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m—1 of Theorem 2'), that _
(a—B) = —es(r(A4), m—1, s(R)h(B) —ec
= —c(r(A), m—1, 5%)2sh(B) —
by (583). Together with (81), and observing (52), we obtain
v{B(a)) = —((1+e)r(A) -+ MB) —c = —c,h(B)—c.‘

We finally remark that we threw away the solution § of B(f) =
in going from Theorem 2 to Theorem 2'. Then at the end we had to con-
struct a solution § of B{f} = 0. This may seem a wasteful argument.
But in our inductive argument, we may have to replace B by a new B
with a smaller value of m = I(B). Ih other words, the solution # with
B(f) = 0 gets lost in the inductive argument.
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Large values of Dirichlet polynomials, IV
by .

M. N. Huxiey (Cardiff) and M. Jotrna (Turku)

1. Introduction. This paper continues [4]-[6], [8], [9]. Our object
is to estimate the size of a set of pairs (s, y) at which a Dirichlet polynomial
F(s, x) can be large. A precise statement is given in the next section
where the notation is introduced. Our main tool is the reflection argument
of [47], which we use in a simplified form due to Jutila [8], [9] as Lemma 8
below. It relates Dirichlet polynomials of length N to those of length
about D/N, where D measures the range in which the pairs (s, x) can lie.
It is useful to have a peak function which iy itself a Dirichlet polynomial:
we use the H series diseussed in Sections 8 and 4, which are modified
Dirichlet L-functions. It is sometimes possible to use F(s, z) itself as .
a péak function, as in Lemma 10 below. The L-functions can be approxi-
mated by H series of length D' (the so-called approximate functional
equation), as in Lemma 14 below. Lemma 14 iz implieit in the literature;
we sketch the proof out of duty. Jutila [97has a new lemma (our Lemma 7)
in which F(s, y) is raised to an even integral power, and obtaing sharper
results than those of [6] when F(s, g} is very large, for instance when
the exponent a of (2.23) is 4/5.

Tn thiz paper we explore the consequences of Jutila’s new lemma.
Our arguments are purely combinatoric {except Lemma 14). To make
the work. accessible, we have summarised the main ideas of previous
papers as a-sequence of lemmas, stressing thé combinatory rather than
the analytic aspects. Our result is Theorem 2 of Section 5. It enables us
to improve the zero-density theorems for Dirichlet L-functions. Fer
ingtance we extend the range of the density hypotheses. Let N (a, T, x)
be the number of zeros g4y of L(s, x)in = a, [y| < T. Then

wy 3 Fia, T, 5) < (gLr

ymodg
hiolds for a > 4/8. Let an asterisk denote a smm over proper characters.
Then

@ 3 SN, < @1

gt xmodg
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also holds for o> 4[5 and

DTN, T, ) < (@I
g @ ymodg
holds for a > 557/718 = 0.7759 ... Jutila [9] had (1.1) ard (1.2) for
a3>21/26 = 0.8076 ... and (1.3) for a7/ = 0.7777 ,..

Lemmas 18 and 12 taken together suggest that F(s, ) and the cor-
responding L-function L(s, y) cannot both be very large at the same
ordinates. By a lemma of Littlewood, L{s, ) is large only if there is
& zero nearby, and the criterion for a zero ([10], Chapter 12) is that some
Dirichlet polynomial should be large. Unfortunately Lemmas 12 and 18
are not powerful enough for this argument to give new bounds for L-func-
tions.

(1:3)]

2. Notation and conjectures. We consider finite Dirichlet series
{Dirichlet polynomials) of the form
2y

Fs,5) = > a(n)y(n)n=,
N 41

(2.1}

where N is & variable positive integer, a(n) are complex coefficients,
z is a variable Dirichlet character, 8 = ¢4t is a complex variable; any
finite Dirichlet series can be divided into sums of the form (2.1) with
different lengths N, We write

(2.2} _ A = max [a(n)],
N<ngo N
e
(2.3) G = Z [ (n))2.
N1

When different Dirichlet polynomials are distinguished by suffices, our
convention is that g(n), A,, G, N, refer to Fi(s, o).
Luxna 1. Zet m be a positive integer, F,, ..., F, be of the form (2.1)

and
m

Tisyz) = [ [ Fits, 5.

1

(2.4)
Then for any > 0

. m
(2.5) ¢<¥ e,
. 1

m .
(2.6) A<N]T4
_ [14.

where the constants smplied in the Vinogradov symbol < depend only on m
and . ;

icm
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Proof. This is Lemma 3§ of [6]; it follows since for N < n < 3§

D 1<,

e sl =1

(2.7)

We shall write ¢ for any exponent which can be taken arbitrarily
small and positive. The exponents ¢ are not necessarily the same throughout
a proof.

We are interested in the size of F(s, y) at a set T of pairs (s, y).
Let g, be a positive integer, ¢ 2> ¢,, T = 1 be real numbers, D = Q2T/g,,
I =logD. We define U to be (g,, Q, T)-spaced if each y is a character
to some modulus g < ¢ with g = G({modg,), for each s

(2.8) 0< o<1/,

and for any two members (s, y), (8, x) of U

(2.9) -1 < 1,

2.10) [t—#'|>1 when ¥¢' is & principal character.
When no ambiguity arises and

(2.11) T=1

we ghall write (g,, @, T')-spaced as D-spaced. Let K be the number of
elements of . When U is (g, @, T)-spaced we have B < D. We define U
t0 be pure if either ¢, = @ or if each y is proper, and define U to be flat
it o = 0 for each pair (s, x). We write U™ for the flat set of R pairs (if, y)
corresponding to the pairs (s, y) of U, U for the set of B2 pairs (§4-¢', 7x")
and T® for the flat set of R* pairs (4’ —4, ¥¢') corresponding to all pairs
(s, ) and (¢', z') of U. A sum written over U2 or U® is counted according
to multiplicity.
We seek to relate B to the minimum value

(2.12) ¥V =TV(F,T) = min|F(s, 1)}

of F on U. For each real number k> 1 let

(2.18) Bl F, U) = D |F(s, )l
23

and for real M = 2 let B, (M, U) be the least positive B for which

(2.14) B, (P, T)<6"B i 2N< M,

and let BY(M, U) be the least positive B for which

(2.15) B, (F, U)<A*N"'B it 2N<H.
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We write B and B* for B, and Bj. Since there are finitely many coef-
ficients a(n) each lying in a bounded region, each of these bounds (2.14)

and (2:15) is attained by some Dirichlet polynomial. Although the defi-

nition of B in [4]-[6] is slightly different, the results of those papers
hold for onr present B. The simpler definition of B is permitted by Jutila’s
form of the reflection argument in Lemma '8 below.

A trivial remark is that, if U is the union of sets U, then

(2.16) By(M, U) < 3 By (M, Uy).
4

In particular

(2.17) B (M, U*) < EB,{H, U),

and similarly for By. If U is D-spaced, so is each U, and if U, is Dspaced
for some D; < D, we may obtain a better bound for each term By (M, U,).
This device was used in [3], the sets U, being chosen to reduce 7.

It is easy to see that

 (2.18)

max(R (M2 — 1"’2)<Bk(M U) < R(M2)82,
and
(2.19) (M2 1" < By(M, U) < By(M, U) < R(M 2%

For k> 2 a mean valne argument shows that
(2.20) BiM,U)=R

We state Montgomery’s conjectures in our notation.

MEAN VALUES CONJECTURE ([10], Conjecture 9.2). If U is pure and

D-spaced and k=2, then for M = 2 we have

(2.21) B(M, U) < (D+M"(DM):".
LArRee Virvms CONJECIURE
and D-spaced then for M = 2 we have

(2.22) By (M, U) <« (R-+M) (Dary.
Corornary. If F(s, x) is of the form (2.1) d*nd

(2.23) V(F, U) = G112,

then

(2.24) R < N (DN

For N = D both conjectures follow from the theorem of the Large
Sieve (Lemma 5 below). In this paper we discuss a weaker conjecture.

DENSITY CONJECTURE. If U is pure and D-spaced, F(s, x) is of the
Jorm (2.1) and o is given by (2.23), then

(2.25) R < {D-!-N Pdate

([10], Conjecture 9.1). If U is pure

icm

- (3_8) . < RE < R"l kM‘jk,’i < Rll_.k(
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This conjecture suffices to establish the Density Hypothesis for
zeros of Dirichlet L-functions (to within one of those exponents &). The
detailed deduction is given in [10], Chapter 12; it can be simplified a little
when the Den@.ity Hypothesis is considered, for example by using ‘out-
standing zeros’ as in [7]. The estimate (2.25) is required only for the
range

(2.26) (QT)° < ¥ < (@I,
It for some o, the Density Conjecture holds for a > a, and any &> 0, the
corresponding Density Hypothesis for I-functions also holds for a > a,.

3. Combinatoric lemmas. Hélder’s inequality can be used to relate

B; to By, :
Luvwa 2. For any i =1 and any k> 1

(3.1) B M, Ty < RYE(B, (2, T)H%,

and the corresponding inequality holds between Bf and Bj.
Levwa 3. For any j =1 and eny k> 1

(8.2) By (M, U) < maxR"*(By(M, U")|logMR,
o

where the maximum is over all subsets U of U and R’ denotes the number
of elements of U'. Moreover, if for fized M, qo, Q, T omd all (g,, @, T)-spaced U

(3.3) B,(M, U)< R°E

for some a > 1 —1[k and some E, then for all such U

(8.4) Bi{M, ) < Rl"“’“’E"mm(logMR Ej(1— k+ka))

The corresponding assertions hold for B} and Bj. The implied constants
depend on j and k.

Proof. Lemma 3 is proved by taking the particular F(s, y) whick
attaing the bound By (M, U) or Bi (M, U), and dividing U into subsets
U’ on which either

(3.5) [B(s, )| <G[R
or for V' = 2% 4 being a sultable integer in a mnge of length < logMR

(or AN'2[R) -

(3.6) V2 <IF(s, 2)l<
The subset defined by (3.5) gives a term
(3.7) <R R <R'HBI(H, ’)’c

by (2.18). Conmdenng B}, we take the alternative in (3 5), and gef a term
M, UNF
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(3.12)
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by {2.19). Tf U’ is the subset satisfying (3.6) _ |
(39) Ha(F, U)<S VFE <R (E(V2))F < BB, T,
which gives the main agsertions of Lemma 3.
LeuMa 4, For any § 2 1, any integer b > 1 and any ¢ > 0
(3.10) B (M, U) <€ B{M*, UM,
where the implied constant depends on j, k and & The corresponding relation
holds betwoen By, and Bj:
Proof. Write B, (F, U) as B;(#*, U) and use Lemma 1 and (2.20).
Our next lemma is the theorem of the large sieve ([10], Theorem 7.5).
Lmvwma 5. If U is pure and (go, @, T)-spaced then

(3.11) B,(M,U) < D+ M.

The l'oga,mthmm factors in [10], Theorem 7.3, are Dbounded for sums
from N +1 to 2N rather than from 1 fo N. By (2.18) Lemmzh 5 ig best
possible for M > D or B > D.

We define an H (M, N) series to be a Dirichlet series

His, z) = Zh(nmn)n-s

which iz absolutely convergent for Res > 0, with real non-negative coef-

" ficients satisfying A(r) > 1 for M <n < N, All Work on the Large Values

Conjecture beging with Haldsz’s Lemma.

Luvwma 6. For any F(s, x) of the form (2.1) and any H (N 2N) series
His, x)
(3.18) (B
Consequently for M =2
(3.14) (B(M, H): < M'BY M, U?).

(T, U)) < GE,(H, T?).

Choosing k(n) to be 1 or 0, we deduce (3.14) from (3.13).

Jutila [9] has recently found 2 lemma Whlch combines aspects of
Lemmas 4 and 6. _

Lemva 7. Let & be o positive integer, F(s, v) be of the form (2.1
H(s, ¢} be any H{N", 2" N*) series. For any ¢ >0

) and

(3.15) By (F, U2 < A%N=E,(H, U7).

The implied.qonsmﬂt depends on k and e.

Lemma 7 differs from Lemma 4 in the restrictions § =2 and U?
for U, but replaces F* by A*H, enabling us to choose a suitable H-zeries.
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The sevies.of papers [4}~[6] introduced the reflection principle:
if H{s, %) is a partial sum for L(s, x), then by the approximate functional
equation H (s, ¢} is equal to a conjugate partial sum for Z{1—s, 3) plus
an error terny., It rests on & method for establishing approximate functional
equations devized by Montgomery and worked out in detail by Huxley
in hig doctoral thesis and [2] to estimate moments of Hecke zeta-functions.
The key device is-to make the length of the conjugate sum independent
of s and y. The cruder form of the method which establishes the reflection
principle also gives the moments directly (to within a constant factor)
without first setting up an approximate functional equation. Ramachan-
dra [11] also noticed this short eut to the moments, and went on in [12]
to rediscover the reflection principle. Jutila, after studying both versions,
found a very simple form of the reflection algument ([9], Lemma 1},
which we adopt as our next lemma,

Lienma 8. Let U be D-spaced and let N < D. There exisis an H (N, 2N)
series H (s, x) such that for any e > b

¥ DiN

Hs, z) < N2 fIZx

—pt

(3.16) sl I T |

for all pairs (s, x) in U?® except these for which y is principal and B < I%;
g denotes the modulus of y. The implied constant depends om e. Moreover
for k=1

(3.17) B, (H, U?) €« RN*logl+ R2+ NFEQ*[S: BY(DIN, T®);
(ACE 24 3

the implied consiants depend on & ond s

The reflection argument in 4] has a simpler H(N,2N) series,
but requires a tedious subdivision of U*? before we can assert (3.17). Com-
bining Lemmas 6 and 8 gives a useful resulf. '

LemMa 9. Let U be D-spaced and M < D. Then
(3.18) (B(M, 0 < RMlogl+ R+ H*™Q°I'B*(D/M, T®).
The implied conslants depend on e.
The idea of [6] can be summarised in the following lemma.
Temwa 10. Let F(s, ) be of the form {21) and &8 ¥V = V(F, U).
For any positive integers ¢, k, any M =1 and any e >0
(3.19) By (M, U) < (G| V*2(MN)*B,(MH*°, U).
The implied consiant depends on ¢, k and s
Proof. If F,(s, y) attains the maximum in the definition of B, (M, U),
then E .
(3.20) B (B F°, U) = By(Fy, O)Y V.
The result now follows by Lemma 1.

7 - Acta Arltbmetioa XXXII3
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The main result of this series of papers is Theorem 1 of [6].
TEEOREM 1. If F(s, 3) 48 of the form (2.1) with
(8.21) V = VI(F, U) = GNP
for some fiwed absolute ¢ > 0 on a pure D-spaced set U, then for any ¢ >0
R €« GNV LGV (DN)*e.

<k<2

(3.22)
Moreover for 1<
(3.23) B (M, U) < RIMHPFL RI-WYHRIHL | Bi-Mo(DA)+IHe,
The implied constants depend on & and &.

For N > D Theorem 1 follows from Lemma 5; for ¥ < D it follows
from Lemmas 9, 10 and 5.

4. Lemmas involving Dirichlet L-funetions. Lemma 8 really belongs
here, as its proof employs L-functions. First a technical result lets us
compare U with the corresponding flat set U®.

LEMMA 11. For k> 1 and M = 1 we have
(41 B,(M, U) < By(M, UM,
and if 0< o < 1/logRH for each

B (M, TY) < B(M, T).

(s, x) of U, then
(4.2)

The vmplied constants depend on k.

Proof. Let F(s, ) of length ¥ attain the bound B,(M, U). Take
the contour ¢ consisting of the semicircle centre 0 radius 1/logXN to the
left of Rez = 0, the semicircle centre 1, radius 1/log N to the right of
Rez = 1 and the two line, segments parallel to [0, 1] and distant 1/log¥
on each cide, described anticlockwise. By Cauchy’s integral formmula
and Hélder’s inequality
{4.8) o) tde,

ImiF{s, ) = fF(z't+z, %) (z—
(s}

(4.4) (s, it < [IF(it-+2, g)|*le— o™ |da.
‘ o

Summing (4.4), we have

<[ D \Flit+z, p)fle—o™ idal

C (8.x)eT
<& [ NFRerGH B (M, UW)le— o
4 3

@5 B, D)

“Hde|.
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Since

(46) f-N‘—Rezlzmo_]—l ifkl <& 1’
a

we have (4.1}. A similar contour enables us to prove (1.2).
We now choose a particular B (N, 2N) series

o

(4.7) His, z) ‘:Z‘ez"”‘rx(n)ﬂ‘s
1

62
g f Lis+w, y) T{o) X

‘ Re(s+a)=3}

dew+ ey et T{L-— g N* 2,

for 0 € o <C1/4, where 2(y} is ¢(g)/g if y is & principal character to some
modulus g, 0 if not, Our next lemma follows by Lemma 11 and Halder's
inequality applied to (4.7). .

Levma 12. Let T be {g,,Q, T) spaced and tet H (s, y) be given by (4.7).
Then for k=1

(48) B, U) < NN [} (Lis+itis I3+,
—oo’ (&, xjelf (1) '

(9 B(I, 0 < RN 32 [ 3 (Lo yrin, PTG i,
—ca (s,;;):U(‘)

The implied constants depend on k.

We counld take the integral in (4.7) back to an abscissa dependmg on
the particular pair (s, ) and use bounds for IL(s, y) as in Theorem 8.4
of [10], or Littlewood’s lemma on the size of L(s, ) in a zero-free region
as in [17], [5]. We state in our notation Thecrems 8.2 and 8.3 of 510] for
comparison.

Lmnra 13, Let U be D-spaced, M =32 Then fo'r any ¢ >0

(4.10) B, (M, U) < (M+RDVT)Q.

The factor @° may be omdtted if each y occwrring in U is proper. The implied
constant depends on e. '

The analytic part of Lemma 18 is (4.7) with the integral taken to
Re(s -+ w) =0, The combinatoric part corresponds to our Lemmas. 3
and 6: Theorem 8.1 of [10] is related to Lemma 6.

The next lemma uses Montgomery’s technique, discussed above
in the preamble to Lemma 8. We merely sketch the proof, as it is closely
related to that of Lemmsa 8 and the moment theorems of Ramachandra
[11]. '
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Tmuma 14, If U is flat and D-spaced, for |v] <

D \L(s+12+ir, I < QF<1¥2(logl)* By (D'?, U).
(5,200

T, kz1and ¢ >0

(4.11)

The factor Q% may be omitted if each character ocCurring i8 proper. The im-
plied constant depends on k and’ 5. The. corresponding assertion holds for U%
but the factor Q¥ cannot be omitted.

z dencte & typiecal number s4+1/2 44z in (4.11), so that

Proof Let z
Rez =1/2, and let M = D'*[2, g = 1%, The sequence
(4.12) h(n) = exp(—(n/M))
for which .
(4.13) D) h{n) <exp(—(3/2y) < 1/D,

n>3M{2

are the coefficients of a Dirichlet series H(z, ) (for which ¢H (z,

H (1, M) series) given by the Mellin transform

—z\ M
) 1—=2

%) is an

(414)  H(z ) =L(z,_x)‘+5(x)l"( :

w

-|~-——— L(z—l—w,z)l’(l—l—-ﬂia—)ﬂdw
g/ w

2mi
Rew=—gj2

a variant of the H series in (4.7). The terms with » > 3M/2 in H{z, x)
are negligible by (4.13). We rearrange (4.14) as an expression for L(z, y),
raise it o the kth power and sum over pairs (s, x). The serieg on the left
of (4.14) and the second term on the right contribute

- (4.15) < VB3 (DY, T).

We treat the integral by means of the functional equation. Let y,mod f
be the proper character which induces ymodgq. For any complex s we
have ' :

{4.16) L(Ll-~s, 1) = (f/n)s—ll‘lG(s)J(s)L(S, 7,

where G(s) is a quotient of gamma-funetions and

(£17) I(s) = [ [l —m(@p~){L ~zu(p)p™ )
) Dlg
Putting # = 1—w we write the integral in (4.14) as
(4.18) - o _
f\ Y2 —1f2 : i _ . l—u
f ) (—Ji) G(u——z)J(u—z)L(u—z,f)P( 'u,) M .
Rou=ltgf2 ] 1w

icm

-appropriate constant to get an H(N,

(4.25)
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Next we put L = ¢;4¢,, where, if ¥ is the greatest even integer with
N < D', ,

(419) gu(u—2,7) = D 0", golu—z,7) = D glayn,
) nEN n=N

and write the integral (4.18) correspondingly as X 4T
> 1/2 we have

(4.20)

s. Then for Reu

16 (s —2)| < ((lz] [Tmul + T)/2]Pe",

and for Reu > 2
(4.21)

lpa(16—2, 7)| < N' 7R

F(1+'1—1L) du < 1
[ 1—u

Hence for [z T

& T

_Iﬂf( 7

Reu=14+g;2

3fT \o
2mMXN

which is negligible. In I, we take the line of integration back to Rewu
= 1-+1fl, on which

(4.23) J(u—z) < H (1-+p~2)2 <Q

- ple

and the sum over U of the kth powers of the modulus of ¢, is bounded
by (4.15) for each 7 and #, and

k

) ,

1w\ du
w2 DI < G B D%, U o[ rp+ =22
which gives (4.11).
The proof of Lemma 8 differs as follows. Instead of taking M as
above, we put M = N and 2N and subtract in {4.14), multiplying by an
2N) series. The break between

@, and @, now comes at D/N.

Combining Temmag 12 and 14 we have ihe following result.

LEnaa 15, If His, y) is given by (4£.7) and T is D- spcwed then for any
Lz=1and any £ >0

(H U) ” NI: Nklzgkslr.[e( OO‘I)kBk(_DUq U(]))

(4.26) B H, U?) < EN*+ N*Q={# (log)* B (D'*, U®).

The implied constants depend on k and s. The factor Q" may be omitted
from (4.2} if every y is proper.

Tor the proof we need only remark that the integrals in (4.8) amd
(4.9) are negligible from T to infinity.
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Our next lemma is composed of Lemma 15 and Lemma 7.

LuMMA 16, Let U be D-spaced, b be a positive mtcgm Thew for any
M2 and any £ >0

(4.27) (B*(M, U2 < RV (DM)"(M"+ B} (D', UW)).
The implied constants depend on b and =

Proof. Let F(s, x) of the form (2.1) attain the bound B*(M, U2).
By Lemma 7 (with & = 5) and Hélder’s inequalify
(£.28) (B (F, USf" < P Ey(F, UY) < RO N"H,(H, U?).
We take H{s, y) to be the H series of (4.7) with N replaced by N®. By
Lemma 15 the right hand side of (4.28) is
< RQ’EI—ZNI)& (Rl\rﬂb L NI)DB_Bz.(Dlp“l’ U(ﬂ)))
<& R4b—ll\rb+be(Nb+_DnB;ﬁ(DUZJ U(I)))’ .
whers we have used (2.17).
B M, U.

Our pext lemma combines Lemma 16 with the- reflection argument
of Lemma 9.

- Lmmma 17. Let U be D~s;pa,ced, and let o and b be positive integers.
If either U is pure or

{4.30) M D
we have for 1<

(4.31)

(4.29)

The lemma follows by the definition of

<20 and any e > 0
Bi(M,U) < R*MPAM*P(D M) 4 B DS D .
+R1 k;‘tmblu'k,’i( 2(1)1/9, U(l))).ﬁ:[:Lab(DM)e_
The implicd constants depend on a, b and s. '
Proof, By Lemmas 2, 4 and 9 we have
(4.32)  B(M, U)< BB (M, )" < B (B(M=, U)o
< BVDMY (RM®+ R*+ M B* (D] M°, U},

Substituting for BY(D/M*, U®) from Lemmsa 16 gives the case k =1
of {4.31), and the geneml case 1< k< 2¢ follows from the case k& =1
by Lemma 3.

Next we combine Lemmag 10 and 17.

Lmvmea 18, Let F(s, x) be a fiwed Divichlet polynomial of the form (2.1),
let U be pure and D-spaced and let V = V(F, U) Then for any positive
integers ¢ and & and for any > 0

(4.33) B, (D', UW) < (GN [V D" (DNY + R V2 DM (D) +
’ +R (G_Nllz/Vg)ch,’(M.—i)_DzI;'(ng) (.D.N)s
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If
{4.34) Ne=D

the second and third terms on the vight of (4.33) may be omitted. The implied
constants depend on ¢, d and e

Proof. Suppose first that
(4.35) |
holds for each {¢, ¥) in U. Then by Lemmas 11 and 10
(4.36) B (DY, UMY < B, (D2, U) < (GV2F(DRN*°B, (D”"N" .

If (4.34) holds, the result is immediate from Lemma 3. If not, by Lemma
T withe=1bb=d k=

(4.37)  B,(DEN°, T)
< (DNC)B(DEIENG_I_ Rt plia + Rlullﬂd_Dl]@l\chz (BE(DIIQJ U(l))}l,i_!d)’

0L a<1/2

and comparison of (4.36) and {4.37) gives (4.33). In general we divide
U7 into .0 (I) sets on each of which

(4.38) - | B<o< prifal

holds for some 8, and apply the result to Fi(s, x) = F{s—f, ) with

(4.39) G, <GN"¥ < @,

5. A new large values theorem. In this section we state our main
result and indicate how the zero-density theorems follow. The first bound
(5.1) of Theorem 2 ig the Theorem of Jutila [9]; the second uses Lemmas
10 and 17, and so depends. on using F(s, y) itself as a peak-function.
Theorem 2 of this paper is stronger than Theorem 2 of [6] when a Is large;

" but at « = 3/4 (5.4) reduces to the estimate B < D which holds when-

gver U is- D-spaced, whereas at « = 3/4 the result of [6] reduces to
Temma 5 and so remaing nontrivial. As b-=oo (5.1) reduces to Lemma 13.

THROREM 2. Let T be pure and D-spaced, and let N = 2. For any posi-
tive integers @, b, any kin 1 <k 2a and any ¢ > 0
(5.1) B,(N, U) < Rl——i’r,"z:zNHZ (DAT)B + B ﬁk;mb.DkM'a(D.N)s-{—
+ Rl—kl&akaléDklsab (_DN)!,

and for any positive infegers ¢, d
(5.2) Bk(N U) < B k.'zaNkI”(DN) 4-R- klmb_Dk,'ém(DV) +

_|_ R(R lNab+c_Dllﬂ)k](4ab-L?c) (.DN)
) +R(_R‘”dl\’mb_l))kf(8dbd+4“l) (DN)E"i-

+ 1.31\71!2 D£U(2ab(2d-1)+2ﬂi) (.DN}B.
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The ferms involving @ in (5.2) may be omitied if

(8.3) : ' N*=D.

If Fs, ) is o fived Divichlet polynomial of the form (2.1) and o is defined
by (2.23) then

(54) R < Nza(l—a) (DN)5+LTEab(l—ZH)DD(DN)5+ _N2ub(3—4a)D (DN)B

If moreover for some 6> 0
(5.5) yta—3)aab2o-2ab/d) 3, e

for some sufficiently large constant in the inequalily, depending on a, b, ¢, d
and 8, then

(56) R < Nﬂa(l—a} (_D_N}s+_Nzab(l—ﬁu)Db(DN)a+N3ab+26—(4ab+2c)aD1/2 (,DN)s—i-
+ N2d(3ab-|;c—'(4ab+2c)a)Dd(DN)a_

If (5.3) holds, the condition (5.5) is not required and we may omit the last

term in (5.6). The exponent s in (5.6) depends on 8, but may be made arbitrarily

- small by choice of 8. The implied constants depend on a, b and e, and, whem
. appropriate, also on ¢, d and 5.

Proof. Affer Lemma 17 we need only estimate B} (D'?, U“)) Jutila’s
estimate (5.1) follows by Lemmas 2, 4 and 5 since

(5.7)  By(D", UY) < B (BHDY™, UM)"® < R D*(By(D
& RU?‘_DII?:'{'E,

. U(I])JIIZ

and {5.1) implies (5.4). For the second assertion it is simpler to prove
(5.6), from which (5.2) ean be deduced by the process used fo prove Lemma
3. By Lemma 17 with k¥ = 1 we have either

(58) R‘V—Gulf‘) (N U) 2 Rl—l/zalez(DN)e _i_rlel;meIMa(I)N)s?
which gives the first two terms in (5.6), or .
(5.9) (Rvg—llz)éab < (B(N, U)‘)mb < R4ab_1N(l_b(DN)EB:(D1I2, U(l))_
By Lemma 18

(5.10)  R(VYGN)®(DN)™® < B,(D"*, UW(DN)—*

G.N/Vz cl)l/z _|_R1—112£1 G/VZ)G_DIIZ _I"R GATI/E/'[]z Zcfll(zd—l)DcIf(4d—2)
where only thg firgt term is needed if (5.3) holds. Thig gwes the co:udmon
(5.5) and the last two terms in (5.6).

To prove the zero-density results we must VEIIZEV (2.28) for the ap-

propriate ranges of ¥ and a. The consequences of Theorem 1 were Worked
cut as Theorem 3 of [61; we quote part as our next letmima.

icm
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Lumma 19. Let F(s, x) be of the form (2.1), let T be pure and D-spoced
and let a be given by (2.23). Suppose for some positive infeger a = 2
{5.11) N D N
Then (2.25) holds for any 6>0 and

'_ a > (3e—1)/(4a—2)1 4,

the implied constant depending on a, & and 2

For large a, the condition (5.12) is
(5.18) a > 3/44+1/8a+0(1/a%)

Using Theorem 2 we can réplace (5.13) by

(5.14) a>3/44-1/12a+ 0(1[a?)
by chcoéi.ng b ~3afd, ¢ ~af2 _

Immma 20. Under the hypotheses of Lemma 19, {2.2B) holds for
(5.15) az4/5+48 if e=2,
(5.16) a=11/14-+6 = 0.7857 ... if a=3,
(3.17)  a>BB7[718+4-8 = 0.7789... if  a=4d,

and for any positive integer m

(5.18) a3 3/d--m/(48mi—d0m+7) - i a=4m—2,
(5.19) o> 3/4-+1/(48m—20)+ 3 i a=dm—1,
(5.20) a3 3/A+(2m41)/(96miL16m—4) L8 if & =4m,

(5.91) > 34+ (@mL)j(06mtL48m—4)-L 8  if &= dm+tL.

The implied constants depend on a, § and =
Proof. These conditions follow from Theorem 2, using the following

choices of b, ¢ and 4.

g |2i13i414m—2 [4m—1|4m dm 41
b 12|3|3]3m—1]|3m 3m+1L | 3m+1
e |112|22m—1]2m 2m+1 | 2m+1L
d |81 — 7| large — — —

The range (2.26) corresponds to ¢ >

2in (11) and (12), and to &> 4
n (L3). ' :
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