala]™%

measured by the norm in E, defined by (3.10), the number A being chosen
to make ¢(0) = R,(0). In particular

a \"UP
(3.13) R, (®) — R,(y)| < (m) le—yll.

COROLLARY 3.10. Let a >0 and 1< p<< +oo. The functions
8(@) = (1+cle)™®, S(@) =(1+cll)™®, ael?(J),

are not radii of boundedness of any plurisubharmonic function in IP(J)
when ¢ > a (1 +a)~'*"? in spite of the fact that —logs and —log¥
are plurisubharmonic for every ¢ > 0, and s and 8 have Lipschitz constant
ac < 1 when ¢ < 1/a. For every p, 1 < p < -+ oo, we therefore get evamples
of functions satisfying (1.1) and (1.2) which are mot radit of convergence
by taking ¢ in the interval

a (1 4a)" P < e < 1/a.
Proof. We have

s(8)—3(0) _

lim inf = —ac< —(1+1[a)"1+P

lizli—0 il

and similarly for § so the corollary follows easily from (3.13).
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Proof of Proposition 3.9. Put
9(1) = sup —logR, (), teC,
(Il ¢]

where 7 is the weak topology. Then v is subharmonic in C and for some
constant C,

v(t) < C+alogli

when || is large. On the other hand, assuming as we may that R,(0) = 1,
we obtain from Proposition 3.5 and (3.4),

3.14) R,.(y) > m(y) = (1—|ylIP)"®

for all ¥ of norm less than one. In view of the definition of w and A this
means that for |{| <1,

1
(1) < —;log(l—ltl”) > —log A +alogltf,

where the second inequality is an equation for one value of |t|, say for |?|
= |ty < 1. Now a logarithmically convex function which is majorized
by C+alog|t| for large values of |t| and by —logA +aloglt| for || = |4,
must in fact satisfy

(1) < —log A +alog|t|

for all [¢t] > 4. This means that
R,.(2)= A7 |l = 1%,
and hence by Proposition 3.6 and the definition of ¢,
B, (2) = ¢(lol), a<E,

for the values of R, ,(#) when |lo|| < lf] <1 are clearly irrelevant as
long as (3.14) holds. The last statement in the proposition follows from
an elementary calculation which we omit and whieh shows that the rigth-
hand derivative of ¢ at the origin is —(1+1/a)™ !+,
To get similar results on ¢, we cannot use the weak topology. We
can therefore retain only s, not §, of Corollary 3.10 as a counterexample.
ProPosITION 3.11. Let E = ¢(J) (J an infinite indew set) and let
uePSH(E) be such that
liminf ||z (2)|*R,(2) > 0
llzll->+oc0 .
for some a > 0, = denoting the projection on a finite number of coordinates
in ¢o(J). Then

R, () > ‘P:( ”“(m)“) ’

4 — Annales Polon. Mathematicl 33.1-2
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where @ s defined as in Proposition 3.9 with p = oo (i.e. p(8) = (s +(8))™%);
in particular
. By(2) —E,(0) @

LEm inf > — .
iw(z)ll—>0 [l (@)l a+1

COROLLARY 3.12. Let a > 0. The function
s(@) = (L+clmy))™®, @ecy(d),

18 not the radius of boundedness of any plurisubharmonic function in cy(J)
when ¢>1[/(1+a) (and c¢< 1/a).

Proposition 3.11 is essentially due to Josefson [4] (#(F) one-dimen-
sional and u = log|f|, fe®(c,)). His methods are different from ours in
that he uses Taylor expansions.

Proof of Oorollary 3.12. Completely analogous to that of Corol-
lary 3.10, assuming now Proposition 3.11.

Proof of Proposition 3.11. Define for i¢C,

v(t) = sup —long.u(m) = 8Sup -—IOgR.,'u(t-’D),
a{z)l=1¢| ()l =1

where v is the topology generated by the seminorm @+ |ix(®)|l. Then »
is a function of |¢t| only and satisfies

v(t) < C+alog|t|, |[¢t|] large enough,

for some constant C. Using the second expression defining v we see that v
is subharmonic, and Proposition 3.5 shows that

R..(y) >m ()R, (0) =R, (0) if Jyl<l and =(y) =y,

for the inner modulus m of c,(J) with respect to = satisfies m(y) < 1,
lyll < 1, with equality when =(y) = y. However, in view of the hypoth-
eses and Liouville’s theorem, R, ,, is constant on the fibers z7*(y) so R, ,(¥)
> R,(0) for all y such that n(y) has norm less than one; hence (1)
< —logR,(0). By logarithmic convexity,

o(t) < —logR,(0)+aloglt) if [tI>1,
i.e.
R, . (2) = R,(0}|=x(2)I™® if |=x(@)I=>1.

We shall now a,pplj Proposition 3.7 to this inequality, with M as
the outer modulus of ¢,(J) with respect to . We note that M(y) =1

if lyl<1 and =(y) =y; if x(y) =0 we get M(y) =1-+|yl, lyll<1,
which is useless, hence the importance of using (3.8) rather than (3.7).
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Thus
inf R, ,(w+4y)<id if A>R,(@), oen(E),

lIyil<1
yen(l)

so that, in view of the definition of ¢,
B (2) =2 ¢(lel), @en(E).
Since R, is constant on zn~'(2) we finally get

R, (@) = ¢(lx(@)l), <E =c(J).

4. Construction of entire functions with given radius of convergence.
It is conjectured that to any given plurisubharmonic function in a reason-
able infinite-dimensional Banach space E there exists an entire func-
tion A such that (3.12) holds with 4 = log |k| and 2 = {(x,t)e E X C; v(z) +
+log |t| < 0}. Our results in this direction are, however, quite incom-
plete even in Hilbert spaces. The methods used impose conditions on
the geometry of the unit ball in E, but the main obstacle to obtaining
a more general result — and the only one in Hilbert spaces where the
geometry causes no difficully — is the Levi problem for functions of
bounded type. (A function fe®(£2) is said to be of bounded type if it is
bounded when |o|+d(@,[L2)"! is bounded.)

THEOREM 4.1. Let E be an infinite-dimensional normed space, G a sub-
space of E of finite codimension such that there are projections of E onto @
of norm arbitrarily close to one, and V a plurisubharmonic function on E
which is constant on the cosels w+G. Then there ewists an (ntire function H
on E such that

(4.1) R, ogm =€,
where T = o(E, G1).
Proof. Let 2 denote the open set in E x C defined by || < exp(—V(a))

oek, teC. Define a surjection 6: E—C" with kernel G and let v be the
plurisubharmonic function in C™ such that ¥V = vo086; let

o = {(2,%)eC" x C; v(2)+loglt| < 0}

so that 2 = 6~!(w). Since v(z)-+log|t| is plurisubharmonic in C**!, o
is pseudoconvex, and by the solution of the Levi problem in C**' there
is fe®(w) which cannot be continued beyond the boundary of w (see
Hormander [3], p. 88). For every z¢ C" we expand f as a power series in #:

f(zyt) = D ful2)t*;
0

it follows that the series converges uniformly for || <7 < exp(—'v(z)),
hence
limsup |f, (2)|"* < €.
k-

—>00
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Using the fact that » is upper semicontinuous we see that

1 L
[limsupi log|f,,|] < 0.
k—o0

But here equality must hold, for otherwise the power series itself de-
fines an extension of f, hence, introducing F, = f,00, we get

1 *
(4.2) [lim sup — log ]F,,l] =V.
k—00 k

We now define

(4.3) H(g) = ) Fi(o)E(0), aeB,

where &,.¢E’ are linear forms of norm one, tending to zero in the weak
star topology o(E’, E). That such forms exist is a theorem of Josefson [5];
we remark, however, that their existence is trivial in a separable space.
Since there is a projection of E onto G of norm arbitrarily close to one,
we see that the restriction of £, to G has norm tending to one as k tends
to infinity. Passing if necessary to a subsequence we may assume, and
we shall assume in the sequel, that

(4.4) |Ek(yj)|<.%! ji=1,...,k—1, and [Ee(¥)| =1 —1/k

for some points y;eGNB.

We claim that H is entire and that R,, = e¢~7, where we have put
for brevity « =log|H|. Let a be an arbitrary point of ¥, and let r <
exp(— V(a)). By Hartogs’ theorem in C" (cf. Hormander [3], p. 21) there
is a number 8 >0 such that log|F,(@)|"* < —logr for @ea+@G + 8B,
hence

1 all\k
T (@) §(2)"1 < 5 16x(@) + Eil@ —a)|* < (ﬂ_“".) ’

r

when % is large enough. If r, + 2 < r we see that the series in (4.3) con-
verges uniformly for

ve(a+G+ éB)Nn(a+1,B).

Therefore the sum is analytic there, and, moreover, by the definition of
the 7-local radius of boundedness we see that E.,(a) > r;; since r, can
be chosen arbitrarily close to exp(—V(a)) we have E,,>exp(—7V).

It therefore remains to be proved that E,,< exp(—V); in other
words that if H is bounded in a 4 (rBNW) for some z-neighbourhood W
of the origin, then r < exp(— V(a)). So assume that H is bounded in
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a+(rBNnW), say
H(b+ay)l = | 3 Fi (0)(4(0) + &(9)2)* | < 4

when bea-+ 8B, z¢C, |2 <r, and yeBNG. Let ¢ > 0 be given. In view
of (4.2) and the fact that §,(b)—0 there is a number m, depending on b
such that

|F(D)] < VO and  (§,(b)] < 8

for all ¥ > m,. For the terms in H of index k¥ > m > m, we then have
in view of (4.4)

| 3 Fu®) (6(0) + Eulym)af| < 3 PO (et {riF < O

k>m k>m
provided only
67(°’+'(s+‘}r) < eV(a)+2c(s+*r) <1

which we obviously may assume, making € independent of . Hence

| 3 Fu®) (60 + &y | < A +0,  BI<T.
k<m
But now the left-hand side is the modulus of a polynomial in 2 of degree
at most m, hence the leading coefficient may be.estimated by Oauchy’s
inequalities :
1 Fm ()] 1én(¥n)I™ < 7™ (4 +C).

Oonsidering (4.4) we may write this
|F(B)™ < r~' (1 —1fm)~ (4 4+ C)'™ > 1/r

so that limsup|F,(b)|"* < 1/r. Since b may vary in a neighbourhood
of a we get [limsup|F,|"*]"ae)<1/r, ie. 6”@ <1/r as claimed. The
proof is complete. ,

THEOREM- 4.2. Lot E be an infinite-dimensional Hilbert space and V
a plurisubharmonic function in E which factors through some finite-dimen-
sional subspace. Then there emists HeO(E) with R,iopm = e 7, where
g = o(E, E') is the weak topology.

Proof. Let @ be a closed subspace of finite codimension in E such
that V is constant on ®+G. Then by Theorem 4.1 we may find He0(H)
such that R, .qm = R:iogm = €xp(— V), where r = ¢(H,G'). How-
ever, now the proof applies also to any-‘subspace @, of finite codimen-
sion in G': we let the forms &, be orthonormal, chosen once and for all,
and then pick suitable vectors y, in &,, e.g. ¥; = =(®,), where 'x is the
orthogonal projection on @, and w,<G are defined by &.(w) = (@, @,).
Hence we obtain B, ..z = exp(— V), where 7, = ¢(E, Gi') and, passing
to the limit, K, ;oqm = exp(—7V).

\
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THEHEOREM 4.3. Let G be a finite-codimensional subspace of an infinite-
dimensional normed space E such that there are projections of E onto G of
norm arbitrarily close to one, and let Ve PSH(E) be constant on every o +G@.
Asgsume that 8 = exp(— V) has Lipschitz constant a < 1. Then there emists
HeO(E) whose radius of convergence R satisfies

(4.5) }I8(@)<(2+a)'S@ < R(@)< S(@), k.

Proof. By Theorem 4.1 there is an entire function H with 7-local
radius of convergence R, .z = 8, where v = o(¥, G'). Then R = Ry gz,
< §. By Proposition 3.6 and the trivial estimate M (y) < 2 we have

S(®) —ai < inf S(o+ 4y) <
2 w<:  M(y)

for every 4 > R(®), hence S(®) < 24+ al. Letting 1 tend to R(®) we get
S8(®)<(2+a)R(w) as claimed.

In spaces of known geometry we can of course be more precise:

THEOREM 4.4. Let G be the subspace of cy(J) or IP(J), 1< p< oo,
obtained by taking n coordinates equal to zero. (J denotes an infinite indem
set.) If V is any plurisubharmonic function in E = 1P(J), ¢o(J) which de-
pends only on these coordinates, and if 8 = exp( —V) has Lipschitz con-
stant a < 1, then there ewists H ¢ 0 (E) with radius of convergence R satisfying

(4.6) 18(0) < (1+a) 8 (0) < B(@) < 8(@), a<E,
where ¢ = p(p—1)"' and the case E = ¢y(J) corresponds to ¢ =1. In

particular, for E = 1'(J), we have B = 8.

Proof. We argue as in the previous proof but use Proposition 3.7
instead: it is enough to let y vary in the subspace ¥ = #(E) spanned by
the n coordinates defining @, thus

. . S(@+2y) .
f — 7K =(1 R R(w).
:?p W) <A if iA=(14¢R(2)>R(o)

llgll<1
In other words, to every ¢ > 0 there exists y«F with |ly|| < 1 such that
8(@) —a(l+e)R(@)lyl < S(@+(1+¢) R(@)y) < (1+2¢) R(@) M (y).
However, M(y) = (1 — |ly|[")"? for y<F so we get, putting [y| =,

S(0) < (1+2¢)R(@)(1 —1t7)"? 4 a(1 +¢) R(w)t,
hence

§(@) < (1+2¢) B(@) sup (1 —?)""? +at) = (1+2¢) B(®)(1+a9)'",

where the calculation is valid also in the extreme cases p =1, p = oo.
The theorem is proved.
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Remark., It is clear from the proof that for (4.5) or (4.6) to hold
for a certain @< F it is sufficient that a is a “local” Lipschitz constant
for 8 in the sense that

S(o+y) > S(@)—alyll for |yi<S(o).
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