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0. Introduction. In [22] we obtained a formula relating the Dedekind
zeta function of an algebraic number field K, fx(s), and &x(s—1) via
a geries of modified Bessel funcmons of the second kind, provided that
the number field K was:

L. totally real,

2. of class number one.

Here we eliminate both of these restrictive hypotheses. And as
a consequence we derive a formula for the product of the class number
and the regulator of K in terms of {z(2) and a series of modified Bessel
Tunctions of the second kind (Theorem 3). The result is stated separately
for quadratic fields in formulas {2.2) and (2.3).

Let us now give an outline of the results with some relevant history.
In Section 1 we consider the Epstein zeta function associated with an
ideal of the ring of integers of K. These are Fisenstein series for the gen-
eral linear group over K. We develop the theory at the infinite primes
of K rather than adelically. The subject of Eisensiein series for Lie groups
over number fields has a long history. For K == Q, such functions are
gtudied in Masass [10], and Terras [18]-[21], the Lie groups involved
being the general linear and the symplectic groups. Here we congider
the Fourier expansions for Hisenstein series. The simplest- of these ig the
Selberg—Chowla formula [13], which is the Fourier expansion of the
Figenstein series for GL(2) over @ (the usual Epstein zeta function).
Hecke obtains Fourier expansions for complex-analytic Eisenstein series
for 8p (1) = SL(2) over real quadratic fields ([5], pp. 345 and 385). Sie-
gel ([1B], pp. 291 £1.) is a good reference for complex analytic Bisenstein
peries for Sp(1) = 8L(2) over totally real fields (i.e., the Hilbert modular
group). Kubota ([6], [7]) obtains Fourier expansions of “non-analytic?
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(meaning non-complex analyfic) Hisenstein series for SL(2) over tofally
imaginary number fields (e.g., the Picard modular group). Asai [1] extends
tire latter results to all number fields K of clags number one. Tamagawa [17]
obtains the functional equation but not the Fourier expansion for the
Epstein zeta funetion over totally real fields. Ramanathan [12] eon-
siders the more general situation of BEpstein zeta functions for indefinite
quadratic forms over number fields, again obtaining the functional equa-
tion, but not a Fourier expansion. The functional equations of Misenstein
series for GL(n) over algebraic mumber fields were obtained by Lan-
glandg in [9]. The collection [3] provides a general framework for the
theory. One should look, in partienlar, at the articles of Borel.

The main resnit of Section 1 (Theorem 1) of the piesent paper is
_the Fourler expansion of the Fpstein zeta funciion associated with ideals
of the algebraic number field K. Here the constant term involves the
part of the Dedekind zeta function coming from an ideal class of K. The
other terms include products of modified Bessel functions of the second
kind. We then sum up a finite number of HEpstein zeta functions corre-
sponding fo the elements of the ideal ¢lass group of K to obtain a function
with {r (¢} and {x(s—1) in the constant term of its Fourier expansion
(Corollary o Theorem 1).

In Section 2 we nse the invariance properties of the Epstein zeta
function over K (i.e., the fact that is unchanged under transformation
by matrices 4 such that A and 4! have entries which are integers of K)
and the Fourier expansion to derive some relations between Zx(s) and
{x(s—1). For K = @, such results have a long history of discovery and
rediscovery. The paper of Berndt [2] contains many references. We then
mention two applications of the result of Theorem 2. The first is to the
study of the Dedekind zeta function in the critical strip., For example,
a simple formula is found relating Iy (}) and {x(}) for an imaginary
quadratic field (formula (2.1)). The formula involves a sunt of exponentials
over the inverse different of the field K. One could also apply Theorem 2
to the study of {x at odd integer argument. In this eannectiorn, one should
compare the results with those of Grosswald [4], which involve Mey-
er functions rather than the modified Bessel functions of the sec-
ond kind.

The final result of Section 2 is a formula for the product of the class
number and the regulator of K (Theorem 3). One wonld hope to be able
to use the result and the rapid decrease of the modified Bessel functions
of the second kind to say something about the Brauer—Hiegel theorem ([8],
Pp. 321 ff).

Finally we note that it is possible to obtain similar rexults for Epyiein
zeta funchions with characters. They would generalize Tunctions used by
Stark in the class namber one problem [16G].
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1. Epstein zeta fumetions over mumher fields and their Fourier
expansions. Let i be an algebraic number fisld of degree m over Q. Sup-
pose K has r, veal embeddings (over Q) denoted am—saW, § =1,..., 7,
and r, pairs of conjugate complex embeddings wmi—sa, gl = o017,
J=714+1, oy b1 Then K Qg R o RN €™ (algebra direct sum). Let
O be the ring of integers of I, Ug be the units of Ok, by e the different -
of K, dx be the absolufe value of the discriminant of H. If ¢ is an ideal
of Ok, let No = Norm of a == [Og: a].

If K =0, the Epstein zeta function has a complex argument s
and an n Xn positive definite symmetric (real) matrix argument P. The
latter should be thought of as Iying in the symmetric space GL (%, B)/0 (n)
under the identification gO(n)—g'g for ¢ in GL{n, B). Here %y = trans-
pose of g. Note that, if I is the group of all » X n matrices with integer
entries and determinant 41, then 4 in IMacts on P via P+P[A] = LA PA.
And the Epstein zeta function for @

(1.1) Z(P,s) =% D Plgl™, for Res>n/f2,

. DAgl™
is invariant under P—P[A], for ATl o

To lift the definition (1.1) to the number field A one needs the idea
of a positive n-form over K. This is really an element of the infinite part
of the adelized general linear group over K modulo the maximal compaet
subgroup (ef. [3], pp. 113 #£.). The reader can refer to Ramanathan [11]
or Weil [24] for a complete treatment of the reduction theory of positive
forms over division algebras. Other references are Siegel [15], Vol. T,
pp. 459 ff.; Vol. II, pp. 390 £f., and Weyl [25]. The general theory is
described in Borel [3], pp- 20 ff. For our purposes a positive n-form P
over K it defined to be a vector P = (PW, ..., Pr1+73)) whose firgt #, com-
ponents are % X n positive definite symmetric (real) matrices and whose
last r, components are n ¥ # positive definite hermitian (eomplex) mat-
rices. Let X denote the space of all positive n-forms P over K. Define
I'E to be the group of all nx n matrices 4 such that both A and 47
have enfries in Og, the ring of integers of K. It is clearly equivalent to
require that 4 have entries in Og and detd lie in Uy, the group of units
of Og. One then shows that I'T acts discontinuously on X by PP {4},
where

(P{ANY = PDLAD) = EATTPOAD, 5 =D, L, vy 1y

Flere A+»AY means replace every entry of A in I'S by its jth conjugate,
and A+»A® means replace every entry of 4 in I'® by the complex con-
jugate of its jth conjugate. Then Tr(P{x}) gives a positive guadratic
for in smp vaviables if m = [K: Q7and 2 is a column vector in (K @4 R)".
Here Tr denoles the trace from H @l to R. Tt is this trace form
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which is used classically to obtain the fundamental domain for #X under
I'Ein a way similar fo the method (for K = @) used by Minkowski. We
shall uge ¥ to denote the norm on the algebra K ®g & over R or the reduced
norm on the algebra on = xn mabrices over K @QR.

As wusual in this theory one uses the Jacobi decomposition ([15],
Vol. IT, p. 402) or Babylonian reduction ([24], p. 7) of a positive n-form P
over K. This is relafed fo the Twasawa decomposzition. We shall use the
Jacobi decomposition of P in the following form. Let & be an’integer
1<k n—1 and write

Pl Y I
T \ip@ ping?
12 1

where P{? is a k-form over K,j = 1,...,7,+7,. Then, using vector no-
tation,

, T 0\({I0
(1.2) P = ,
o 2l )

where T is the identity matrix, T = P, —P,{Q}, @ = P~'P,,.
We are now ready to define the Epstein zeta function associated
with PeZ, seC with Res > n/2, and an ideal a of K, by
Ty ey

(13) LBy = D [ @y,

bEgea U g I=1 »
where
L, 7=1..mr,
2, J=rdl o rtry,

and Uy is, the group of units of the ring of integers of K. The sum is over
a complete system of non-zero column vectors not equivalent under the
equivalence relation ' '

6jm

tg x(gla"':gw.) N(Eglr"'i‘ﬁ"gn) for ‘géUK‘

Fhe function is a special case of that considered by Tamagawa in [17]
for totally real fields (where the lattice in (K BB is A = o® and Oy
= {aeK| ad c A} = Og). The need to define a slightly more general
function than that of [22], that is o define 2" and not just ZPK resulty
from the fact that K may not have class number one. Compare the situ-
ation for the Hilbert modular group in [14], p. 292,
Note that defining P+ = PO § — 5 41, ... ¢ 4ony, we have
m+7y

(1.4) [T @05 = [T PO = Ny (P igh)

=1 q=1 :
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Imitating Siegel’s definition of an Eisenstein series for the Hilbert
modular group ([14], p. 290), would lead one fo congider
T1t+re

(1.5) G2y s) = D] (PO {gy o,
where the sum ix over a full sysgerfl—:)f nonzero column veetors ¢ modulo
unity with ¢ =4g,, ..., g,) such that .g’gj Oz = o. Here P, s and a are
as before. It Is casy to see that if a :lcb for ceOgk, o # 0, then
(1.6) LGP, 8) = (NP, 5).
Thus for an ideal class ¢ with « in O, if we define

Ba(P;5) = (Na)* (P, 8),

we see that 8% depends only on the ideal class ¢ of q in T &, the ideal
class group of XK. It follows that for Res > n/2

(1.7) ZER(P,s) = 3 %(25)8(P,s), where £9(s) — D (Hay.
Celg aelf

In order to prove the comvergence of Zi (P, s) for Pe#X, one could
hnitate convergence proofs for Eisenstein series given by Siegel ([147,
p. 200) or Godement ([3], p. 207). Or oné could deduce convergence from
bounds on theta functions, as Ramanathan does in [12], p. B4.

In oxder to prove the fanctional equation and analytic continuation
of Z; (P, s), one should imitate Hecke’s proof for the case m = 1, which
is to be found in Lang ([8], pp. 265-258). Ramanathan ([12], pp. B3—59)
generalizes this method to allow the n-form P to be indefinite. It wonld
perhaps be ngeful to ontline the method described by Lang in the pages
mentioned above, with the modifications required to prove the analytic
confinuation and functional equation of Z3 (P, s). The main idea is to
note that I'(Ey1T'(s)2 Z5 (P, 5) is the Mellin transform of a theta function
(minug 1). The theta function in" question is

0"(P, 1) = 3 exp{ —=Tr(P{g}1)}
: . Qt‘ﬂn
where 4 == (¢8, ..., "N ek with t¥>0, j=1,...,7+7r, and
P o= (PY, ., Pl R with the fivst #, components PP being posi-
tive definite symmetric (real) » ¥ n matricezs and with the last r, com-
ponents being n xn positive definite hermitian (complex) matrices. __és
usual we define #2) =), for j = +1, ..., ry+1y, and PR = PO,
for j =r 41, ..., 7+ 1ry. Then
. . L .
Ty (Pg}t) = Zp{z){g(a e,

F=1
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‘Proceeding exactly as in Lang’s version of Hecke's proof of the
functional equation of Dedekind’s zeta funciion one obtains analogues
of Lang’s formulas ([8], pp. 256-257). For example, one cun show that

o V11
(2'7'275“7""2)31’(%) I(syZ5(P, s)

L

] i j,(l) dy(rl +13)
— i Ny Aasle B
= f 2 exp{ =T (l’{y}y)}_{\fy y(l) cee ?j(?’1+rg)
pe PE0Agan
[+4]
= 0t 01, 8™ —1YJ (e, )1 dedt.

=0 ceff

Here wj denotes the order of the group of roots of unity of XK. And J (e, 1)
is (4 ... y"1+2)- times the Jacobian of the change of variables

(y(l), 2 y("l"i‘rﬂ))w (G(l)! trr2 c(")! t)’

where » = »,+7,—1 and y = /¢, with v in 25, 1 in B*, and ¢ in (#5),
where (21, is defined by

(), = {csgﬂ{f; No = ﬁcm - 1}.
i=1 :

In the above integrals dy', df are the nsual Lebesgue measures on the
positive reals and de = def? ... do177 with del) being the usual Lebesgue
measure on the positive reals, Thus one can compute J(¢, 1) easily to be

Jle, 1) = m 1t .., vl

Now we must describe B, The ideas here arise in the proof of the Dirichlet
unit theorem ([8], pp. 104~110). The set K < (#F), iy a fundamental
domain for an action of the unit group Uy of the field K on (#5),. More
precisely, one ewbeds Uy in (2F), via

the Ug (@], ..., ufntm)),

where [#| denotes the ordinary abrolufe value in the complex numbery.
Thiz embedding is t0 be found in [8], p. 266. Let ¥ bo the image of Uy
in (#F), under this mapping. Then one defines ¥ to be a fundamental
domain for {v*| veV}, ie.,
(#F)y = o2 H.
vey

The existence and compactness of K, in fact, the existence of a change
of variables mapping & onto the unit cobe in #-space follows from the
proof of the Dirichlet unit theorem ([8], pp. 104~110).
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To complete the proof of the funclional equation and analytic con-
tinuation of Z, (P, s) one applies the original method of Riemann ([8],
p. 257). That is, one applies the transformation formula of the theta
funetion defined above, proved via Poisson summation. The transform-
ation formula is stated in Tamagawa [17], p. 260. The final resvls is
that Z5 (P, s) hag an analytic continuation to all s in € with & simple
pole at s = n/2. Moreover theie is a functional equation relating Z2 (P, s)
and Zy (P, n[2 —s), where a* = (abg)™, by being the different of K.
Thiy result ix stated in Tamagawa [L7], . 260.

The functional equation of Z}(P,s) can also be derived from the
Tourier expansion which we shall prove in this section. We did this in [20]
for the case X = Q. The details are tedious and we omit them.

We shall need to malke use of the invariance properties of the HEpstein
zeta fanction under I'S which was defined to be the group of all # X n
matrices .4 such that both 4 and A~ have entries in Og, the ring of
integers of K. In particnlar we shall nse the obvious fact from definition
(1.3) that '

(1.8) Z3(P,s) = B2 (P{A},s) for A in TE,

This follows from the fact that 4 and 4! map a” into itself, since both 4

" and A~ have entries in Og, the ring of integers of K.

Next we obtain the Fourier expansion of Z5(P,s).
TemorEM 1. For 1 <k<n—1 and for P. o positive n-form over K

Tes in (L2)

(P, 5) = Z4(Py, 5) + 2505 (Na) ™8 (NP,) 25 _y(T, 8 — 44 % .
s 2 (s — TRV (28 — T2 {8y "1 I'(28) "2 -+
@A) gk N )R (NPy) " H (P 8) L(s) T I(28)7"2,

Here
by ot N(T{a}) |p
(P, 5) = Z oxp (2 Tr (0Qw)) | ———7— %
o Uff‘-‘ae;;;:‘]‘,'UK ( ) N(P7HN

O bc(a-lbﬁl ¥

raT . .
X l l Ko ua--e) (2reest L0 D (PP ()
J=1

Proof, Write g = (z), a;ea”*f”, bea® for the summation variable in
(1.3). Then as in the proof of Theorem 1 of [20], split up the sum in (1.3)
into two pavts: terms with @ = 0, and terros with @ 5% 0. This yields,
using (1.2) '

ZyP,8) = ZYL, )+ Y N(T{a}+Py{Qe- b1

0 EaealFUg
ek
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Let §; be the sum over « and b on the right hand side of thiz equation.
Now of is a lattice in (K@QR)’“ = (R"® ()" So Poisson summation
(as In Weil, Basie number theory [23], p. 106) gives

8, = E Sfla, e,
. oséasu“‘k]UK
cefaf) L
where (a*)% is the dual latfice of characters of (K®gqR)* trivial on of.
Thus (a*)- -—( “bz') under the usual identification ([23], pp. 40 —42)
of (K®qyR)* with its dual. And

fla,e) = [ N(T{a}+P2{Qa+m} )"fexp (2mi Tx (‘o)) du ()
(Ee Ry

Here dy is a measure on (K®qR)* such that u((K®qR)*/a®) = 1. To
compute du, choose Wy, ...y W, such. that
"
qQ == Z(Bij and K@l = 2@ R,

i=1

Then writing # = 2 @;w;, it is clear that

where do; = Lebesgue measure on R It is necesiary to obtain another
version of cl,u for ease of computation. Write

*1t+rg N
R, =1, ...,
K@QR= E@Ej, E ::l Y', ‘? ? Pra

C, j=r+1...,r7,.

Je=1
Then
. wm nn m
@ == 2 By ( N D, ,Z ijg"l""’u)) =y
Fe=l L d=l J=1
maps

m
’ 2@ B,
i=1
isomorphically onto
T1-+7g .
2@ #;.
Jeml

And the Jacobian

a(@/l: vy Upy RG('_E],IH), Im(y, 42y .y Re (Y, 1r) s Im(?)'rl—f-rz))
a(wla'--swm)' . '
= d¥* Na2™"2,
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It follows that, writing

. ) +rg
Y= (Yoseer Yrpary )€ O B = (EQqo R,
J=1
ene has
ry+ry
fla,e) = dl}m(Na)"ka?k’?H fNE !R T(J){am} +P”){Q")a(”+y H e x
j=1 Ef

x exp{2niTr e ('¢)y;) dy;,
where dy; is Lebesgue measure on B, § =1, ..., 7 +#;.
Now one makes the change of variables
9y oy = (T @I~ (@00 4y,
where P = WHOWY, So

r1+71y

fla, ¢) = d“"’z(Na)”"fz’““ [] e dmtmpm( QR ) (deti(P)

Joml

(29 (6D}~ 1 g (VT T (WD) e, 5)
where

Ipp(b, 8) = J (L) exp  —i Trg m (o)) day.
Bf ‘ _
We computed the I ¥ forj =1,...,# in [20]. Thus we have only to com-
pute '
Igh(b,s) = [ (1430 exp(—iTrop(tn)da.
ok

Write b == ¢--id and @ = «-+4%v with e, d, u, v in R®. Then dz = dudv
and

Ior(b,s) = f f(l +hue +rov) " exp ( —24 (Cou —'dv)) dudv

Bk mh

st 3 ).

Thus we are again reduced to the formulas (2.4) and (2.5} of [20]. The
final result is :
T1hry

fla, 0) —2’%&’*’"(1\* )N, ,,”W (T {ap¥*= [T =90 (es(s —30)) T'(es)™

J=1
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and for ¢ # 0, we have

fla, ¢) = 29207 (Na) =2 NP7 N (1 {o3) " exp (271 Tr (eQa)) ¥
‘ 71479
x [ ] 20D ey) 7 eyt T (@B} (PP~ (o0 Jite=39 50

X B a1m (2 Y TO @O (PP TG,

Note that Theorem I yields an analytic continuation of 2P, )
to all complex s and implies the functional equation, just as in [20]. The
complete proof iz rather complicated and we omit if.

The main problem in applying Theorern 1 to algebraic number theory
is that for # = 2 the Dedekind zeta function does not appear in the con-
stant term of the Fourier expansion unless X hag class nummber one. It
will be usefnl to invent a funetion with the Dedekind zeta function of &
as the constant term of ity Fourier expansion. Let I denote the ideal
class group of K. For each class ¢ in Ty choose an ideal by in €. Define

(1.9) C Zy(P,4) = M (NbeZie(P,s)
- C'eIK

Note that the result is independent of the choiee of By in the ideal elass €.
Setting » = 2 and % = 1 in Theorem 1 proves:

COROITARY.
L(sy1I(28)2 25 (P, 8) = (NPy) ™ Lc(28) (s 1T (28)" +
F 27 A (WP, "V (NI 8 L (25 —1)m™E T'(§ — 4y (25 —1)72 -
+ 2'p-1+r2(1+23) dEIIE(NPz)—lfz nmst (_P, 8) ,

where
' Na [ '
— - 28~ Py
H,(P, s) = (NPt 2 (NBg)* ! i exp (2ri T (qab)) %
. Oel gy
G#Mﬁal‘U{L
U#bs(bgbg)_

)1

il
X 111(,, (1\—-3)(“‘7“ I/F_TI U)b(j)l)

Je=1

7=l sl

using veetor notation. m

for
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It will e useful to simplify the formula for H,(P, s). With this in
mind, we define the following generalization of the divigor function for
any ideal a in O
(1.10) a(a) = Y (NBY,

Dla
the sum heing over all ideals b in Of dividing .
PROPOSITION,

Hy(P,s) = (NP8 3 | Nul*Fo,_y (ubg) exp (2mi Tr (gu)) x

arayeryt
r1+r2 ol —t(T) &)
X l l 'B'L’j(s—i’) ?-'W@j I-?E—GT [’M' )I .
i=1 *

Proof. The equation aby = aOp defines a 1-1 map from ideals a
in ¢~ onto elements aebymodulo Ug. Set o = ab for be(Bedg)™'. We
have a map

(be/ Ux) X (bgbz) ™ U= (07 X (0% Ug),
(&, b)r>{a, ab = u).

Call the mapping L. Then L is 1-1, since L(ea,b) = Lic, @) = (a, u)
implies ab = e¢d and aby = a0y = ¢0Ogx. Thus a4 = ¢¢ for some ¢ in Ux
and ab = ¢d implies that ceb = ed. Thus eb = d. It follows that o = ¢
and b = d, since we have chosen the ¢ and b fo be inequivalent modulo
multiplication by units. :

The map L is not onto. The image consists of (a, %) such that a dlwdes
dgi. For aby = a0x implies that abgdrd = abdy = ubr and thus «
divides ubg. Conversely suppose that a divides ubg. Then ubgby = abgy
= aOg. So if b = wna™", we have be(bgby) ™"

To complete the proof, note that

Na [t )y e
N 28wl . as—1 R
(¥ Dbg)* o (¥bg) )
1-28 -
== ;}T;’ (Nu)*F = (No)' "2 (Nu)"t m
o .

2. Relations between [g(s) abd {g(s—1). Here we extend the
resulss of [221 to all algebraic number fields K and derive a formula for
the residue of the Dedekind: zets function at its pole in terms of its value
at 2 and a series of modified Bessel functions of the second kind.

TEROREM 2. Let oy, ... ) @4y AeNOte positive real numbers and let

b ) )

- €
o =[] o

Frl
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Then

Ca(28) (5 —a) T{e) 1 I'(8s)"2 + . | .
72 (9 —1) (@ — ') AT (s — 3126 L)'

= M2 gritrall+28) pms 2 !I\T’uls*}al_g;(%bx) ><

—~1
{héusbK
11y r1+7a

~1/2 =1 1 (D) o =18 WRIT I
b4 {q; Y 1_1[ ng(}ws)(zwajwj [y —a g Kﬂj(ims)(Ene,a"y | |)}
j=

. Proof. Set

2: 0
(A — ™
* (0 1)’

using veetor notation, as usual. Now by (1.8) Zy(P,3) = Zy (Q, s), where

o = PO {(‘1’ 3)}

Then apply the Corollary to. Theorem 1 to each side of the equalily. m

Theorem 2 is analogous to formula (3.1) of [22]. Thug one can derive
regults analogous to those of [22] by the same methods. For example,
we have the following

CororrArY. Define
. p -
M (&) = K, (z)+2K,(z), where K, (&)= —E;K,,(z).

Then if vy --1y is odd, we have

L (288712 I'(s)"1 (28)2 4
+ a2 L (25 —1) (1 — )M en™ (g — 1) (25— 1)
) ) :!‘1-[—1‘2
= —472 t.ziims Z‘ INQL'E-}G‘I —3g (“bK) n Mﬂj(i‘—s) (2716_,; l'u(j)l) )
0¢1¢sh£1 i=1

Proof. Apply
01‘1-{-?2

081 ool OBy iy,

to the equation of Theorem 2 and then set all the @ =1, j == 1, ..., 77y,

One could of course replace the differential operator of the proof
_of the Corollary by other operators to obtain similar formulas. It might
be possible to use the Corollary to study {x(s) for 0 < ¢ < 1. 8o for example
in the simplest case when K Is an imaginary quadratic field, let s = §

And clearly
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in the Corollary to obtain the following formula for {x(%). Here we use
the fact that Mp(2) = —(2x2)"exp(—2). '
For an imaginary quadratic field X,

(1) Cald) = —n R Le®) 165 > ulo_y,(ubg)exp(—dnul).
. oaéuihil .

We next make use of Theorem 2 to obtain o formula for the product
of the class number kg and the regulator Bx.

TirorEM 3. Let o, ..., Ly 4r, D€ positive real numbers with

r1ity

_ Q.
= l l &,
Fea1

and lot wg denoie the number of voots of wnily in K. Then
hg B = wgdrle(2)(2m) ™ (@ —2~") (logs) ™ —

— e A 272 (Tog )= 2 [NuPo_y (ubg) X
07&1!;1:%1 .
ity ' BT

X {m_”z H K;ai(Bﬁe,-mfllum[) —~ 2 H Ky, (2mey; luml)}.
Je=l f=1

Proof. We let s approach 1 in the formula of Theorem 2 and use
the formula for the residue of Dedekind’s zeta function at s = 1 to find
the limit of the 2nd term on the left-hand side of the formiula of Theorem 2.
In particular set 2s —~1 = 1—w» in the formula of Theorem 2 and let »
approach 0.

Then the 2nd term on the left-hand side of the formula of Theorem 2
containg ) '

Lr(1—2) P(3(1 —o)[ L[ —o)e
and Lang ([8], Theorem 3, p. 260) says that
Er(1—0) D(3(L— o)) I(1 —o)s
= (2T AP M iy R (1 — o)l - B(w),

where E(0) is positive and finite. Now in the formula of Theorem 2 this
quantity which we have just caleulated is multiplied by
(mvlz _m—-'u,'z) dil/ézrﬂ e

Lim (2 — g~ %)~ =loga.
z— :

4 — Acta Arithmetica XXXI1.1
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So the 2nd term in the left-hand side of the formula of Theorem 2 has
the following Hmit as ¢ approaches 1 or » approaches 0
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—('MJK(ZK)—I(Zﬂ)mhKRKIOg.’L‘. v
Theoremn 2 then says L]mt
Excd2) (2 — ") = (e di) ™ (27)™ Ry Rclogar

e S Z WNuo_ (ubg) X

0$ush};il
#1--y 3473
{ "”-” K“, ey )y —at [I Iy g, (2meym; |u(”})}
7= i=1

Now solve for hg Ry to complete the proof. m
Tt may be instructive to consider the case that X Is quadratic.
I K is an imaginary quadratic field, then

(2.2) Ry = wgdg L (2)(2m) 2 (@ —a ) (loge) " —

e A2 (logm) ™ 2 ol oy (2ebe) § " Iy (A |m]) — B (Ao [16])} -

D ueh 7

If K is a real quodratic field, then

(2.3) hKRKmavc A Ex(2) (@ — ™) (loga) ™ —

i (logw) ™" 2 o (WD) %

brud gt
x {exp[ —2=(luloy” + (/| @p )] —exp [ —2x(jujz + W] @)1} -

Notie that the positive numbers «,,..., &, ., of the preceeding for-
mulag are arbitrary. Thus one might expect o make some statement
about the size of hp Ry (or even hy) as dy approachey infinity while the
degree of K over the rationals iz held fixed (or under the hypothesis of
the. Brauer-Siegel theorem) by choosing the @y, ..., By sy wisely.

It we chooge @ =@ and &, = 0, =... = Ty oy =1 BDA We asyume
that # 1y greater than 1, then Theorem 3 yields the formula

(2.4) FLKRK Wr g lg (2){(2n)7 ”‘(wwm‘l)(lo,g;m)“lm

¥ b1y
_wxd}ézzrz(logm)«l Z N 2o (udg) (H KE ” gmjmu)l))
j=2

0¢uebK

x {a:“”U(TE o (2me @t L)y — 51’;]"21(51[2(21':61&'}|’£-b(1}|)}.

. The Fowrier expansion of Epsiein’s zefa Junction a|

Then one possible mode of procedure is to let approach 1, obtaining

(28)  hxBr = 20rdglg(2)(2m)"™ + wedld2ar D 1FuR o, (ubg) X

¢ ;‘uebﬁl
rytry
([T Eoo @y 1)), s (2 1),
i=2

where # (2) = K (2)+: z—-Ix #(28); as in the corollary to Theorem 2.

Now let us suppose t}mt I has at least one real conjugate field so
that ¢, = 1. Since K,p(2) = (n/22)2exp(—z), we can simplity (2.5) as
Mys(e) = —(2n2)"%exp( —=2). The result is that 61 =1 implies that

(2.6)  hpBr = 2w duLx(2)(2m) ™™ —

—wg dF 2 2 Y | Nu o (ub ) %
0ud! '
T1+7y
(n K, 1, (2me; o ) )etp{—dm[u(“l}
If the field K is totally real so that all ¢ =1, § =1, Ty = m,

we obtain

(2.7)  hgpRg = 2wedyie(2)(2n " —

r1-k

2Py P 2 [uD| o_ (udg) exp{ 2 u”)ﬁ}.
T 7=t

The upper bound on hy Ry for fields K with ¢, = 1 coming trivially '
from (2.6) is 2wgdg(x(2)(2=)"™ which is not very interesting in ferms
of the power of dg appearing given the easy part of the Brauer—Siegel
theorem which is proved by Lang [8], p. 261, using merely the formula
for the analytic continuation of the Dedekind zeta function. Here the
upper bound obtained for hygRy is 0™dLdL%(1+ ) for all ¢ > 1. Here
¢ is a universal constant.

In the Brauver—Siegel Theorem ([8], pp. 260 ff., 321ft.) it is, of course,
the lower bound on hgxRx which is difficult. For totally real felds XK

(2.7) implies that in order to obfain a nice lower bound for Az Ry one

needs to find a good upper bound for snms of the form

ritry

(2.8) b exp{a P iﬁ<f"|}, a>0.
. S i=1 ‘

0 Fue

We leave this question open.
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“Another interesting question is that of the possibility of eliminating
the regulator By from formula (2.4). It might at first appear that thig
could be dome as follows. Again we make the hypothesis that e, =1
for simplicity. Then use the fact that K,y (2) = (x/22)"%exp(--2) and the
mean value theorem to obtain

w‘mifm{z;rm"l ) — 2Ky (2w a0y
= 3 a7 fexp( ~2nw~ [u®)) —exp ( —2mz [u))}
= [ (o — o™ exp (—2x Vg,

where o™ < g, < @ and ¥, depends on wedy'. Thus (2.4) impliex that
when e, = 1 ‘ .

(2.9)  hpBg = (x—a N(loga)™ x

s wg il (2) (27) ™ —wg AP 27 D) O N e () X
: ' ' brud
1y

xexp { —27 4Py, n K, (27 fu("')|)} .
j=2

Now to eliminate any Ry greiﬂtel' than 2 we can choose 2 such that
- Bg = flo) = (z—a~") (logm)™" = 2xinh (loga) (loga) L.

For f(x) is an inereasing function 'for @ greater than 1 and f(1) = 2. Also
Imf(x) = co. Unfortunately the regulator will still be hiding in the
.equation (2.9) in the form of 4,. For g, lies between # and ™! and for
large Rz it is possible that y, may be small. Thus there is still much work
to be done in order to obtain some concrete results from these formulas.
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