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Higher order singular perturbation method
for linear differential equations in Banach spaces

by Janusz Mika (Swierk, Otwock)

Abstract. The singular perturbation method is developed rigorously for evolu-
tion equations in Banach spaces with a small positive parameter multiplying the time
derivative. The asymptotic solution uniformly convergent to the exact solution up
to an arbitrary order in the small parameter consiats of the inner and outer asympto-
tio solutions. The present approach is compared with and shown to be simpler than
the standard one, based upon the formal expansions of the functions and operators
involved into the power or Taylor series.

Introduction. The singular perturbation method is an important tool
in the practical analysis of various equations of mathematical physics.
In many cases the method has been applied without a rigourous mathema-
tical justification and the formulas derived from intuitive arguments.
A comprehensive account of such an approach is given by Cole [1]. -

Side by side with practical applications the singular perturbation
method has also been analyzed in a rigorous manner for various types
of differential equations. A survey of the results obtained in this field
is given by O'Malley [9].

An important domain of application of the singular perturbation
method are the evolution equations in a Banach space with the time
derivative multiplied by a small positive parameter. Such equations
were first considered by Krein [8], who showed that, if proper conditions
are satisfied, the asymptotic solution of the zero order tends to the exact
solution uniformly in time.

In the previous papers [10], [11] the author has proved the same
result for a system of evolution equations equivalent to a single evolution
equation containing additional integral terms. He has also shown that
such an approach can be applied to the linear transport equation for which
the singular perturbation method has been introduced formally by Bell
and Hendry [5] and by Hendry [3], [4].

In this paper the higher order singular perturbation method will
be rigorously analyzed for evolution equations in a Banach space. It
will be shown that under proper conditions the asymptotic solution of any
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finite order tends, in a suitably defined sense, uniformly with respect
to time, to the exact solution.

The perturbation procedure applied in this paper leads to slightly
simpler equations than those obtained by means of the standard proce-
dure. The two approaches are compared in the last section of the paper.

The results known from literature are quoted without proofs. For
details see References [2], [6]-[8].

Equations of evolution in a Banach space. Let ¥ be a complex Banach
_8pace with the norm |f-|.

DEFINITION 1. The family {G(t); 0 <t} of bounded operators in E
will be called a strongly continuous semigroup if
(i) G(t+38) = G(OG(2);0< 150 < 3;
(ii) G(0) = I;
(iii) for each ¢ F the function t—>G(¢)x is strongly continuous om
[0, oc). '
DEFINITION 2. The operator

Az = lim—l—[G(t)m—a:],
tso

with the domain D(A) consisting of all x¢ F such that the limit exists
in the norm in £, is called a generator of a strongly continuous semigroup-
{G@);0<4. ‘

LEMMA 1. The operator A from Definition 2 is a closed linear operator-
and its domain D(A) i8 dense in K.

If xe D(A), then for each te [0, oo) the element G(t)x belongs to D(A)
and the function t—>G(t)x i3 strongly conlinuously differentiable on [0, oo).
such that

%(G(z)m) = AG(t)x = G(t) Ax.

THeorREM 1 (Hille-Yosida). A mecessary and sufficient condition
that a closed linear operator A with the domain D(A) dense in E be a generator
of a strongly continuous semigroup {G(t); 0 < t} of bounded operators such.
that for each te [0, oo)

G (D)l < exp(w?)
Jor some real w i8 that the resolvent of A
R(A, A) = (AI—4)™!

should exist for each A > w and should be an operator defined on the whole
space K, with the norm satisfying the imequality

B4, A< (A—w)™.
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LEMMA 2. If the operator A salisfies the requirements of Theorem 1
and the function t-—>q(t) with the values from E i3 strongly continuously
differentiable on [0, T'], where T is a fized positive number, then the evolu-
fion equation

a
Et_(m(t)) = Awx(t)+q(?)
with the initial condition
#(0) = ne D(A)
has on [0, T] a unique strongly continuously differentiable solution {z(1);

0<t< T} such that

3
z(t) = G(t)n+ [ ds@(t—s)q(s).

The integral is understood as a strong limit of Riemann sums. The same
meaning will be attached to other integrals of abstract functions appearing
in this paper.

LeMMA 3. If the operator A satisfies the requirements of Theorem 1
‘and 80 18 a generator of a strongly continuous semigroup {G(1); 0 < t}, then

1

the operator — A, where € > 0, 18 a generator of the semigroup {G(t/e); 0 < t}.
€

If the function t—q(t) is sirongly continuously differentiable on [0, T'], then

the evolution equation

d
65(07.(‘)) = Az, (1) +¢(2)
with the initial condition
0,(0) = ne D(4)

has on [0,T] a unique strongly differentiable solution {w,(1);0<t<T}
such that '

[

i
? 1 -(1—3
2.(0) =G(:)n+—8- of a6 (%) g0

DEFINITION 3. A family {U (¢, 8); 0 < 8 <t < T} of bounded operators
in £ will be called a strongly continuous quasi-semigroup if
i) U,8) =U(,r)U(7,8);0<8<<t<I<T;
(i) U, t) =L;0<t< T;
(iii) for each ze¢ F the function ¢, 8—>U (!, 8)x is strongly continuous
on the triangle 0 < s <<t < T.
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THEOREM 2. Let {A(1); 0 < t < T} be a family of closed operators in E
such that .

(i) for each te [0, T'] the domain D(A) of the operator A (1) is independent
of t and D(A) i8 dense in E; ‘

(ii) for eaoh 7€ [0,T] the operator A(z) is a generator of a strongly
continuous semigroup {@.(t); 0 <t} such that for each te [0, oo)

G (1)l < exp(a,?)
and
a = supea, < 0;
[0, T

(iii) for each we D(A) the function t—>A(t)x is strongly continuously
differentiable on [0, T)..

Then the family {A (t); 0 < t < T} i8 a generator of a strongly continuous
quasi-semigroup {U(1,8);0<8<t< T} in the sense that for we D(A)
and 0 < 8 <t < T we have U (¢, 8)ac D(A), the function t,8~>U(t, s)x
18 strongly continuously differentiable on the triangle 0 < 8 <t < T, and the
Jollowing identities are valid:

%(U(;, g)z)=A@)U(t, 8)a; 5‘?; (U(t,8)z) = —U(t, 8)A(s)z.

The quasi-semigroup may be expressed for any < E by the muuiplioativo'

integral ' ‘

U(t, 8)0’ = limGrn(tn - tn—l)Grn_l(tn—l - tn-ﬂ) ces Grl(tl —'to)‘”v
where 8 = t, <t < ...<1t, =1 are the points of divisions of the integral
[8,1] and t;_, < 7; < ;. The limit i8 understood in the sirong semse for
max(t;—t_,)>0. For 0 <8<t T the norm of U(t,s) satisfies the ine-
-quality (|U(t, 8)|| < exp(a(t—8)).

LEMMA 4. If the family {4 (t); 0 <t< T} satisfies the requirements
of Theorem 2 and is a generator of a sirongly continuous quasi-semigroup
{(U(t,8);0<8<t< T} and the function t—>q(t) is strongly continuously
differentiable on [0, T'), then the evolution equation

d
2 @®) = 4@ +a)
with the initial condition
z(0) = ne D(A)

has on [0,T] a unigque strongly differentiable solution {z(1); 0<t< T}
such that )

$
w(t) = U(t, 0)n+ [dsT(t, 8)q(s).
0
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LEMMA 5. If the family {A(t); 0 <1< T} satisfies the requirements
of Theorem 2 and i3 a generator of a strongly continuous quasi-semigroup

1
{U(t,8);0<8<1t<T} then the family {—G-A(t); 0t T}, where ¢ > 0,

is & generator of a strongly continuous quasi-semigroup {U,(t,8);0< s
<t T} For 0<8<t< T the norm of U,(t,s) satisfies the inequality

1Tt )l < exp(%(t—s)),

where a 18 defined in Theorem 2.
If the function t—q(t) is strongly continuously differentiable on [0, T],
then the evolution equation

a
s;i;(w.(t)) = A(t)=,(t) +q(t)

with the initial condition
2,(0) = ne D(4)

has on [0, T] a unique strongly differentiable solution {X,(t); 0 <t << T}
such that '

1 ¢
2,(t) = Ul(t, 0+ [ as T8, 8)a(s).
0

Asymptotic solutions to the evolution equation. In this section it
will be assumed that the family {4 (¢); 0 < ¢ < T} and the function t—q(t)
considered previously have some additional properties.

AssUMPTION 1. The family {A(t); 0 < t < T} satisfies the requiremenis
of Theorem 2. Additionally, for each te [0, T} and me D(A) the operator
A(t) can be expressed in the form

Aty = Az + A, (t),

where A, i3 a closed operator independent of t with the domain D(A) dense
in B and {4,(1); 0 <t < T} is a family of bounded operators defined for
oll z¢ E and such that the funotion t—A,(t) is (N +1) times uniformly con-
tinuously differentiable on [0, T]. The function t—q(t) i8 (N +1) times
strongly continuously differentiable on [0, T].

Lemma 6. If the family {A(1);0<t< T} and the function t—q(t)
satisfy Assumption 1, then the solution {z,(1); @ <t < T} of the evolution
equation

d
e — (@, () = A()2.(0)+q(0) \
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with the initial condition
7,(0) = ne D(4)
18 such that x,(t) can be writien as

[
z,(t) = ZV () + U, 0)(n— 2 (0)) — ¥ [ da, (2, 9) %(EN(s)),
0

where

N

M) = D E(1);

n=0

d
B() = —A7(0a0;  Z() =470 -
The family {ZV)(1); 0 <t < T} is called the ouler asymplotic solution
of order N.
Proof. The integral term in the expression for z,(t) can be integrated
by parts:

T, ,(t); »=1,2,...,,N.

i ¢
1 1
= [0t 91968) = = [ dsU,(t, 9 A(0) 47 (9)0(8)
¢ [
¢ ]
1 S 0 ~
- -7 Jarn s - J g0 fze)
¢ - d _
= &(t)— U(t, 0)2(0) — [ dsU,(t,8) —(z(s))

i
= B(t) = Ualt, 0)Z(0)— e+ [ doT(t, 9) A()7,(0).

The validity of the above manipulations stems from the assumed
properties of the family {4(?); 0 <t< T} and the function {—¢(t) and
from the formula

d 1
E(U"(t’ 8))e = — " U.(t,8)A(8)x; ze D(A)

implied by Theorem 2. _

Repeating N times the differentiation by parts, one gets the final
expression for x,(t). QED.

LEMMA 7. The solution {z,(1); 0 <t< T} of the evolution eguation of
Lemma 1 i3 such that, as & tends to zero, the function t—z,(t) tends uniformly
to the fumction

-z (t) + U, (L, 0)(n— 2 (0))
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faster than &~. In other words, the function
t—>e'N(a,‘,(t) —:T:(,N)(t)) — U,(t, 0)(11—-:?:‘”’(0))
tends to zero umiformly on [0, T].

Proof. The integral term in the expression for z,(t) satisfies the in-
equality

¢
e [ @sT.ct, 915 (En )
0

¢
< 8N+1.M.ifdsexp (i(t—s)) = aN*"-M(l—exp (it)),
P € €
. 0
where

M = sup
ief0,T)

%(%(t))”

d
and M < oo since the funetion t»E(E‘N(t)) is uniformly bounded on

[0, T). According to the requirements of Theorem 2 a < 0, so that the
integral term tends to zero in the norm with ¢—0 uniformly on [0, T].
QED. |

COROLLARY 1. Replacing the family {4 (t); 0 <t < T} and the quasi-
gemigroup {U(t,8);0<<es<t< T} in Lemmas 6 and T by the operaior A
satisfying the requirements of Theorem 1 and by the semigroup {G(t); 0 < t},
respectively, one can obtain the corresponding results for the operators ex-
plicitly independent of time.

DEFINITION 4. An abstract function {g,(t);0<t<T;0 < ¢} will
be said to tend to zero B-nearly uniformly on (0, T] if for each 6 > 0 and

each fe(0,1) there exists a. K > 0 and g, > 0 such that for 0 < e <e¢,
and K <t<T

llps (8N < 6.

If the above statements are valid for each f¢ (0, 1], then the function
{.(1); 0 <t < T;0 < &} i8 said to tend to zero nearly wniformly on (0, T'].

It is seen that if ¢,(t) = exp( —at/e)-¢g for any a > 0 and ge E, then
the family {¢,(1);0<¢<T;0< ¢} tends to zero nearly uniformly on
(0,71 and if ¢.(t) = &’-exp(—atfe)-g for any y <0, a> 0, and ge< E,
then the family {p.(?); 0 <t < T; 0 < ¢} tends to zero f-nearly uniformly
on (0, T]. Definition 4 is an adaptation of the definition introduced by
Krein ([8]; Definition 1.1, Chapter IV).

LEMMA 8. If the operator A satisfies the requirements of Theorem 1
with w < 0 and is a generator of a strongly continuous semigroup {G(t); 0 < t},

4 — Annales Polonici Mathematicl 32.1
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then the family {G(t/e); 0 < T} tends to zero nearly uniformly on (0,T]
and the family {¢"G(t/e); 0 <t T} for y <0 tends to zero f-nearly um-
formly on (0, T].

Similarly, if the family {A(1); 0 <t < T} satisfies the requirements
of Theorem 2 and i8 a generator of a strongly continuous quasi-semigroup
{U(t,8);0<8<t<< T}, then the family {U,(t,3); 0 <8<t < T} tends to
zero nearly uniformly on (8, T] and the family {’U,(t,8);0<s<t< T}
for y < 0 tends to zero f-nearly uniformly on (8, T].

Proof. The lemma follows directly from Lemma 3 and Lemma 5.
QED.

COROLLARY 2. It follbws Jrom Lemmas 7 and 8 that the outer asymplotic
solution {ZV(t); 0 <t < T} tends to the ezact solution {z,(t);0<t< T}
nearly uniformly on (0, T].

DEFINITION 5. Let the quasi- samlgroup {U.t,8);0 <t T}
tends to zero nearly uniformly on (0, T']. Then the family of bounded
operators {UY(1,8); 0 <s<t< T} is said to approzimate {U,(t,8s);
0 < 8 <t < T} up to the order N if the function t—e~~ (U, (¢, 8)g — U (1, 3)g)
tends to zero uniformly with respect to ¢ on the interval [, T'] for any
8¢[0,T] and ge D(A). In other words, for any ge D(4), 8¢ [0, T] and
d > 0 there exists an &, > 0 such that for 0 <e<e¢, and s << T

e~N||U, (¢, 8)g— UM (1, 8)gll < 8.

DErFINITION 6. The family {U®™(¢,0)(n—Z™(0));0<t< T} will
be called the inner asymptotic solution of the order N of the evolution
equation

a
eﬁ(w,(t)) = A(t)a,(t)+q(t)

with the initial condition
.’D,(O) = 77‘ 'D(A)’

LeMMA 9. The family {UWM(1,8);0< s <t< T} approzvimating up
to the order N the quasi-semigroup corresponding to the family {4 (t); 0 <¢
< T} satisfying Assumption 1 can be defined for any ge D(A) as

N

Uty 8)g = D"y (8, 9),

n=0
where {y(t, 8), 40(t, 8), ...,y (L, 8); 0 < 8 <t < N} is the solution
of the system of evolution equations
t—s
&

k
2 ot ) = A0+ D () T s wptenie, o

k=1
n=0,1,...,N,
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with the initial condition
¥(s,8) =g; 48,8 =... =yM(s,8) =0; 0<s<T.

Proof. It follows from Lemma 3 that for a fixed se [0, T') the sol-
ution {y (¢, 8); 0 < s < t < T} of the first equation for » = 0 is such that

y(t,8) #G.(t:')y,

where the semigroup {G,(t); 0 < 7 < oo} is generated by the operator A4 (s).
The function 4" (¢, 8) is umformly bounded on [¢, T'). Since the operators

,(—) obey on the triangle 0 < s < t < T the inequality
&

t1—s
()
€
with @ < 0, the function t—>e Ny (¢, ) tends to zero f-nearly uniformly
on (8, T).

The solution {y{V(t,8);0<s<t<T} of the second equation for
#n =1 is such that ’

YO (2, 8) ——fds'G (

The function t—->y¥(t,s) is uniformly bounded on [¢, T] and on
the triangle 0 <s<t< T

< exp(% (t_—s))

)(s —s)—(A(s))G g.

(t—8)

d
uy“’(t,s)||<exp( (t—s )) P — (A (8))||- gl

This shows that the function t—>e= N+ l;y(’)(t, 8) tends to zero f-nearly
uniformly on (&, T'].

Repeating the above reasoning N times, one concludes finally that
the family {e~¥ U™ (¢, 8)g; 0 < 8 <t < T}, where

N

T, 8)g = 28"?/(:“)(5, 8)

N n=0
for ge D(A), is uniformly bounded on [s, T'] and tends to zero S-nearly
uniformly on (s, T7].
Let {y,(¢, 8); 0 < 8 < t< T} be the solution of the evolution equation
d
e (8, 9) = 4D, 8)

with the initial condition
v.(s,8) =geD(4); 0<s<T.
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Then the family {v!M(¢,38);0<8<t< T} such that

N

oMty 8) = 7V [yt 0)— 3 41, 9)

= N(U,(t, 8)g— UMt 8)g)

is the solution of the evolution equation
d
e (BV( 9) = AWV, 9)+ PO (2, 8)

with the initial condition
oM (s, 8) = 0;

The non-homogeneous term has the from

(1, ) = V e (4w- SO T e, ),

so that o{M(t, s) can be written as the sum

N
v(aN)(t’ 8) = Zﬁleu)(% 8),

n=0
where

oV (¢, 8)
] N—-n m
= gVl f ds'U.(t.s')(A(s')—g; W 2 (aw)s, .

It is seen from Assumption 1 that for all ge D(4)

(N—n)(t 8)g = A(t)g—z = 8!) ds‘m (4(3))9

M=

N-n ’m
= 4,(t)g— 2 ¢ ;:) ‘%(-Al(s»g'

M=
This shows that {A®™(,5); 0 < s <t< T} is a uniformly bounded

family of operators.
The quasi-semigroup {U, (¢, 8); 0 < 8 < t < T} satisfies the inequality

U, (2, 8)ll < exp(—g—(t—s)); 0t T,
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which gives for
' f(uN'")(t{s) = "”iN'")(t; 8)l
the following inequality:

F (3 8) < Til-e‘”*'"sup N1AY ="', 8)]- lyi™(s’, 8)1l).

8’¢[s,f)
Consider t—>A¥~")(t) as the function in the Banach space L(E, E)

of bounded operators defined on E. For such a function the Taylor ex-
pression can be introduced. In particular, one has

N—-n-+1 N—-n+1

A(N—n)' 1 < o A '
ﬁ-‘ﬁB;" (8', ) F—n +1)!.§(1[1’3] ds'N‘”“( 1(8)

Finally, using the fact that the function t—>y™(t,s) is uniformly
bounded on [s, T'], one gets the inequality '

SN, 8) < MV gV

with a constant M independent of ¢t and e.

Let ¢, be a fixed point such that 8 < ?, < T and 0 < f < 1. Then the
function f{™™(t, s) attains its maximum value in the interval [s, ¢’t,]
- at ¢t = £°1,. Thus

f(,N'")(t, 8) < M-tf'““-a“”’”“"””.

This shows that if g > (N —n)/(N —n +1), then for each 6 > 0 and
t,e (8, T] there exists an £, > 0 such that for 0 < &< e, and 8 << &ty

fm(t, 8) < 8.
Let

N
f(-N)(t13) = ZfsN'n)(tys)'

n=0

Then it follows from the last statement that if 8 > N /(N +1), then
for each & > 0 and t,¢ (s, T'] there exists an g > 0 such that for 0 <&
<& and s << e,

i, 8) < 8.
On the other hand, the families {¢ ™V U,(,8)g; 0<s<t< T} and
{eNUt,8)g;0<8<t<T)} both tend to zero f-nearly uniformly on

(8, T']. This means that for each 6 > 0 and f¢ (0, 1) there exist a ¢, > 8
and an ¢ > 0 such that for 0 < e< ¢ and 2, <t< T

fN(t, 8) < 6.
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The last two inequalities imply that the function t—f*(t,s) tends
to zero uniformly on [8, T'] for any g¢ [0, T'), provided 0 < ¢ < ¢, where
&, = min(e,, &). With Definition 5 and the definition of f{*)(¢,s) this
ends the proof of the lemma. QED.

The results obtained above will be summarized in the theorem.

THEOREM 3. Let the family {A(t); 0 <t < T} and the function t—q(t)
satisfy Assumption 1. Then the solution {x,(t); 0 <t << T} of the evolution
equation

d
847 (2:(8) = 4@ () + ()

with the initial condition
z,(0) = ne D(4)

tends uniformly on [0, T faster than e to the sum of the ouler asympiotio
solution {T™(1); 0 < t < T} and the inner asymptotic solution {U(N’(t', 0)7;
0 <t< T}, defined by Lemma 6 and Lemma 9, respectively.

Comparison with the standard approach. The usual approach to the
formal derivation of the equations in the singular perturbation method leads
to results different from those obtained in this paper (see, for instance,
[5]). In particular, the asymptotic solution consists of three terms: outer,
inner and intermediate solutions. The inner solution contains some ad-
ditional terms in comparison with the inner solution defined in this paper
and the intermediate solution, obtained by matching the inner and outer
solutions, has to be subtracted from the whole expression. For this reason,
the singular perturbation method is sometimes referred to as the matched
asymptotic expansion method.

In this section the standard perturbation procedure will be applied
formally to the evolution equation with a small parameter considered
in this paper and the resulting equations compared with those obtained
previously. .

Consider the evolution equation

d
e Et— ((b',(t)) = A(t)mc(t) +4(t)

with the initial condition #,(0) = 7. To obtain the outer asymptotic
solution, expand the function ,(?) into a truncated power series with
respect to ¢

N
z,(1) = Ze"m,, ().
n=0
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Substituting this series into the above equation and equating to zero
terms containing the same powers of ¢, one gets the system of equations

A (t)wo(t) +q(t) = 0;

(m,. (1) = AMeat); m=1,2,..,¥.

This shows that if the outer asymptotic solution is defined as a trun-

N
cated series ) ¢"m,(1), it is identical with the previously defined outer

n=0
asymptotic solution.
To obtain the inner asymptotic solution, introduce a new indepen-
dent variable v = t/¢ and a new funection

za(t) == ml(er)

which satisfies the evolution equation
—(z (7)) = A(er)z, (1) +q(er)

with the initial condition
zs(o) = 77‘
Expand the function z,(r) into a truncated power series with respect
%o 8 and A(er) and ¢(er) into a truncated Taylor series around 7 = 0:
N

2,(v) = D) &M (x);

n=0

Afer) = ?(n’!) )]

n=0

- N ],

n=0

q(er)

Substituting these series into the last evolution equation and equating
to zero terms containing the same powers of & one gets the following
system of equations

a B n o T
(™) = 4(0)2! "”+Zk——

,z(n—k)(r) +
t=0

a
—,T(q( ))‘ =0,1,...,N.
with the initial conditions
Z220) =n; 2M0) =... =2™(0) = 0.
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Returning to the variable ¢ and writing 2™ (t/s) = Z™(t), one gets
the system of equations.

N
d -~ n -~ n 1 dk ~(n—
e — (E0(1)) = A(O)F" (1) + ,,.Z'( ) o (A(t))]H-wﬁ B (1) +

() gl

with the initial conditions

; n=0,1,...,N;

F00) =n;  EV(0) =... = 5M(0) =o.

Thus it is seen that if the inner asymptotic solution is defined as a trun-

N
cated series ) &"@(™, it differs from that introduced previously.
n=0

The difference is called the intermediate asymptotic solution and it
should be equal to the expansion of the outer asymptotic solution for
small times. Such property for the zero and first order expansions was
proved in [3]-[56]. In this sense the inner and outer asymptotic solutions
match each other. The asymptotic solution tending to the exact solution
uniformly in the interval is then obtained as the sum of the inner and
outer asymptotic solutions minus the intermediate solution.

Thus it is seen that the singular perturbation procedure developod
rigorously in this paper leads in practical applications to equations simpler
than those obtained formally by the application of the standard pertur-
bation approach. In particular, the matching procedure for evolution
equations is in fact not necessary and can be avoided by making use
of the present approach.
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