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Atkin-Lehner involutions
and class number residuality

by

M. A. KexgU (Ibadan)

1. Introduction. Let ¥,(N) denote the set of isomorphism classes
of pairs (; F), where E is an elliptic curve defined over C, the field of
complex numbers, and F a cyelic group of order & on E.

Y, (N) corresponds to I'y(¥N)/H, where H is the upper half plane and

) = {aeSL(?,Z){ o = (; :) modN}.

Denote by Xo(X) the compactification of ¥,(N). It is well known fhat
Xy(N) is an algebraic curve defined over ¢, A non-cuzp point of X,{¥),
rational over an algebraic number field %, corresponds to a rational class
and each rational class has a member (#; F), rational over k.

The genus po(N) of X (W) is easily computed from the Riemann—
Hurwitz formula. Tet g be the index of IG(N) in SL(2, Z), . (vesp. py)
the number of elliptic fixed points of order 2, (vesp. 3} and ., the number
of cusps on X, (V). Then

# M2 Mg Moo

B =1+ —T -5 7

For each positive integer N7, N'|¥ and (N/N", ¥') = 1 there is an invol-
ution Wy of X, (N).

These Atkin—Lehner [1} involntions form a group 4 of order 27,
T.et & be a subgroup of A. The quotient space X (N) is also an algebraie
curve defined over @. The genus p' () of XF{H) can be computed using
again the Riemann-Hurwitz formmla by regarding X (N) as a covering
of degree 2' over X¥(N). po(N) and p,(N) are related, thus

2 (po(M)) —2 = 2(2p)() —2) + D(e,—1)
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where B is the set of ramification points of the covering and e, is the
ramification degree.

Each ramification point has degree 2 and the number of ramifi-
cation points can be expressed as a sum of multiples of the clags-number
of some complex guadratic field.

The formula we shall prove next was f]rst proved by Newmam 7]
in the case where (N, 6) = 1. By using the moduli property of X, (N),
Ogg [8] removed this restriction, although he did not state the formula
in full. Apart from specific references to Ogg [8] the anthor would like
to acknowledge his debt to Andrew Ogg from which he had learnt a Iot
abont modular eurves. -

2. Atkin-Lehner involations of X (¥). Let

N =N'N", ﬁhere
(N, N'"} = 1, the involution @ = wy = (%T —3) of X,(N) factors as
w=ww' (1w —'wN)
The following theorem is proved by Ogg [8]:
TaroREM 1. W' haes no fized points of cusps (given N' > 1), except.

for the case N' = 4, where the cusps (o:)} with " = (d, N') = 2, are fizved.

U/

Following Ogg we determine the non-cusps points which are fixed
by W'

Let (E; G) represent a point on Yo (N). I (wy, w,) iy a basis of B,
with w,/N generating ¢, and v<H, then the orbit of v under I (W) is the
point of ¥ (N} represented. Buppose ¢ = €' 4 €' where the sum ig direct, ¢’
(resp. €") of order N (resp. N''). W’ sends the isomorphism class of (H; €)
to the class of (£; G) where £ = B/ and 0 = HEy. 400"

If (E; C) represents a fixed point of W', then (E; 0) and (&;
isomorphic so that F admits complex multiplication by A

C) are

0> ' —> B2 B—5 0
guch that A* == N'-p, where g is an antomorphism of B and A(C") = 0"
I ¥'>3 thenp = —1 and A = &V —~.
PN =2 1= V—2 or 1+ and its conjugates.

If ¥ =3, =V =3 and its conjugates. _
Considering only the first condition: if ¥’ > 3 there are

B(—N)+h{—4N") it
h(—4N")

?(N’) _ N =3(4),

isomorphism classes of such eurves. IE N = 2 or 3 there are 2 such classes.
. To this we add the second condition that 1(0") = 0" which is the same
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a3 to require 4 —u for some integer « to contain in its kernel the subgroup ¢

of order N, This requirement is multiplicative in the prime divisors of N”’.
If N' > 3 and N is odd, Ogg [8] has shown that there are

distinet fizxed points of W' whieh are non-cusps.

F(NY) = T(X)

If N'>3 and &' is even: for p = 2 we have (1 +( A )) distinet
cyclic groups €' of order every power of p. P

If ¥ =1(4), ¥ —N" = (g) for all 0dd integers, where g is the unique
prime divisor of norm 2 in Q(I/ﬁ). V—-N—gzis of odd degree if »
is even so that tliere is only one eyclic subgroup of order 2 left invariant
by ¥ — N,

Furthermore if 4N, since the degree of ¥ /- N —g for any integer z
is not divisible by 4, there is mo hubgloup of order a power of 2 higger

than 2 which is left invariant by ¥V —N'. If ¥ > 8, N’ 2= 1(4), the number
of fixed points of W’

) (N

F(N’) = pats
1o it 4[N,
Suppose N’ = 3(8). ’
_i— ",‘ - £
For B with endomorphism ring Z[L—N], V —~N tx is divis-

ible by 2 for # odd, so that H, is contained in the Lernel of vV — +w
Thig yields 3 subgroups of order 2

Whereas for # with endomorphjsm ring Z[V — N, V—N+z for »
odd contains in its kernel a eyclic group of order 4, cyeclic since 24V — N +

in Z[V — N'], it can be eagily shown that there are two such eyclic subgroups
of order 4 although they have a unigue subgroup of order 2.
Bo it ¥N'"is even, N = 3(8) we have :

— N

. -6h(—N’)l l(l-[-(——-——)) if  B+N",

.F(N')_ = o E‘%ﬁ P -
0  otherwise.



icm

4 M‘, A. Kenkun

SBimilarly if ¥ is even and N’ = 7(8)

—4
47L(--_N}H(l + (———
14

¥ )) i 2N,
F(N;’): podd

—4N" '
6h{ - 14— it 4|N.
{ o )H( (p ))
BN
podd )
1+V -3
2]

For B with endomorphism ring Z[ ], V' —3 and its associ-

ates have the same kernel ¢ and the automorphism group of the class
represented by (F; C) iz of order 6. As above if ¥ is odd, adding the
point corresponding to ¥ with endomorphism ring Z[¥ —3]

»(3) =2H(1+(—p12)).

PN

f N is even, as ib the case when N’ = 3(8), ¥ —3 leaves all the 3 sub-
_groups of order 2 invariant, but these are permuted by the associates
of ¥-~3 so that all the 3-subgroups correspond to one point on Y,(N).
For F with endomorphism ring Z [l/»u] there is only ¥ —3 and it
" behaves like ¥ — N’ for other values of N, ¥ =3(8

) _ 15
2 l l (1—!—( ! )) it 3+N,
F(3) ={ pin~ 2 I

podd

0 otherwise.

2{2) can be treated similarly. We have (¥; €), F with endomorphism ring
z [—V2] and the automorphism group. of order 2, and (H; ¢}, H with
endomorphism Z[i] so that the antomorphisn group of the class rep-
resented by (F; (" is of order 4. '

o= 100 [0+ 57)

DN N

TaroreM 2. Lat F(N’ be number famed points of W'. Then if N> 3,

N odd
H —4N
PN A F

F(N') = o(F)

Atkin—Lelmer involutions and class number residualily hi

“For N =1(4}, ¥'' even

[ 4N .
H(:L-z— (—)) if 44N,
PNy = h( —4N")] g 4

podd
o if 4N,
For N' = 3(8), N even

4 TY
1+ if 81N,
F(N') = 6h(—X") [H( ( )) v

DN
10 otherwise.
IfN' =7(8), X' eren

( — 4N
s [ [+ oo e,
[I+(55) v =

_4ﬂ‘rl
-GH(I—I—( )) if 4N, p odd;

F(N') = r{—XN")

\  Bv 4
12 '
[l e
F(3) = m ?
- podd

0 otherwise;

F(z):]&”( ( ))+H(1+( ))

PN

Furthermore for a fized N,
distinet N’s.

Proof. The first part follows from the preceeding and the latter
half follows from the fact that each order of a complex quadratic field
is involved at most once, 50 that the isomorphism class of any elliptie
curve is involved with only one value of A.

COROLLARY. The ramification points of the covering Xo(N)—X{ (N)
are oll of degree 2 and they are all at non-cusp poinis of X, (N) except where
w e U for N' = 4 where cusps with d = 2 are fiwed.

, no point of ¥o(N) 48 a fized point of W’ for fwo

3. Class mwnbers and congruences modulo powers of 2. In this
section we deduce the congruences satistied by the class-number of some
complex quadratic fields modulo power of 2.

To do this we conmder the algebraic cnrves XO(N and X (N),
where A is the group generated by all the involutions of Atkin—Lehner
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6ype on X, (I). et po (N} (resp. p; () be the genus of X,(I) (resp. X (). (ix) 7(~8pg) = 4-+6k(—4p)+6h( —4g)+h(—4p)(16)
As stated earlier, if p =q(16),p =5(8) and (plg) =1;
2p (N} —2 ﬁzi(ﬁpé(N)ﬂ‘%)JrZ(@s—l) : . (%) k(—8pg) =44 h{—4pq) + 6h( —8p)+ 64 (—8g)(16)
seB ' ‘ if p =q{16), p =35(8) and (pfg) = —1;
where £ = the number of distinct primes dividing N, B the ramification - (xi) A(—8pq) =12-6R({—4p) +fh( —4g) -+ h{ —4pg) (16)
points of the covering X,(¥)->X#£(N) and e, the ramification degree. if p =q(16),p = 5(8) end (p/g) = 1;
We a.pply this to the case 4+N so that B is obtained as in Theorem 2. . (xii) 2(—8pq) =12 +h{—4pg) -6k —8p) - 6h{ —8g){16)
¢, = 2 for all z¢B s0 that if p = q(16),p == 5(8} and (p/g) = —~1.
2(po(N) —1) = 2!y (N) —1) +card B. ' -~ Proof.
i s . f+1 : N 3{p+iyg+l)  Hs gz He
Dividing through by 2 _ P"(‘\):l_'_WTPTF?B_d?_ if N = 2pq.
card B . , Ny—1
—Fr T R -1 L 22 - - For p =g = 1{4),
‘ ' e =4, ;=0 and p,=35.
Using the fact that p,(¥) is an integer, we deduce congruences satisfied So :
by the class number h{—4N) for varions XN. ‘ ; (p+1}(g+1)
There are some limitations of this method. If N is divisible by ¢ - Do(¥) =14 —— " —4—1,
distinet primes one can get a congruence to 2'*!' at most. For some N :
especially N = 3(4), the congruence can be only proved to a lower power PN =1 _ (p+1){g+1)—20
of 2. 8 32
TAROREM 3. Let p, g be distinct p = q =1(4). We have : It p =g(8), » =1(8)
(1) h(—8pg) == 4h(—4p)+4h(—Lg) +3h( —8p) +8h( —8g) + py(N)—1 1
+h{—4pq)(16) if p =¢ = 1{16) and (plg) =1; ‘ s ‘% +4.
li) h{—8pg) = h{—4pq)(16) - It p = ¢(16), p =1(8) ,
if p =g =1(16) and (pjg) = —1; 2N 1
. _— .
(iii) 2(—8pg) = 8-4h( —4p)-+4h( —4q)+ 3R ( —8¢) +3h(—8p) + 8 ,

+ 2 —4pg)(16) :
if p =q(16),p =1(8) and (p/g) = 1;

(iv) B{ —8pg) = 8+ h( —4pq) (16) ' ‘ ' card B = h{ —8pq)+ 8+ 4h(—4p) - 4h( —4g) + 1{ —8p)+
if p=q(16),p =1(8) and (pjg) = —1;3 o +h(—4pg)+h(—8¢) # (p/g) =1,
(v) h(—8pg) = £+ 3k( —4pg) + 6h({ —8¢)(16) . - '
if p-g =6(16), ¢ =1(8) and (pflg) = —1;

Suppose p =g =1(8). Using the formula of Theorem 2

card B = 8§+ R{—4pg)+h{—8pg) i (pl/g) = —1.

(vi) h{—8pg) = 4+ 6h( —4p) +2h( —4q) + 31 ( —dpg) + 6k ( —8g)(16) - This gives (i)-(iv) in Theorem 3 when combined with the above value
if (plg) =1,p+q =6(16) and ¢ = 1(8); of (m(X)—1)/8. ) -
(vii}) h{—8pg) =12+ h(—4pq)-+6h( —8g)(16) Suppose p =5(8), ¢ =1(8).
ifp= 0(8) g =1(8), p-+q # 6(16), (pfg) =—1; cardB = 4h{—4pg) -2k (—8q)+R(—8pg) i (p/g) = —1,
h{ —8pq) = 1 ¥ 20— - . .

if | p/q =1,p —ao(S), g =1(8) and p+g 7 6(16); o it p/q) = 1.
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On the other hand
M-1 1
Bl L o
3 2 P

These give (v)-(viil) of the theorem.
Suppose p =q = 5(8). If (p/g) =1

cardB = 4+ 2h( —4p)+2h( —4q) +h(
It (plg) = —
card B = 4+ h(—pg)-+2h{ —8p) + 2h(

Po—1l 1 . —
e HZ i p=g(16),

Po—1

iII

5(16), ¢ = 1(16) or
13(16), ¢ = 9(16).

—4pg) +h{—S8pg).

—8q)+ h{~—~8g)+h{—8pg).

Z it p 2 q(18).

This gives (ix)-(xii) of the theorem.

THEOREM 4. For p, q distinct primes p =gq = 3(4). We have the
Jollowing: '

(i) FPor p =q =3(8)

h{—8pg) = 12+ 4h(—q)+3h(—4pq) +6R(—8p)(16) if (p/g) =1;
(it} For p =g =17(8)
h(—8pg) =8+h(—q)+3h{—4pg)-+6h(~8¢)(16) if (p/g) =1;

({ili) Por p =3(8), ¢ = T(8).
h{—8pg) = 8+8h(—g)-+3h(—4pg)(16) if
= 8L 12h({ —p) -+ 8A(
Proof. As in Theorem 3

Po(N) =1

(2/g) =1
—4pg)+6h(—8p)(16) i (p/g) = —

LD+l
4
and we have that

p(¥)—1 (Z i p=g=3(8),

€
8 I+2Z otherwise.

card B ave also evaluated as in the previous theorem.

In Theorems 3 and 4 one can get the exact residue class of A( ~ 8pg)
mod16 by using the results of Hasse [5], Barrucand and Cohn [2] and
Brown [3] or proving them by the method of this paper.

The case of N = pgr, where p, g, r are primes all congruent to 1mod4,
can be similarly treated.
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Theorem 2 i3 of some interest by itself. One other possible applica-
tion of it is that one can show that there are only finitely many involutory
Weil elliptic curves as defined recently by Maznr an Swinnerton-Dyer [6].
The proof enables one to actually determine them all. For instance it
is easy to show that Table 1 of [6] contains all those with prime power
conducbor.

In this case, it is easy to show that they have a lot of rational points
so that the Mordell-Weil group of each of them iz infinite. ¥With some
Inck it might be possible to show that the rank is exactly one as one wounld
expect from the results of {6]. We hope to treat this in a subsequent paper.
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