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distributed (mod ) for all IV is still unanswered.) Let I,, be the sequence
of all progressions with the first term prime to the difference and. let

- .
P = | P,, be a partition of the set P of all primes into disjoint subsets
me=1
with the property Y 1/p = co (m =1,2,...). If now fis any multipli-
£ .

ko
cative function such that for primes peP,, the number f(p) is a prime
from I, distinct from p and all numbers f(g) for primes ¢ less than p,
then by Theorem IIT such a function will be WUD (mod Njifor all ¥ = 3.

- e
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The exponent of class groups
in congruence function fields
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MAavomrAR L. MaADpAN and DANIEL J. MADDEX (Columbus, Ohio)

1. Introduction. For o finitely generated extension K of a field &
with transcendence degree 1, the divisor clasy group is infinite and the
null elass group (the subgroup of divisor classes of degree 0) is, in general,
also infinite. However, if % is finite, it is & consequence of the Riemann—Roch
theorem that the number of classes of degree (0 is finite. In this, the case
of congruence Innction fields, the order of the null class group is called
the clags number of the field. This null class group is analogous to the
ideal clags group in the case of algebraic number fields, and it plays an
important role in all algebraie, arithmetic, and geometric studies of
congruence function fields.

In the theory of congruence function fields, the “Riemann Hypothesis”
plays an essential role. This ‘“hypothesis” determines the real part of
the zeros of the zeta function of a congruence function field. It was proved
in complete generality by Andre Weil [10] after H. Hasse [7] had given
a proof in the elliptic case. This result gives bounds on the class number
of a congruence function field; however, while there are bounds on the
order of the null clags group, not much is known about its structure.

The purpose here is to study the exponent of this group for congruence

function fields of a particular type. These are fields K which are abelian
extensions of % (z), the rational function field over k, for which Gal (K k()

has order nyp", where p is the characteristic of the field and #, is relati-

vely prime to p; and for which the p-primary part of Gal (K [k()) is el-
ementary abelian. The main object of this paper is to give a lower bound
for the exponent of the null class group of a field of this type. A conse-
quence of this will be that for & fixed finite field & and a fixed degree n,p",
the exponent will approach infinity as the genus of the field goes to in- .
finity, _ :

It is well-known that there is a strong similarity between the theory
of congruence function fields and the theory of algebraie number fields;
the two together form the class of global fields, and class field theory
holds for them. It would be interesting to obtain analogous results for
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some gpecial class of algebraic number fields. No such definitive result

iz known; for the class of imaginary guadratic number fields, H. Heil- -

bronn [8] proved that the class number becomes infinitely large with
the absolute value of the discriminant. In fact, C. L. Siegel [9] proved
that for imaginavy quadratic fields,

logh

log V|d|

as Id| tends to infinity (where 7 is the clags number and d is the diseri-
minant). Attempting to improve upon this result, D. Boyd and. H. Kisielev-
sky [1] and P. Weinberger [11] proved that the exponent of the class
group hecomes infinitely large with the absolute value of the discriminant
if one assumes the truth of the extended Riemann Hypothesis. This is
analogous to the result of this work because the Hurwitz genus formula
for extensions of fixed degree gives that the genus grows infinitely large
with the degree of the discriminant.

Section 2 of this paper deals with cyclic extensions of k(%) of prime
power degree for primes other than the characteristie of the field; See-
tion 3 deals with Artin—Schreier extensions of %(z), i.e., extensions of
degree p, where p is the characteristic. And in Section 4 the results of

Section 2 and Section 3 are comhined to give the main result. This is

accomplished by studying the relationship between the null class group

of a field whose Galois group is the direct product of two groups and the

null class groups of the two subfields associated with the factors,
Finally, while the methods and results of this paper are completely

- arithmetic and algebraic, there is a matural geometric interpretation of -

the results. If K is a congruence funection field over the field of constants &,
Iet K be the constant field extension of K which has the algebraic closure k
of % as its field of constants. There is a one-to-one morphism from the
Jacobian variety of K onto the divisor classes of degree 0 of K. Through
this morphism, the k-rational points on the variety are mapped onto
the null clags group of K.

2. Cyclic extensions of %(z) of prime power degree. Hasse’s paper [6]
containg & very clear presentation of the arithmetic theory of Kummer
extensions  and of ‘Artin—Sechreier extensions. For the convenience of
the reader and in order to fix notation, the principal results about the
decomposition of primes in these extensions are stated here and in the
heginning of Section 3. For the standard reyults of the theory, the reader
is referred to [4] or [5].

. Let & be a finite field with ¢ elemenis, and let Z be a cyclic extension
of k(z) of degree p", where p is a prime other than the characterigtic. Then Z
is a congruence funetion field over the exact field of constants k. Further,

icm
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it p" divides g —1, then k contains the p™th roots of 1. This type of exten-
gion, a cyclic Kummer extension, can be realized az Z = k(z,y)
where

v = flz) = [[p:(m)s, AeZ.
=1 .
However, if A, < 0 or 1;=p" then a transformation y' =y p; (=), for
a suitable y<Z, can be used to put this generating equation info a stan-
dard form in which

0<li<_pn,- ’!;:1,2:.. E.

"2

The decomposition of a prime divisor of k(») in Z can be easily computed
using the following two theorems:

TuroREM 1. If, with the notafion as above, Z = k(x, y), where the
generating equation is in standard form, then for a prime p(x) which does
not divide f(z): _

(1) The prime divisor of k(x) associated with p () s unramified.

(2) If the polynomial 'yi’"' —f(@) modulo p(x) decomposes into g factors
each of degree f (this is the only possible type of decomposition since k con-
tains the p™th rools of 1), then the prime Py of k(@) associated with p(z),
decomposes in Z as

Pty = BB By

THEOREM 2; With the notation as above, if p;(#) i a prime polynomial
which divides f(w), then the prime Py of k() associated with py(w}:
(1) ramifies in Z and has ramification indes é;, where.

where ez (Pa) =7.

n

A ;
(P™, &)

(2} is unramified in the subfield Z' = k(w, y*). _
(3) Further, if P, is any prime of Z which lies 0ver Ppas the conlri-
bution of B; to the different of Z{k (@) is '

O(s) = P

* The decomposition of a ramified prime P, of k(z) can be com-
pletely determined by applying Theorem 1 to the extension Z' = k(, y%}
over k(x). :

There is, of course, one prime of k(z) which is not explicitly covered
in thege two theorems. However, the decomposition of this infinite prime

is exactly the decomposition of the prime assoeiated with 2 in the exten-

€ =
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sion generated by the equation

ot 1
=15

The extension gemerated by this equation is Z, and, for this reason, the
. . "
‘infinife prime of k(z) is often called the prime divisor associated with .

Tt is useful, however, to give the decomposition of this prime directly
“from the standard form of thé generating equation.
CoROTLARY. Witk the notation as above, lat

n

P
A = —degf(z) and e, = O
© ¢! (8" 20
(1) If e, = 1, then py, is unramified in 7, and ils decomposztzon nfo

-primes ts deter mined by the decomposition of the polynomial y* — a in k[x],
where a 18 the leading coefficient of f(x).
(2) If ey, > 1, then pyy, is ramified in Z with ramificotion indew ey;

‘the contribution to the different of any pmjme B of Z over py, s given by

g‘Boo) = oo
The precise decomposition of py, is obtained . by considering the
Z' = k(z,y*) in which p,, is unramified.

—1

Poles of integral functions. The object now is to show that a primitive

Aintegral element of a cyclic extension Zjk(z) of degree p™ must have

some infinite prime ag a pole of large order if the genus of Z is large. To
‘that end a special type of integral basis is constructed for eyclic Kummer
-extensions of prime power degree which can be used to determine the
values of an integral element at an infinite valnation in terms of the coef-
ficients in its representation.

TarorEM 3. Lot Z be a eyclic geometric extension of k(w) of degree 9%,
‘where p is not the characteristic of k and where & contains the p™-th rools
-of 1. Purther, let Z = k(w®,y) where

14
= [[p:ta),
=1

Then {6y, 01, Ogy ...y Byn i} @5 an integral basis of Z over k(w), where

o< kh<p®, i=1,2,...,1

9

m],

pn

¥
Bjml—w for 'r,;jz[
[Ty

the greatest imteger not exceeding 31 D"

Proof. If Pf; is any prime of Z lying over the prime d_wmor of k(z)
associated with p;(x), then

icm
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. 3 .
v, (85) = o, | — = Jog,(y) —Ti'v‘«ﬂi( (@) = .
T pul@y™ i ] »

B=1
16, A

_ Jak wai[ NG ]>0
P r

So, this bagis consists of elements that are integral with respect to all
prime divisors of Z except those that lie over the infinite pnme of %(w).
Thus, the elements #; are integral over ka7,

Congider the field basis {1,¥,9*, ...,%" . The discriminant of
this basis is given by the following equation if we disregard a constant
which plays no role in our arguments

P = flay

Aw{yi} == Am-{la y:yg; ey ¥

Let M be the resulting matrix of coefficients when the elements of the
basis {6,} are expressed in terms of the basis {#'}. Then, the discriminant

g (47) — ey

n

of the basis {8} iy given by

) A,{0 = (det M (4,41 )
. l Ktan-1)-2" 3 ng
= (det M) (o) = [ pula) =
i=1

Now, evalnating the sum:

SR AR 1311
S 23] 2 WZ{ |

(the fractional part).

‘ - ] .
e
I &
, p" , "1,
But 4; is relatively prime to R and: 50 {jl,-l 0<j< —d““} is a complete

s )

Let d; = (4, p™ and A, = d,4,. Then

=1

E Yy ==

=0 ' -

pﬂ.__l

'Ml

L\D]l—l

k1

regidue system modulo
't

i
™1 d’z j
(2) . E P = ‘,;14(1?“—"1)*'511' o
=5 - _ =

§ — Acta Arithmetica XXXIIL.2
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Substituting (2) into (1) yields

H DT et B G DHpR—dg _Hp 2)" =,

=1

‘dm{ﬁﬂ

However, this (after being converted to an ideal and then injected into
the divisor group) is exactly that part A, of the divisor digeriminant of
the extension which is based on the finite primes. For consider the contri-
bution of p;(x) to the diseriminant, '

o) = (] [ 0.80)

h=1

where {3, are the primes of Z above the divisor associated with p,(x), ¥
denotes the norm of Z to k(w) and 8;(p,) is the contribution of p, to the
different. Thus, '

1(p:(@)) N(H P = h[_] (F R =

This completes the proof of Theorem 3.
TeEOREM 4. Let Z be a congruence function field as in Theorem 3.

(Pim))di(ﬂi*l)_

Then, for any acl, the integral doswre of klx] in Z, which is a primitive

element for the extension Z [ (x), there is prime P, lymg over the infinile
prime of E(@), Pig, such that ‘
30'0—_1 2800
, p"—-1  pt o ptpt—1)
where G is the genus of Z and e, is the rm-néﬁmtion index of P -
Proof. Tet the decomposition of py, In Z be given by
Py = (PaPo ... By foo, dEgZIk(x)(q}i =

By the previous theorem every ae® ean be written as

Up(@) <

L

u = ag() fy+ ax (@) O+ ... F i g (@) 6y,

!

a;(w) ek [w],
and then, for all the primes EB;,

(3) ‘ vp,(0) > min fog (a;(2) 6}

nesj<cpt
By the definition of §;, it is clear that _
oy, (8;) = vg, (0;) Tor all possible b, ¢ and j;

so there is only one minimum as in (3). Let m denote this minimum, and
let 4, be an index such that

’b;‘b\l( a; (%) 6 D) =m.

icm
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Let & be a generating automorphism in Gal{Z/k(z)). The action of |
the Galois group on f; is given by o'6; = £ 6; where [ is a primitive p"-th
root of 1 in %. Consider, then, the system of equations:

PRI p—1
da = 2 a; () a* 0 == V a,-(x)i;"jﬁj,
F=0

where 0 < ¢ < p™. Now multiplying the ith equatnm by ¢ theqe equa-
tions hecome:
PPl

"‘{’Uaa* §

For any p™th root of 1, ', not equal to 1

-1

2 &)=

Thus adding these equations yields

J,,) gf(f Jo) g

p—1
g, (@) 0, = Y (£ ).
=
" And then taking the valuation vy, of both sides gives
-1 '
m = vy (p"a;, (7) Gju) = %1(2 (Z~P0 g’ a)) = mmn{'uﬂ}l(cr o)}
i=0 0P )
> min {*vuigpl (@)} = min {og,(a)} = m by (3).
<i<pn 15igg

Thus there is a prime B, lying over p,y, such that
= I == !?mn{@mw (a}:(w) 6:,)}.

Consider now vyg_ (u (z) 6 ) for any prnne SBm over py,. If a;(x) is any
non-zero polynomial over k, then vg ( (#)) < 0, and s0

)~y ( H ol ﬂ,)

I

spm(?/p“) — Z "ij“"’ipw(ipi(‘ ))

(5). ’l‘sxsw(aj( )9) Ve (9)

M

i
»*

;Z?_e LT (Hp‘(m)‘z‘) _Z 3Oy (24(0)

F=1

])degm(w)-

M

Jy

<o S

i=1
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" Binee « is also a primitive element in the extension Z over k(z), there
must be an index j relatively prime to p such that a;(») # 0, otherwise o
would be eontained in the subfield %(z, ¥¥). But then, if (j, p) = 1, ji,/p"

is not an integer, and so
i, i; 1
i

Thus (4) and (8} imply, for some prime P, lying over py,

vg (@) = min {oy_{ay(@)6;)} < F—G%Zdegp,-(m)

0<icp™ =1
e : p*—d
(6) S = D ey Geande), where = (57, 1),
i=1
i
(4 2.
< — = de ( i(mp—d‘)
ot O F Q 2:l2)
%o ___ deg(d,)
PTG
where A4, is the Dedekind discriminant,
boo "
o <= g (e == )

where 4 is the divisor discriminant of the extension Z/%(«). By the Hurwitz
genus formula this gives: '

[ .p” .
g - — |2 2 -1 _ £
) S = G )( G+20" 1) - ( )) |

—1  2ey 2¢e,,
Tl Pt
for some L, of Z lying over p, ,;c.' Thus Theorem 4 is proved.
Next, Theorem 4 is generalized $o include eyclic extensions of %(s)
of degree p™ in which p™-fh roots of 1 are not necessarily present:
TuworuM 5. Let Z be o cyelic geometric estension of k(x) of degree p™,
where p is o prime other than the characteristic of k. Then, for any o integral
over k[x] which is a primitive element of the extension Z [k (@), there is a prime
B of Z lying over the infinite prime of k(x) swch that
Ep—1 2 2@Fey, -
’v‘;ﬁm(a) < : - : T omgom
pr=1 p* PN p*-1)
where G is the genus of Z and e, is the ramification indes of P
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Proof., Let k' be the smallest extension of % which contains the
p"th roots of 1, and let Z' be the constant field extensions of Z with
constant field &'. Any primitive element « for the extension Z/k(x) satis-
fies a p™th degree polynomial that ig irreducible ovey k[z]. Since Z/k(x)
iz geometric and has k for its exact field of constants, the polynomial is
also irreducible in #T«]. Thus o iz also a primitive element for the extension.
Z'[¥ (@). I o is integral over k[z], it is also integral over &'[#]. Finally
Z'|Z is a constant field extension and & is perfect; so the genus of Z' is
the genus of Z. Thus by Theorem 4 there is a prime P, of Z' which lies
over the infinite prime pj, of ¥ (w) such that

f—1 26l 2Gé,

@’f(ﬁén - T TR
™ TP T

where ¢/, is the ramification index of P, over ¥ (z). Now P, lies over
some P, in Z, and, since Z'/Z is unramified, the ramification index of P
over py, is é.,- Thus

o—1  Zey, 2Ge,,
c(e) S ————

¥ P —1 "t " -1)
completing the proof of Theorem 5.

'Umm(a) =

_ The main result in o special case. To prove the main result for cyclie
extensions of k(x), it is necessary to estimate the mimimum degree of
a prime of k(z) that splits in Z. Such an estimate is given by:

TeEoREM 6. If Z is a cyclic geometric extension of k(z) of degree p*
where p is any prime (including the characteristic of k), then there exists

a prime divisor in k{z) which splits completely in Z ond which has degree -

Tess than my, where my = my+2 for any positive m, which satisfies
g™ —2G4™2 —2m (G +p™) = 0

Lianna 1. Let Z,, be the constant field extension of Z of degree m for
m relatively prime lo p. If P,, is o prime divisor of Z,, of degree 1, ond if P
is the prime under B, in Z, then

degZ]Mx)(g}) =1,

Proof of Lemma 1. Suppose deggpq(P) 1. Let T lie ovVer Py
in k(z). Then since the degree of the extension Z/k(x) is p", degz(P)
= p” for some f 3 1. This follows from the fact that in a normal exten-
sion the relative degree of any prime divides the degree of the extension.

And therefore,
deg () =pfdegkgm)(%) — P degn(@).
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And then, .
: 'degzm(iBm)-m = degyz z(By) degs(P) = degz, z(Pw) p" degp (x}.

But (m,p) =1, s p must divide degy {{,}; thus it cannct be 1.
"Proof of Theorem 6. A prime P in Z can have relative degree 1
in only two ways: E o
(1} the prime Py 1ying under P in k(w) is ramified in Z;
'(2) the prime p,, lying under P in k() i split completely in Z.
Thus if m iz choren large enough to ensure that there are more primes
of degree 1 in Z,, than could Tie over ramified primes of &(x), then there
must be & prime of degree 1 in Z,, whicli lies over a prime ., of k(») whieh
is split completely in-Z. Now the degree of p,,, cannot exceed m, for it
lies under a prime of degree 1 in %'{®), a degree m constant extension
of &(x). Thus, it is only necessary to choose the proper m. '
Firgt, let N,, be the number of primes of degree 1 in Z,,. N, can
be estimated using the Rieman hypothesis; '

. |V — (g™ + 1)) < 26G4™*,
And 50, _ . . :
(8) N, =™ —2Gg™* 1.

Next, the number of primes of Z that have ramified from k(z) is 1éss than

or equal to the degree of the different of the extension Z/k(w). By the
genus formula, thiv degree is -

2G-+2(p"—1).

Now each ol these prinﬁes of Z that have ramified frorh E(xz) ean have
at most m primes over it in Z,,. Thus the number of primes of Z,, which
lie over primes of k() that ramify in Z iz at most

2m{G+pm—1).
' 'Thﬁs, if m is chosen such that (m, p) =1 and’
" —26¢"* +1 > 2m{G +p" 1),

then there is a prime of %(z) which splits eompletely in Z and has degree
at most m. Such an m can be chosen less than the m, in the statement of
the theorem. We omii this easy calculation. :
It is now possible to prove the main result of the paper in a special
cage.” -
- THEOREM 7. Lét Z be a eyclic geometric extension of k{x) of ‘dsgme 13“’,
where P 48 & prime other than the characteristic of k. If @ is the genus of Z, 6,
18 the ramification index of a prime of Z over the infinite prime of k(m), m = m,

icm
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of Theorem 6, and B is the exponent of the null ilass group of Z, then.
1 26 ey, - e,  B,—1
m pn(ﬁﬂ __'l) e - p"—1 )

Proof. Let p be a prime divisor of k(x) of smallest degree which
splits completely in Z. Then by Theorem 6,

{9) Bz

degz P = m.

Let P, be any prime of Z which lies over p; then 3B, has p” distinet conju-
gates under the action of the Galois group. If P, is any prime of Z (other
than ;) which lies over the infinite prime of k{s), then

iiegz’-ﬁm

g e DolZ).

Therefore, since K is the exponent of DO(Z) {E(Z), the null class group,

e
| pRAemB (a)eB(ZY,  a<Z.
The function o has its only pole at a prime over the infinite prime of &();
so a is integral over k[z]. Also a has p" distinet conjugates under the
action of the Galois gronp of Z/k(x); thus, o is a primitive element for
this extension. By Theorem 5, ' :
o1 265,

~ Hiegz(Py) < 15**—1 — 7

. 2Ge,
Pp{p"—1)

But degz(P,) = degyyp << m. Therefore

1/ 26Ge, e, o1
p"—1]

" (p" 1) - 2
CoROLLARY. In the class of finite, cyclie, geometric extensions Z- of % (w)

of Fized degree p™, where p is @ prime other than the characteristic of the

Jfiwite field %, the caponent of the null class group approaches infinity as

the genus of Z goes lo infinily. .
Proof. Since e, =1,

= —
-

2o o—1 _ e, —2e6,, +p"’_> P —24p" 2_2___’
SN 2TES T TR
and 5o ' ' ' '
(10) E}i(__%g___f_i)
. m\p*(p*—1) "~ p"
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For & large enough, the m in Theorem 6 can be taken as
6log@
logg ’

My

This is easily seen since
(" —2¢) =6 —2G>1,
for @ large enough. Thus,
q™ (g —26) —2m (6 +9") > g — 2 (G4 "),

or, after plugging in the value suggested for m,,

QmﬂZ(gmﬂZ —261)—2%;{@4-1:}“) ~ G3—%(10g(¥)(9+p").

. o P |
i & is large enough, this is positive; so m, = IOgG satisfies the
| | Togg
~inequality of Theorem 6. Now,
61
=y =y 8 — og¥ 710g(r',
logg logg
it @ is large enough.
Putting this in (10) gives
1
(1) pe8L (24, 23
_ o Tlog@ \pt(p"—1) "
Therefore, : ‘
lim B = o,
G000

3. Artin-Schreier extensions. In thig section, results amnalogous to
those proved in Section 2 for extensions of prime power degree are ob-
tained for Artin—Schreier extensions. ;

Let Z be a cyclic geometric extension of k(@) of degree p where p
is the characteristic of &; then Z is a congruence function field over the
exact field of constants &, if % is finite. Let % be finite and || = g; this
type of extension, an. Artin-Schreier extension, can be realized ag Z
= k{®, ) where : ' '

¥ —y =fo) = [ [piays, pez.
Fe=l

The_re is & standard form of such an equation fhat can be reached through
. the ‘;r_&nsformation ¥ =y +a(m) for suitable a(z); it can be asgrumed
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that the generating equa.tion' of Z over kiw) is -

Q
ﬂm ] _— — e
oy f@’ where ) = PupE ... P
(%, p}=1 for +=1,2,..,1L

Also Q is an integral divisor of k(@) and relatively prime to the denomi-
nator of f(z). Note that the standard form of an Artin-Schreier exten-
sion treats all the prime divisors of %(z) equally, unlike the standard.
form of a Kummer extension.

TuEOREM 8. If, with the notation as above, Z = k(x,y), where the
generating equation 8 in standard. form, then
_ g(2)

P1(@)1ps (@) ... py(m)’

and, in keeping with the standard form of f(x),
degf(a), if degf(w)> 0,
0, if  degf(s)<0.
Thus (Ay, p) == 1, if A, % 0. Further, for any prime divisor p of k(x):

(1) p s ramified if and only if p divides the (divisor) denominator
of f(x). The contribution of the prime P-of Z above p 1o the different is

1 (&) 8(P) = PP if n js not the infinite prime,
(12) (b)  8(P) = PYeotVE-D 4if v s the infinite prime.

iy 2) = 15

Ay =

o0

(2) If v is an unramified prime, then
¥ —y—f(a)

is an integral polynomial awith vespect to p. The decomposition of p in Z°
mirrors the decomposition of this polynomial modulo p. That is, p is inert
if y* —y —f(w) 18 irveducible in O,{I, and is split if the polynomial factors
there. : . ,

In an Artin—Schreier extension, there is an automorphism ¢ which.
generates Gtal (Z/k{z)) such that : '

. oly) == y+1.
With the notation in Theorem 8, leti @ be the integral closure of k[«

in Z. We shall, now, construct a special integral basis and nse it to prove
for Artin—Schreier extensions a theorem similar to Theorem 4.

TrEoREM 9. Let Z be an Artin-Schreier ewiension of k(x), and let

(@)
Pl(m)llpz(m)h e Pl(m)h

y?—y = fla) =
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be the gen.emt-i-ng equation in standard form (the notation as in Theorem 8),
Then {0g, 0, 6y, ..., 8,1} is an integral basis of Z over k(:_c}, where

JA;
1+[ ] if j#0,
0, if §=0.

3
6 =y [ [ pitays, for ry=
T =1

Proof. 6; is elearly integral for all the primes of Z except possible
those lying over ramified primes or the infinite prime. Tf B, is a prime
of Z Tying over p,y, the prime divisor of k() associated with p(a),
then ' :

Therefore,

ﬂfﬁi(y) = qjqﬂ_i(y+1) = ’Um.i(y +2) =

This gives immediately

- = Oy +p—1).

1 ‘ 1 .
”q;i(’!/) = §9$i(yﬂ—y) == E”mi(f(m))-= = Ay

and, using the definition,

vy, (0) = v, (v [ [ pulo)™) = —jt+ryp.

Therefore, v, {0;) 2 0 for all the primes B, that have ramified from %(z)
and which are associated with polynomials in %(#). In fact, if § 5% 0, then
v, (%) > 0. This gives that the elements of the basis {4} are ihtegra,l
over Elz].

To computbe the d.1mr1m1na.nt of. the basis {0}, let M be the matrix

of coefficients in the linear equations expressing {6} in terms of {y*}.
Then,

Ax{0;} = [det‘.M]ﬁA '},

But 4,{y%} is the diseriminant of the polynormal #¥ -~y —f(w), which
is 1. So,

]J —1
(13 m{ﬂ}—-Hp (a) =0
Now,
w S-S [5)
Fral
l . :
= @1+ -1 = p—1) =1 (L+1)p—1).
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Then (13) and (14) together give
.’L’{ﬂ’t} - Hp (l e I)

However, this (after being made an ideal and then a divisor) is exactly
the finite part of the norm. of the different as given by (12). So

A {8} = A(Z),
where 4,(%) is the Dedekind diseriminant of Z over k{z).- Thus {4,} is

an integral basis and the theorem is proved. ‘

TororeM 10, Let Z be an Artin—Schreier exfension wzth the netlation
as in Theorems 8 and 9; then, for any ae® whick is o primitive element of
he ‘emtension Z over k(x), there is a prime divisor B, of Z lying over the infi-
nite prime Py, of k{x) such that

( 2G . .1)

..__em —_—e —1,
pip—1) p
where &, 1§ the ramification mdem of ., and @ is the genus of Z..
Proof. If ac®, then by the previons theorem « can be written. as

a = @y(®) O+ @y (2) 6; 4+ aa(2) Oy 4 .. + 8y, (@) B,y
bo(@) + by (#)y +ba( @)y - +bpa (@)

g (o) <

"

1 -
where a;(2) ek [x] and b;(2) == a;(n) [ ]’ p,(@)4. As in the proof of Theorem 4,

it is necessary to evaluate vy (a) for some P, lying OVer Py Tt ix con- -
venient to do this in the form of

LEMMA 2. For a as in the théorem, there is a P, lying over the infi-
mite prime Py, of klx) such that

vy (@) =m,
where - o N
min {vg_ (bj(m)@’)}, if  Pyg 8 ramified in Z,

ogi<p '
min {v, . (4 (@ Ny oot
b f<p

Proot of Lemma The proof iz given in two parts. First, if Pus
is ramified in Z, then there is only one prime P, of Z OVET Py and vg_(y)

= —ldp. NOW,

o= Py is, unramified in Z.

o, (b3(@)97) = v, (05(8) + 0o () = Py, (04(8)) o
However, since pyy, is ramified, 1, # 0 (mod. p), and so the set

{vg, (@9 0 << p)
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is a complete residue system modulo p. Therefore, this set has a distinct
minimum, and so,
vy (o) = m.
Next is the case where py, is unramified in Z. If §, is any prime of Z
OVEr Iy, then
oy, (¥) 2 0
Thas for all the primes B; over pyp,

(18)  og,(a) = vg(bo(2) +ba(@)y + ... vy, by (@) )}

(@) +jvgy(y)} > min [Py b5} = m.

+by_3(a)y"~Y) > min {

0<i<p

= min [ﬁ$i
0i<p

Notice here, that there is some prime %PB; over py, such that vy, (%) = 0.
For suppose vg, (y) > 0, then a)pm(f #)} > 0, and so p,,, mush spht over Z.
Then

Vo, (Y) = vg, (¥ +1) = ), 0} = 0.
Let g be an index such that Y ( (2)) = m. It can be assumed that
jo % 0; for & O is the only index’ Where this minimum oceurs, it follows
1mmedlately that

Yl =m

for that prime P, over py, for which vy (y) = 0. Consider then
(186) yif-'l—l—.'iua-= bu(x)yp—l—jﬂ_‘_bl(m)yp—jo_‘_ e

+ by, (@)Y 4 s by (B) P,
Now since j, # 0, the highest power of ¥ that can occur in this sum is
2p —3. By Newton’s formulae ([2], p. 437), it is easy to see that the trace
from Z to k(x) (denoted by Tr(a}) acts on these powers of y in the fol-
- lowing way:

T (yh)

min {vg, (¥

s, () = min{vg, (b;(2)

0, if
-1, i

<h<2p—1and h£p—1,
h=p—1.
. 'I‘hei'efore, (16) gives, for any prime ¥ a;bo;re Pujns
(17) m= wpm(bgo ) = g, (bsg (@) = vy, (Tr(y? > a))

= vy (o(@P Pea))l = min  {ug (yP
= usGal(Zﬂ-:(m) { ml( Y ))} Sﬁiabnvepllw{ m 0.'-)}
= min {(p-1 —-Ju)’vqs,-(y) + vy, (@)}
%;abovepum
But vg,(¥) =0, (p— —1—j) >0, and g (a)=m for all the primes P,

of Z above p”m, and this together with (15) gives

mz min {{p— l—Jn)vmi(szm,( a)} = m.
ﬂliabovc:pum

icm
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Thug, there is & prime P, in
proves the lemma.

Proof of Theocrem 10¢. It remains to estimate the value of m in
the lemma. For a primitive element ¢ in the extension Z over k(w), there
is an index j, such that a; () # 0 and j, 5% 0. When p,j, is ramified this
gives

(18) m == min{wy_(b;(2)y’)}
o=nf<p

Z above py, such that Vg (@) = m, and this

< 'qum(bjl () yjll)

4 1
RS """-Boo(“h(m)) + %o (H ps(m)rﬁl} —jl)‘oo < P?Jm;a: (Hpi(m)ﬂh) — Aoy
i=1

Feal

When Py 18 unramified,

{19) m = min{v‘,m(bj(m))}<'t;,,1[x( i )\U”Uz ), (2 )+ v;;z(nf’z ’m)

l{if <p =1

1
< Upyyy (np" (w)wl)
=1
L

In both cases it is necessary to approximate ”Pux( [1p:(y9), for j = 0;
' i=1

| 14

,,m( H Pl )*ff) = —deg( ” il )*“) Zﬂ“ﬁdegpi(m)

4zl Tl i=1

il

|
M
=

+
—
e |:§J
e

oy

5

£

‘L'=.';. jl
= — : —]d A%, /'l,;,
;(p + ) eg p;{) pt
i 1
< == ¥ (jA;+1)degpi(x)
_ P =
S
1
(20 & - A+1)degp (@)
(20) _ p_}_},( )degp
s 1) Z(zmup—l)degp;(
H
1 (@D
- < 2P -1) deg(gp,(m) )
21) - < — ——— deg(4,),
(21) 75 —1) eg(4s)
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where 4, is the ideal discriminant of Z. When p,, is unramified
deg Am = degk(:c) A H

where 4 is the divisor dizscriminant, and so, by the genus formula, (19),
and. (21),

1 26 )
—— degd = — — .
p{p—1) & pip—1)

When p,, is ramified,
4 = (Ay)pffiy et
and so

deg 4, = degd —(p—1)(A,+1).

Using the genus formula, it follows from {18) and (21) that

< —p (degdﬂ(p—l)(imtl))_zm
pip—1)
~1 2
= 1 (26 —2(p fl)_(P“l)(ﬁm.'{"lH*ﬁm(P-‘1)) = —ﬁ—l'

" In either case there is a prime P, of Z Iying over p,;, such that

vy (a) << mo< B( 26 +1)
PSR T ) T )

where ¢, is the ramification index of P,. This completes the proof of
Theorem 10. ‘

Since Theorem 6 holds for all cyclic extensions of k(») of prime power
‘degree, there is a bound on the minimurm degree of a prime of %{z) which
gplits completely in an Artin-Schreier extension. This, together with
the bound given by Theorem 10, gives the following:

TemoreM 11. Let Z be an Artin-Schreier extension of k(z). If G is
the genus of Z, e, is the ramification index of a prime over the infinite prime,
m = my of Theorem 6, and E is the exponent of the null class group of Z,
then

oo ( 26 1)
Bz —|—F— +—|
m\p{p—1) p
COROLLARY. In the olass of Artin—Sehreier emtensions of k{z) for a
Jiwed finite field %, the eaponent of the null elass group approaches infinity
as the genus of the field goes to infinity.
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The proof of Theorem 11 parallely the proof of Theorem 7, and the
approximation for m used in the proof of the corollary of that theorem
gives

(22) B> logg( 26 LE).
Tlog@ \p(p—1) ' p
Thus
ImE = co.
=

4. The main 1esult. The next step is to combine the resnlts of Sec-
tion 2 with the results of Section 3 to show that, for a special class of
extensions of k(wz), the exponent of the null class group approaches infi-
nity as the genus of the field goes to infinity. This special class of exten-
sions consists of these geometric abelian extensions Z of klz) of fized
degree where the p-primary part of the Galois group is elementary abelian.
These are exactly those extensions of %(r) whose Galois group is the
direct product of cyclie groups of prime power order for primes other
than the characteristic and groups of order equal to the characteristic.
Let K [ (z) be an extension as deseribed above, and let @ be its genus.
Then, :

Gal(E [k(@)) = Cyx Oy X G X .. % Oy,

where each ('; is a eyclic group of the proper type. There is a subfield Z,
corresponding to each C; such that

Gal (Z,/k(2)) = C;.

These subfields are, therefore, either cyclic geometrie extensions of k{z)
of prime power degree for primes other than the characteristic or are
Artin-Schreier extensions of k(z). Thus, the result has been established
for all of the subfields Z; of K. The first step in extending this resulf to X
i3 to show that, if ¢ is large, then the genus G; of some Z; is also large.
To this purpese a lemma and Theorem 12 are proved. )

Lenvema 3. Let Z,, Z,, and K be extensions of k(x) such that Z, <« K.
for-4 = 1,2, and such that ’

Gal (K [k{x)) = Gal (_Zl/k(m)) X Gal(Z,/k(w)).
Then, as divisors of K, '

8(E[Z,) divides &(Z,k(x))

and -
8(K(Z,) divides 6(Z, [k(w)),

where & denotes the different of the proper emfension.
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Proof. Let 0y, 0,, and & be the respective integral closures of L[z
in Z,, Z,, and E. Also let 6,(K/Z,) and 8,(Z,/k(x)) be the Dedekind differ
ents in the respective extension. It is well-known that 4, (Zg/k(m)) is th
greatest common divisor of the differents of all the elements of ¢,. However

Gal(K|Z,) o« Gal (K [k(x)}/Gal (Z, k(%)) == Gal{Z,/k{z)),

and @, = 0. Thus the different of an element of @, in the extension Z,/k(z
can also be considered as the different of an element of ¢ in the extensior
K |Z,. Therefore, :
8. (K[Z,) divides 6$(szk(a;)).

‘This contpletes the proot for all prime divisors of K that do not lie ove
the infinife prime of k(z). For the complete proof of the lemma, it i
necessary to extend the divisibility to ineclude the infinite primes. Thi
1 .
is done: by observing that k(w) = k(;) and that the global differen
is the product of the local differents. Therefore, - '
S(K/[Z,) divides d(ZQ/k(m)).

TaeoREM 12. Let K and Z;, 1 =1,2,%.:, k, be geometrio ewtension:
of k(x) such that:

(1) IK:ki@)] =nand [Z:k(@)] =0, 4 =1,2,..., b;
(2) K has genus G, and Z; has genus Gy, ¢ =1,2,..., h;
(8) Z, S K, for i =1,2,...,k;
{4) Gal(K]k(m)) Gal (7 /% (@)} % Gal (Z, [k (2)) x
Then for some fzeld Z;, say Z,,

( —(h— 1)%—}—2————1)

=1

Proof. For the purposes of this proof, Z .+, will denote the
smallest subfield of K containing the held% 7 22, .. .Z,, . In this par
ticular case, ¢

Gal(z; 7, oo 2y [B(@))
= Gal(Z, [k(x)) x Gal{Z; [k(x)} x ... x Gal (Z; [l(w)}.
‘Now in the tower of fields K > Z, = k(»),
S(E [k(@)) = 8{Z,/k(w) 6(K [Zy),

considered as divisors of K. Now, by the lemma,

8(K[Z,) divides b6{Z,Z,... z,,/r;(m)) )
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and &0 _
O(H k() divides 8{Z,[k(w)) 8{Z,%; ... By fk(x)).
Similarly,
S(E [k(a)) divides 6(Z,/k(n)}6(Z,/k(x)) 6{Z;Z, ... Zpjk(x)).
This can bhe continued until
8 (E[k(x)} divides 5( () 8 (ZafR(@)} ... 3{ZpfR(2)).
Taking degrees in K gives:

h

3 .
dege(S{K k(@) < D dege(8(Zi/k(@))) < D)} degy,(6(Zifk(n))

f=1 =1

where n; = ﬂ, i=1,2,...,h After applying the genus formula, this
Ny
gives
L]

912 (n—1) < Y} (26;+2(n; —1)),
i=1

and so, _
&
S‘ﬂ*G —(h'——l)n—;—Zﬂfﬁ
1.*1 Teal

Sinee n 3= ny, there must be some G, say @,, such that

k
. 1 .
Gl’_>/ Z;(G“(h_l)n_F Zﬂi _]_)

and this completes the prooi. .
THEOREM 13. In the class of abelion geomelric extensions of k(z) of
fized degree n, where k is a fized finite field with characteristic p, in wkwh
the p-primary part of the Galois group is elemeniary abelian, the exponent
nf the null class group approaches infinity as the genus of the field ap-
proaches infinity. In fact if K is o field in this class with genus G
large enough, the exponent E of the null clags group is bounded by
G
BEzO0 —r— where ¢ and M are constants.

G !

log(E%-M)

Proof. Let . _
Gal (K [k(@) = C1x 05X ... X0y,

7 — AGts Arithmetiea XICXILE
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where each €, is a group of prime power order, and let Z; be the subfield
of K for which '

(ﬂtl( ﬂﬂ ) = Gis

Then by Theorem 12, ¢/, can be chosen such thaf its genus G4, is bounded by

i=1,2,..., k.

1

GI,>,M( —(h=T)n+ ?—4)
nt et 9y

where 1 = [K: k{x)] and »; = [Z,: k(2)], i =1,2,..., h. Since nz=h

this can be written as
. “ |
Gl 2 ”“‘2" '}‘ﬂ’[,

b2

for some constant M.

‘Now Z, must be either & eyclic geometric extension of prime power degree
or an Artin—Schreier extension of k(z). Thus by Theorems 7 and 11 {in
particular (11} and (22)),

logg 26, i) . 2logyg &,
TlogG \ ny(n, —1). T1q(n, —1) log@,

1=

However, if & is large enough, is an increasing function, and so,

_&
log@

¢
M
2log g (n? Tk )

T (0, —1) lag(%mi-M)
)

. (G —i—M) .
2logg  \nf '
15 n 1 .
n(n—1) 1og(_i';+M-)
1

Thus, when the genus of K iz large, there is a subextension Z, of k{w)
whose null class group Cy(Z,) has equally large exponent. The group €y (Z,)
is mapped in a canonical way into C,(K). This map (called the conorm)
hags the following property [3]

{Ker (conorm)| divides [K: Z,].

1=

Also sinee # = a4,

' (23)

In this particular case,’

{Ker(conorm)| < [E:. k{z)] = n.

Lo
=2
it
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But then the null class group ¢ (K) of K coptaing a subgroup,

Cy(Z,)} [ Ker(conorm)!,

. B
whose exponent is greater than or equal to —-. Thus by {23},
)

‘>E>_210_g_2

“n T Tetn—1) . (@G )
ra( ) log(—?—l—g—+jlf)

This completes the proof of the main theorem.
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