On the size of prime factors of integers

by

J. D. BOVEY (Cardiff)

1. Introduction. For n a positive integer and y>1 a real number we define

$$d(y, n) = \max\{d| d|n; p|d \text{ and } p \text{ prime} \Rightarrow p < y\}$$

and $\gamma(y, n) = (\log d(y, n))/\log y$.

In this paper we make more precise some results of Erdős [4] on the size of $\gamma(p, n)$ where p is a prime factor of n. For real $u \ge 0$ define

$$\varphi(u,n) = \sum_{\substack{p|n\\ \gamma(p,n)>u}} 1,$$

we then have the following "Turán's method" result:

Theorem 1. For $\varphi(u,n)$ as defined above and $\tau(u)$ defined below we have

(i)
$$\sum_{n \le x} \varphi(u, n) = x(1 + o(1))\tau(u)\log_2 x + o(x),$$

(ii)
$$\sum_{n \leq x} \left(\varphi(u, n) - \tau(u) \log_2 n \right)^2 = x \left\{ o\left(\left(\tau(u) \log_2 x \right)^2 \right) + O\left(1 + \tau(u) \log_2 x \right) \right\}$$

uniformly in u as $x \rightarrow \infty$.

Here and elsewhere in this paper $\log_k n$ denotes the k-fold iterated logarithm.

The function $\tau(u)$ is defined as follows. Let $\varrho(u)$ be the real valued function defined by the following properties

(1)
$$\begin{cases} \varrho(u) = 0 \ (u < 0); \ \varrho(u) = 1 \ (0 \leqslant u \leqslant 1), \\ u\varrho'(u) = -\varrho(u - 1) \ (u > 1); \ \varrho(u) \text{ is continuous for } u > 0. \end{cases}$$

De Bruijn [3] has studied the asymptotic behaviour of $\varrho(u)$ in some detail and in particular has shown that

(2)
$$\varrho(u) = \exp\{-u\log u - u\log_2 u + O(u)\} \quad \text{as} \quad u \to \infty.$$

^{5 -} Acta Arithmetica XXXIII.1

We define

$$\tau(u) = e^{-\gamma} \int_{u}^{\infty} \varrho(v) dv.$$

For large $u, \tau(u)$ behaves very like $\varrho(u)$, in fact we have

(3)
$$\tau(u) = (e^{-\gamma} + o(1))(u+1)\varrho(u+1) \quad \text{as} \quad u \to \infty.$$

A proof of (3) goes as follows

$$\tau(u) = e^{-\gamma} \int_{u+1}^{\infty} \varrho(v-1) \, dv$$

$$= -e^{-\gamma} \int_{u+1}^{\infty} v \varrho'(v) \, dv \quad \text{by (1)}$$

$$= -e^{-\gamma} [v \varrho(v)]_{u+1}^{\infty} + e^{-\gamma} \int_{u+1}^{\infty} \varrho(v) \, dv$$

which gives

$$\tau(u) - \tau(u+1) = e^{-\gamma}(u+1)\varrho(u+1).$$

Summing we get

$$\tau(u) = e^{-\gamma}(u+1)\varrho(u+1) + e^{-\gamma} \sum_{k=2}^{\infty} (u+k)\varrho(u+k).$$

It can easily be verified from De Bruijn's asymptotic formula for $\varrho(u)$ [3] that $\varrho(u+1) \ll \varrho(u)/u$ and (3) follows.

Put

$$P(n) = \max_{p|n} \gamma(p, n).$$

Erdős [4] has shown that for almost all n (i.e. on a sequence with asymptotic density 1)

(4)
$$P(n) = (1 + o(1)) \log_3 n / \log_4 n.$$

Using Theorem 1 we can obtain a more precise result than this. For $x > e^{\epsilon}$ we define $\xi(x)$ to be the root of

$$\tau(\xi)\log_2 x = 1.$$

THEOREM 2. For almost all integers n

$$P(n) = \xi(n) + o(1).$$

Proof. It follows from (2) and (3) that for any $\varepsilon > 0$

$$\tau(\xi(x) + \varepsilon)\log_2 x \to 0$$
 and $\tau(\xi(x) - \varepsilon)\log_2 x \to \infty$ as $x \to \infty$

but this, combined with the slow rate of growth of $\xi(n)$ and with Theorem 1,

implies that for almost all n

$$\varphi(\xi(n) + \varepsilon, n) = 0$$
 and $\varphi(\xi(n) - \varepsilon, n) \to \infty$

and the result follows.

In the same paper Erdös outlined a proof that there exists a continuous function $\varphi(u)$ such that for fixed u and almost all $n \varphi(u, n) = (1+o(1))\varphi(u)\log_2 n$. It follows at once from Theorem 1 that this result holds with $\varphi(u) = \tau(u)$ and in fact we have

THEOREM 3. For almost all integers n

$$\sup_{u \geqslant 0} \left| \frac{\varphi(u, n)}{\log_2 n} - \tau(u) \right| \rightarrow 0.$$

Proof. Let $\varepsilon > 0$, it is enough to show that for almost all n and all $u \ge 0$

$$|\varphi(u,n)/\log_2 n - \tau(u)| < \varepsilon.$$

Choose an integer N>0 and a real number A>0 to satisfy $\tau(A)<\varepsilon/4$ and $A/N<\varepsilon/2$. By Theorem 1 (i)

$$\sum_{n \leqslant x} \varphi(A, n) / \log_2 n \leqslant \tau(A) x + o(x) \leqslant (\varepsilon/3) x \quad \text{for large } x,$$

and so we can certainly say that for almost all n and for $u \geqslant A$

$$|\varphi(u,n)/\log_2 n - \tau(u)| < \varepsilon.$$

Next, by Theorem 1 (ii), we can say that for almost all n and for integer k with $0 \le k \le N$

$$\left|\frac{\varphi(kA/N, n)}{\log_2 n} - \tau\left(\frac{kA}{N}\right)\right| < \frac{\varepsilon}{2}.$$

For $0 \le u < A$ there is some k such that $kA/N \le u < (k+1)A/N$ and we have

$$|\varphi(u,n)/\log_2 n - \tau(u)| < \frac{\varepsilon}{2} + \tau(kA/N) - \tau((k+1)A/N) < \frac{\varepsilon}{2} + \frac{A}{N} \leqslant \varepsilon.$$

We can also determine the average value of $\gamma(p, n)$ for almost all n

$$\frac{1}{\log_2 n} \sum_{p \mid n} \gamma(p, n) = -\frac{1}{\log_2 n} \int_0^\infty u \, d\varphi(u, n)$$

integrating by parts

$$=\int\limits_0^\infty \frac{\varphi(u,n)}{\log_2 n}\,du,$$

and it is not hard to show using Theorem 3 and Theorem 1 (i) that for almost all n

$$\int_{0}^{\infty} \frac{\varphi(u,n)}{\log_{2} n} du = (1 + o(1)) \int_{0}^{\infty} \tau(u) du = (1 + o(1)) f'(0) = 1 + o(1),$$

with f(z) as defined in §2. Hence for almost all integers n

$$\frac{1}{\log_2 n} \sum_{p|n} \gamma(p, n) = (1 + o(1)).$$

If $y > w \ge 0$ are real numbers we use the notation $\sum_{n}^{w,y} a(n)$ to denote the sum of a(n) only over n with no prime factors < w or $\ge y$. We abbreviate $\sum_{n}^{0,y} by \sum_{n}^{y}$. To prove Theorem 1 we have to estimate sums of the form

$$\sum_{a>u}^{w,y}\frac{1}{a}.$$

This could probably be done using the methods of de Bruijn ([1] and [2]), but instead we use a different method using Fourier transforms and a result borrowed from probability theory (Lemma 3). This has the advantage of being fairly self contained and also enables us to get better error terms than I was able to get using de Bruijn's methods. In § 2 we prove some lemmas and Theorem 1 (i), then in § 3 we complete the proof of Theorem 1.

2. For real u and real y > 0 we define

$$F_y(u) = \prod_{p < y} \left(1 - \frac{1}{p}\right) \sum_{a \leqslant y^u} \frac{1}{a},$$

then for each y $F_y(u)$ is a distribution function with support in $(0, \infty)$. For complex z with $\text{Re } z < \log y$ we define

$$f_{y}(z) = \int_{0}^{\infty} e^{uz} dF_{y}(u).$$

If we write the integral as a sum we see that

(5)
$$f_y(z) = \prod_{y \in y} \left(1 - \frac{1}{p}\right) \left(1 - \frac{1}{p^{1 - z/\log y}}\right)^{-1}$$

and so $f_y(z)$ is analytic for $\text{Re}z < \log y$.

Finally we define

(6)
$$f(z) = e^{-\gamma} \int_{0}^{\infty} e^{uz} \varrho(u) du.$$

LEMMA 1.

$$f(z) = \exp\left\{\int_0^z \frac{e^s - 1}{s} ds\right\}.$$

Proof.

$$\begin{split} f(z) &= e^{-\gamma} \int_0^\infty e^{(u-1)z} \varrho(u-1) \, du \\ &= -e^{-\gamma} e^{-z} \int_1^\infty e^{uz} u \varrho'(u) \, du \quad \text{by (1)} \\ &= -e^{-\gamma} e^{-z} \frac{d}{dz} \int_0^\infty e^{uz} \varrho'(u) \, du \quad \text{as } \varrho'(u) = 0 \text{ for } 0 < u < 1 \\ &= -e^{-\gamma} e^{-z} \frac{d}{dz} \left\{ \left[e^{uz} \varrho(u) \right]_0^\infty - z \int_0^\infty e^{uz} \varrho(u) \, du \right\} \\ &= e^{-z} \left(z f'(z) + f(z) \right), \end{split}$$

i.e.

$$\frac{f'(z)}{f(z)} = \frac{e^z - 1}{z}.$$

Hence

$$f(z) = c \exp\left\{ \int_0^z \frac{e^s - 1}{s} ds \right\} = cg(z) \text{ say.}$$

Integrating (6) by parts gives

$$zcg(z) = zf(z) = e^{-\gamma} [e^{zu} \varrho(u)]_0^{\infty} - e^{-\gamma} \int_0^{\infty} e^{zu} \varrho'(u) du.$$

If we put z = it and let $t \to \infty$ the integral on the right tends to 0 and we get

$$e^{-\gamma} = c \lim_{t \to \infty} itg(it) = ce^{-\gamma}$$
 (see [3] for example)

and so c=1.

If we put z = 0 in (6) we see that

$$e^{-\gamma}\int\limits_0^\infty \varrho(u)du=1$$

and so if we define $F(u) = e^{-r} \int_{-\infty}^{u} \varrho(w) dw$ then F(u) is a distribution function.

LEMMA 2. For any complex number z

(i)
$$\lim_{y\to\infty} f_y(z) = f(z).$$

In addition for real t and integer $y \geqslant 3$ with $0 \leqslant t \leqslant \log y$

(ii)
$$|f_y(it) - f(it)| = O(\log^{-1} y) \frac{t}{t+1},$$

(iii)
$$\left| \frac{f_y(1+it)}{f_{v}(1)} - \frac{f(1+it)}{f(1)} \right| = O(\log^{-1} y) \frac{t}{t+1},$$

(iv)
$$|f_y(1) - f(1)| = O(\log^{-1} y)$$
.

Proof. Let $\sigma = \text{Re}z$ and $\log y > 2\sigma$. We will show that

(7)
$$\frac{f_{y}'(z)}{f_{y}(z)} = \frac{e^{z} - 1}{z} + O\left(\frac{e^{\sigma}}{\log y}\right).$$

If we integrate (7) and observe that $f_{\nu}(0) = f(0) = 1$ we see that $\log f_{\nu}(z) \to \log f(z)$ as $y \to \infty$ and (i) follows. The proofs of (ii), (iii) and (iv) are very similar and so we just prove (iii). Write

$$g_{y}(t) = \frac{f_{y}(1+it)f(1)}{f(1+it)f_{y}(1)}$$

then

$$\frac{g_y'(t)}{g_y(t)} = \frac{1}{i} \left(\frac{f_y'(1+it)}{f_y(1+it)} - \frac{f'(1+it)}{f(1+it)} \right) = O(\log^{-1} y) \quad \text{by (7)}.$$

If we put

$$G_{\boldsymbol{y}}(t) = \int\limits_0^t \frac{g_{\boldsymbol{y}}'(x)}{g_{\boldsymbol{y}}(x)} \, dx$$

then

$$G_{\boldsymbol{y}}(t) = O(t \log^{-1} y)$$
 and $g_{\boldsymbol{y}}(t) = \exp G_{\boldsymbol{y}}(t)$.

Hence

$$g_y(t) - 1 = G_y(t) \{ \exp G_y(t) - 1 \} / G_y(t) \} = O(t \log^{-1} y)$$

for $t \leq \log y$. Multiplying by f(1+it)/f(1) we get

$$\frac{f_y(1+it)}{f_y(1)} - \frac{f(1+it)}{f(1)} = tf(1+it) O(\log^{-1} y)$$

and (iii) follows as tf(1+it) is easily shown to be bounded.

We now prove (7).

$$\begin{split} \frac{f_y'(z)}{f_y(z)} &= \sum_{p < y} \frac{\log p}{\log y} \, p^{(\varepsilon / \log y) - 1} (1 - p^{(s / \log y) - 1})^{-1} \\ &= \frac{1}{\log y} \sum_{p < y} p^{(\varepsilon / \log y) - 1} \log p + O\left(\frac{1}{\log y} \sum_{p < y} \frac{\log p}{p^{2(1 - \sigma / \log y)}}\right) \\ &= \frac{1}{\log y} \sum_{p < y} p^{(\varepsilon / \log y) - 1} \log p + O\left(\frac{e^{\sigma}}{\log y}\right), \end{split}$$

as the sum in brackets is convergent for $2\sigma < \log y$. If we write the sum above as an integral we get

$$\frac{f_{\boldsymbol{y}}'(z)}{f_{\boldsymbol{y}}(z)} = \frac{1}{\log y} \int_{1}^{y} x^{(z/\log y) - 1} \log x \cdot d[\ln x] + \frac{1}{\log y} \int_{1}^{y} x^{(z/\log y) - 1} \log x \cdot d[\pi(x) - \ln x] + O\left(\frac{e^{\sigma}}{\log y}\right),$$

where lix is the logarithmic integral

$$\lim_{\delta \to 0} \left(\int_{0}^{1-\delta} \frac{1}{\log t} dt + \int_{1+\delta}^{x} \frac{1}{\log t} dt \right)$$

and $\pi(x)$ is the number of primes $\leq x$. The first integral above is equal to

$$\frac{1}{\log y} \int_{1}^{y} w^{(e/\log y)-1} dx = \frac{e^{z}-1}{z}$$

as required.

If the second integral is integrated by parts it equals

$$\frac{1}{\log y} \left[x^{(s/\log y) - 1} \log x \left(\pi(x) - \operatorname{li} x \right) \right]_{1}^{y} - \frac{1}{\log y} \int_{1}^{y} \left(\pi(x) - \operatorname{li} x \right) x^{(s/\log y) - 2} O(\log x) \, dx$$

$$\leq \frac{e^{\sigma}}{\log y} \left\{ \frac{\log y}{y} \left(\pi(y) - \operatorname{li} y \right) + \int_{1}^{y} \left(\pi(x) - \operatorname{li} x \right) \frac{\log x}{x^{2}} \, dx \right\},$$

but by the prime number theorem $|\pi(x) - \ln x| \ll \frac{x}{(\log x)^2}$ and the result follows.

The next lemma is due to Esseen ([5], Theorem 2a). We have replaced the condition $|G'(u)| \leq M$ by $(G(u) - G(v))/(u - v) \leq M$ but the proof is the same.

LEMMA 3. If G(u) and H(u) are two distribution functions,

$$g(t) = \int_{-\infty}^{\infty} e^{iut} dG(u), \quad h(t) = \int_{-\infty}^{\infty} e^{iut} dH(u)$$

and $(G(u)-G(v))/(u-v) \leq M$ for all u and v then

$$|G(u) - H(u)| \leqslant \int\limits_0^T \frac{|g(t) - h(t)|}{t} dt + \frac{M}{T}$$

for all u and all T > 0.

We are now ready to obtain our estimate for $F_{u}(u)$.

LEMMA 4. For integer $y \ge 2$ and real $u \ge 0$

$$\prod_{p < y} \left(1 - \frac{1}{p}\right) \sum_{a > y^u} \frac{1}{a} = \tau(u) + O\left(\frac{e^{-u} |\log_2 y|}{\log y}\right).$$

Proof. For y=2 and u>0 the left hand side is zero but the error term is greater than the main term. For $y\geqslant 3$ write

$$\begin{split} c_{\boldsymbol{y}} &= \int\limits_{0}^{\infty} e^{\boldsymbol{v}} dF_{\boldsymbol{y}}(\boldsymbol{v}) = f_{\boldsymbol{y}}(1), \quad c = \int\limits_{0}^{\infty} e^{\boldsymbol{v}} dF(\boldsymbol{v}) = f(1), \\ G_{\boldsymbol{y}}(\boldsymbol{u}) &= \int\limits_{-\infty}^{u} e^{\boldsymbol{v}} dF_{\boldsymbol{y}}(\boldsymbol{v}) \quad \text{and} \quad G(\boldsymbol{u}) = \int\limits_{-\infty}^{u} e^{\boldsymbol{v}} dF(\boldsymbol{v}). \end{split}$$

Then $c_y^{-1}G_y(u)$ and $c^{-1}G(u)$ are distribution functions and

$$\int\limits_{0}^{\infty}e^{iut}d\big(c_{y}^{-1}G_{y}(u)\big)=c_{y}^{-1}\int\limits_{0}^{\infty}e^{iu(1+it)}dF_{y}(u)\,=\,\frac{f_{y}(1+it)}{f_{y}(1)}\;,$$

similarly

$$\int_0^\infty e^{it}d(c^{-1}G(u)) = \frac{f(1+it)}{f(1)}.$$

G(u) clearly satisfies the condition of Lemma 3 with $M = \sup_{x \in \mathcal{C}} e^u \rho(u)$,

and so by Lemma 2 (iii) and Lemma 3

$$|c_y^{-1}G_y(u) - c^{-1}G(u)| \leqslant \frac{1}{\log y} \int_0^{\log y} \frac{dt}{t+1} + \frac{1}{\log y} \leqslant \frac{\log_2 y}{\log y}.$$

Lemma 2 (iv) implies that $c_y^{-1} = c + O(\log^{-1} y)$ and so, for $y \geqslant 3$ and $u \geqslant 0$,

(8)
$$G_y(u) = G(u) + O(\log_2 y / \log y).$$

Now

$$\prod_{p < y} \left(1 - \frac{1}{p}\right) \sum_{a > v^u} \frac{1}{a} = \int_u^{\infty} dF_y(v) = \int_u^{\infty} e^{-v} dG_y(v)$$

integrating by parts

$$= [e^{v}G_{y}(v)]_{u}^{\infty} + \int_{u}^{\infty} e^{-v}G_{y}(v) dv$$

$$= [e^{-v}G(v)]_{u}^{\infty} + \int_{u}^{\infty} e^{-v}G(v) dv + O(e^{-u}\log_{2}y/\log y) \quad \text{by (8)}$$

$$= \int_{u}^{\infty} e^{-v}dG(v) + O(e^{-u}\log_{2}y/\log y) = \tau(u) + O(e^{-u}\log_{2}y/\log y)$$

as required.

Our final lemma in this section is due to de Bruijn [1].

LEMMA 5. Let $\Phi(x, y)$ denote the number of integers $\leq x$ all of whose prime factors are $\geq y$, then

$$\Phi(x,y)-1=x\prod_{p< y}\left(1-\frac{1}{p}\right)\psi(x,y)$$

where

$$\psi(y^u, y) = 1 + O(e^{-ua})$$
 for $y \ge 2, u \ge 0$

and a an absolute positive constant.

Proof. For $u \ge 1$ this follows at once from [1], 1.16. For $0 \le u < 1$ the result is trivial as $\Phi(x, y) = 1$ if x < y.

We are now ready to prove Theorem 1 (i). If we write

$$\delta(u, p, n) = \begin{cases} 1 & \text{if } p | n \text{ and } \gamma(p, n) > u, \\ 0 & \text{otherwise} \end{cases}$$

then

$$\sum_{n \leq x} \varphi(u, n) = \sum_{n \leq x} \sum_{p \leq x} \delta(u, p, n) = \sum_{p \leq x} \sum_{n \leq x} \delta(u, p, n) = \sum_{p \leq x} \sum_{a > p^u} \Phi\left(\frac{x}{ap}, p\right)$$

$$=\sum_{n}\sum_{u}^{p}\left(\Phi\left(\frac{x}{ap},p\right)-1\right)+N(u,x)$$

say, where N(u, x) is the number of $n \le x$ whose largest prime factor is $< n^{1/(1+u)}$. It is not hard to see that

(9)
$$N(u, x) = \begin{cases} o(x) & \text{if } u \geqslant \log_4 x, \\ O(x) = o\left(\chi \tau(u) \log_2 x\right) & \text{if } u \leqslant \log_4 x. \end{cases}$$

Applying Lemma 5 we get

$$\sum_{n\leqslant x}\varphi(u,n)=x\sum_{p\leqslant x}\frac{1}{p}\prod_{p'\leqslant p}\left(1-\frac{1}{p}\right)\sum_{a>p^u}^p\frac{1}{a}\,\psi\left(\frac{x}{ap},p\right)+N(u,x)\,.$$

If we abreviate $\sum_{p' < p} \left(1 - \frac{1}{p'}\right)$ by π_p we can write

(10)
$$\sum_{n \leq x} \varphi(u, n) = xS_1 + xS_2 + N(u, x)$$

where

$$S_1 = \sum_{p \leqslant x} \frac{1}{p} \pi_p \sum_{a > p^u} \frac{1}{a} \quad \text{and} \quad S_2 = \sum_{p \leqslant x} \frac{1}{p} \pi_p \sum_{a > p^u} \frac{1}{a} \left(\psi \left(\frac{x}{ap} \right) - 1 \right).$$

By Lemma 4

$$(11) S_1 = \tau(u) \sum_{p \le x} \frac{1}{p} + O(1) e^{-u} \sum_{p \le x} \frac{\log_2 p}{p \log p} = (1 + o(1)) \tau(u) \log_2 x + O(e^{-u}).$$

If we consider separately the cases $u \ge \log_4 x$ and $u \le \log_4 x$ we see at once that

(12)
$$e^{-u} = o(1) + o(\tau(u)\log_2 x).$$

We now deal with S_2 . $\psi(x, y)$ is bounded for all x, y and so we have $S_2 \leqslant S_2 + S_4 + S_5$,

where, writing $x' = x^{1/(u+1+2\log_2 x)}$,

$$S_3 = \sum_{x \leqslant p \leqslant x} \frac{1}{p} \pi_p \sum_{a > p^u} \frac{1}{a}, \quad S_4 = \sum_{p \leqslant x} \frac{1}{p} \pi_p \sum_{a > p^{u+\log_2 x}} \frac{1}{a}$$

and

$$S_5 = \sum_{p < x} \frac{1}{p} \pi_p \sum_{p^u < a \leqslant p^u + \log_2 x} \frac{1}{a} e^{-a \log_2 x}$$
.

 $S_5 \leqslant \log_2 x/(\log x)^a = o(1)$ and it follows from Lemma 4 that $S_4 \leqslant \log_2 x/\log x = o(1)$. Also by Lemma 4

$$S_3 \ll \tau(u)\log(u + 1 + 2\log_2 x) + \sum_{x' \leqslant p < x} \frac{\log_2 p}{p \log p} = \tau(u)o(\log_2 x) + o(1)$$

as required.

We have shown that $S_2 = o(\tau(u)\log_2 x) + o(1)$ and this in conjunction with (9), (10), (11) and (12) completes the proof of Theorem 1 (i).

3. Theorem 1 (ii). Before we can complete the proof of Theorem 1 we need two more lemmas.

LEMMA 6. For integer y, w with $y > w \ge 2$ and for all $u \ge 0$ we have

$$\prod_{w \leqslant p < y} \left(1 - \frac{1}{p} \right) \sum_{a > y^u} \frac{1}{a} = \tau(u) + O\left(\frac{\log(v+1)}{v} \right)$$

with $v = (\log y)/\log w$.

Proof. If we define

$$F_{w,y}(u) = \prod_{w \leqslant p < y} \left(1 - \frac{1}{p}\right) \sum_{a \leqslant y^u} \frac{1}{a},$$

then $F_{w,y}(u)$ is a distribution function with characteristic function $f_v(it)/f_w(it/v)$. In the light of Lemma 3 it will be enough to show that

$$\int_{0}^{v} \left| \frac{f_{\boldsymbol{y}}(it)}{f_{\boldsymbol{w}}(it/v)} - f(it) \right| \frac{dt}{t} = O\left(\frac{\log(v+1)}{v}\right).$$

Clearly $f_w(it/v) = 1 + O(t/v)$ and $f_w(it/v)^{-1} = O(1)$ for $t \le v$ and all z. Hence

$$\begin{split} \int\limits_0^v \left| \frac{f_y(it)}{f_w(it/v)} - f(it) \right| \frac{dt}{t} & \ll \int\limits_0^v |f_y(it) - f_w(it/v)f(it)| \frac{dt}{t} \\ & \ll \int\limits_0^v |f_y(it) - f(it)| \frac{dt}{t} + \frac{1}{v} \int\limits_0^v |f(it)t| \frac{dt}{t+1} \\ & \ll \frac{1}{v} \int\limits_0^v \frac{dt}{t+1} \ll \frac{\log(v+1)}{v} \end{split}$$

by Lemma 2 (ii) and because tf(it) is bounded.

LEMMA 7. For all real u, w with w > u > 0 we have

$$\sum_{k=1}^{\infty} \frac{1}{k} \Big\{ F(u) - F\Big(u - \frac{w}{k}\Big) \Big\} = O\Big(\log \frac{w}{u}\Big) + O(1).$$

Proof.

$$\sum_{k=1}^{\infty} \frac{1}{k} \left\{ F(u) - F\left(u - \frac{w}{k}\right) \right\} = \int_{1}^{\infty} \frac{1}{x} \left\{ F(u) - F\left(u - \frac{w}{x}\right) \right\} dx + O(1)$$

$$= \int_{1}^{\infty} \int_{u-w/x}^{u} \frac{\varrho(v)}{x} dv dx + O(1)$$

changing the order of integration

$$= \int_{0}^{u} \varrho(v) \int_{1}^{w/(u-v)} x^{-1} dx dv + O(1)$$

$$= \int_{0}^{u} \log\left(\frac{w}{u-v}\right) \varrho(v) dv + O(1)$$

$$= \int_{0}^{u} \log\frac{w}{v} \varrho(u-v) dv + O(1)$$

$$\leqslant e^{-u} \int_{0}^{1} \log\frac{w}{v} e^{v} dv + e^{-u} \int_{1}^{u} \log\frac{w}{v} e^{v} dv + O(1)$$

using the fact that $\varrho(v) \leqslant e^{-v}$ and $\log \frac{w}{v} \geqslant 0$. The first integral above is $\leqslant e^{-u} \log w + O(1)$

$$= e^{-u} \log \frac{w}{u} + e^{-u} \log u + O(1) \leqslant \log \frac{w}{u} + O(1)$$

as required. Integrating the second integral by parts we get

$$e^{-u} \left[\log \frac{w}{v} e^{v} \right]_{1}^{u} + e^{-u} \int_{1}^{u} \frac{1}{v} e^{v} dv = \log \frac{w}{v} - e^{-u} \log w + O(1) \leqslant \log \frac{w}{u} + O(1) \right]$$

as required.

The proof of Theorem 1 will follow easily if we prove that

(13)
$$\sum_{n \leq x} \varphi(u, n)^2 = x \{ (1 + o(1)) (\tau(u) \log_2 x)^2 + O(\tau(u) \log_2 x) + O(1) \}.$$

$$(14) \sum_{n \leqslant x} \varphi(u, n)^{2} = \sum_{n \leqslant x} \sum_{p \leqslant x} \sum_{q \leqslant x} \delta(u, p, n) \delta(u, q, n)$$

$$= 2 \sum_{p \leqslant q \leqslant x} \sum_{n \leqslant x} \delta(u, p, n) \delta(u, q, n) + \sum_{n \leqslant x} \varphi(u, n)$$

$$= 2 \sum_{p \leqslant q \leqslant x} \sum_{a > p^{u}} \sum_{b > q^{u \mid ap}} \Phi\left(\frac{x}{abpq}, q\right) + xO\left(\tau(u)\log_{2}x + 1\right)$$

$$= 2x \sum_{p \leqslant q \leqslant x} \frac{1}{pq} \pi_{p} \sum_{p \leqslant q} \frac{1}{a} \pi_{q} |\pi_{p}| \sum_{b > u \mid ap} \frac{1}{b} \psi\left(\frac{x}{abpq}, q\right) + E,$$

where E denotes a function of x and u bounded by the error term in (13). First we deal with the term arising from the error term in Lemma 6, and show that

$$(15) \sum_{p < q \leqslant x} \frac{1}{pq} \pi_p \sum_{a > p^u} \frac{1}{a} \log \left(\frac{\log q}{\log p} + 1 \right) \frac{\log p}{\log q} = O\left(\tau(u) \log_3 x\right) + O(1).$$

The sum above is clearly bounded by

$$\sum_{p \leqslant x} \frac{1}{p} \pi_p \sum_{a>p^u}^p \frac{1}{a} \sum_{1 \leqslant v \leqslant \log x/\log p} \frac{\log(v+1)}{v} \sum_{p^v < q \leqslant p^{v+1}} \frac{1}{q}$$

$$\ll \sum_{p \leqslant x} \frac{1}{p} \pi_p \sum_{a>p^u}^p \frac{1}{a} \sum_{v=1}^{\infty} \frac{\log(v+1)}{v^2} \stackrel{\sim}{=} O(\tau(u)\log_2 x + 1)$$

as in the proof of part (i).

We next deal with the sum where $q^u/ap < b \leq q^u$. Because of Lemma 6 and (15) we can replace

$$\pi_q/\pi_p \sum_{\sigma^{u_l}ap < b \leqslant \sigma^u} \frac{1}{b}$$
 by $F\left(u - \frac{\log a}{\log q} - \frac{\log p}{\log q}\right) - F(u)$,

and so it is enough to get a bound for

$$\sum_{p \leqslant q \leqslant x} \frac{1}{pq} \pi_p \sum_{q \leqslant p} \frac{1}{a} \left\{ F\left(u - \frac{\log a}{\log q} - \frac{\log p}{\log q}\right) - F(u) \right\}.$$

If we replace the sum over a by an integral and take the sum over q inside we get

$$\begin{split} \sum_{p < x} \frac{1}{p} \int\limits_{u}^{\infty} \sum_{p < q \leqslant x} \Big\{ F\Big(u - (w + 1) \frac{\log p}{\log q}\Big) - F(u) \Big\} dF_p(w) \\ & \leqslant \sum_{p < x} \frac{1}{p} \int\limits_{u}^{\infty} \sum_{k = 1}^{\log x} \sum_{p^k < q \leqslant p^{k+1}} \frac{1}{q} \Big\{ F\Big(u - \frac{w + 1}{k}\Big) - F(u) \Big\} dF_p(w) \\ & \leqslant \sum_{p < x} \frac{1}{p} \int\limits_{u}^{\infty} \sum_{k = 1}^{\infty} \frac{1}{k} \Big\{ F\Big(u - \frac{w + 1}{k}\Big) - F(u) \Big\} dF_p(w) \\ & \leqslant \sum_{p < x} \frac{1}{p} \int\limits_{u}^{\infty} \log \frac{w + 1}{u} dF_p(w) + \sum_{p < x} \frac{1}{p} \int\limits_{u}^{\infty} dF_p(w) \end{split}$$

by Lemma 7. The second term above is just

$$\sum_{p < x} \frac{1}{p} \pi_p \sum_{a > p^u} \frac{1}{a} = O(\tau(u) \log_2 x + 1).$$

If $G_p(w)$ is defined as in the proof of Lemma 4 then the first term above equals

(16)
$$\sum_{p < x} \frac{1}{p} \int_{u}^{\infty} \log \frac{w+1}{u} e^{-w} dG_{p}(w).$$

If we integrate by parts, apply (8), and then reverse the partial integration we find that (16) equals

$$\sum_{p < x} \frac{1}{p} \int_{u}^{\infty} \log \frac{w+1}{u} e^{-w} dG(w) + O\left(\sum_{p < x} \frac{\log_2 p}{p \log p}\right)$$

$$= \log_2 x \int_{u}^{\infty} \log \frac{w+1}{u} dF(w) + O(1).$$

Now

$$\int_{u}^{\infty} \log \frac{w+1}{u} dF(w) = -\int_{u}^{\infty} \log \frac{w+1}{u} d\tau(w)$$

$$= -\left[\log \frac{w+1}{u} \tau(u)\right]_{u}^{\infty} + \int_{u}^{\infty} \frac{\tau(w)}{w+1} dw \leqslant \frac{1}{u} \tau(u) + \int_{u}^{\infty} \varrho(w+1) \quad \text{by (3)}$$

$$\leqslant \tau(u)$$

as required.

We are now left with

$$2x\sum_{p< q\leqslant x}\frac{1}{pq}\pi_p\sum_{a>p^u}\frac{1}{a}\pi_q/\pi_p\sum_{b>q^u}^{p,a}\frac{1}{b}\psi\left(\frac{x}{abpq},q\right)=S_1+S_2 \text{ say},$$

where

$$S_1 = 2x \sum_{p < q \le x} \frac{1}{pq} \pi_p \sum_{a > p^u} \frac{1}{a} \pi_q / \pi_p \sum_{b > q^u} \frac{1}{b}$$

and

$$S_2 = 2x \sum_{p < q \leqslant x} \frac{1}{pq} \pi_p \sum_{a > p^2} \frac{1}{a} \pi_q / \pi_p \sum_{b > q^2} \frac{1}{b} \left(\psi \left(\frac{x}{abpq} \right) - 1 \right).$$

By (15) we can replace $\pi_q/\pi_p \sum_{b>qu}^{p,q} \frac{1}{b}$ in S_1 by $\tau(u)$ and we get

$$\begin{split} S_1 &= 2x\tau(u) \sum_{p < q \leqslant x} \frac{1}{pq} \hat{\pi}_p \sum_{a > p^u} \frac{1}{a} + E \\ &= 2x(\tau(u))^2 \sum_{p < q \leqslant x} \frac{1}{pq} + O\left(2x\tau(u) \sum_{p < q \leqslant x} \left(\frac{\log_2 p}{qp \log p}\right)\right) + E \\ &= x\left(\tau(u)\log_2 x\right)^2 + E, \end{split}$$

which gives us the main term.

 S_2 can be dealt with in the same way as its counterpart in Theorem 1. We write

$$x' = x^{1/(2u+2+3\log_2 x)}$$

and divide the sum up as follows:

(i) $x' < q \leqslant x$,

(ii) $a > p^{u+\log_2 x}$ or $b > q^{u+\log_2 x}$

(iii) $q < x', p^u < a \leqslant p^{u+\log_2 x}, q^u < b \leqslant q^{u+\log_2 x}$.

We then find that $S_2 = xo((\tau(u)\log_2 x)^2) + o(x)$ and this completes the proof of (13).

Theorem 1 (ii) now follows easily.

$$\begin{split} \sum_{n \leqslant x} \left(\varphi(u, n) - \tau(u) \log_2 n \right)^2 \\ &= \sum_{n \leqslant x} \varphi(u, n)^2 - 2\tau(u) \sum_{n \leqslant x} \varphi(u, n) \log_2 n + \tau(u)^2 \sum_{n \leqslant x} (\log_2 n)^2 \\ &= x \left\{ o\left(\left[\tau(u) \log_2 x \right]^2 \right) + O\left(\tau(u) \log_2 x \right) + O(1) \right\} + \\ &\quad + 2\tau(u) \sum_{n \leqslant x} \varphi(u, n) (\log_2 x - \log_2 n) \end{split}$$

but the sum on the right is easily shown to be o(x) and the result follows.

References

- N. G. de Bruijn, On the number of uncancelled elements in the sieve of Encesthenes, Indag. Math. 12 (1950), pp. 247-256.
- [2] On the number of positive integers < x and free of prime factors > y, ibid. (1951), pp. 50-60.
- [3] The asymptotic behaviour of a function occurring in the theory of primes, J. Ind. Math. Soc. (N.S.) 15 (1951), pp. 25-32.
- [4] P. Erdös, On some properties of prime factors of integers, Nagoya Math. J. (1966), pp. 617-623.
- [5] C. G. Esseen, Fourier analysis of distribution functions. A mathematical stuof the Laplace-Gaussian law, Acta Math. 77 (1945), pp. 1-125.

Received on 18. 8. 1975

ACTA ARITHMETICA XXXIII (1977)

On character sums and the non-vanishing for s>0 of Dirichlet L-series belonging to real odd characters χ

b

- S. CHOWLA (Princeton, N. J.), I. KESSLER, and M. LIVINGSTON (Edwardsville, Ill.)
- 1. Introduction. Let χ be a real non-principal character mod k. If

(1.1)
$$\sum_{n=1}^{x} \chi(n) \geqslant 0 \quad \text{for all } x$$

it follows by partial summation that

and

(1.2) $L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$ has no real zeros in the interval 0 < s < 1,

(1.3) $L(1, \chi) > c$ where c is some positive absolute constant > 2/3. At the present time it is not known if there are infinitely many real primitive characters χ for which (1.2) holds. On the other hand, it has been

shown that if χ is a real primitive character mod k then $\frac{1}{\lim_{k\to\infty}}\frac{L(1,\chi)}{\log\log k}$ > 0 ([2], [8]), but it is unknown if the k's for which (1.3) holds have a non-

zero density in the sequence of positive integers.

The results of our numerical investigations concerning the primes $p \equiv 3 \pmod 4$ for which (1.1) holds suggest that these primes possess a positive limiting frequency in the sequence of all rational primes $\equiv 3 \pmod 4$. Our results in this connection are presented in Section 2 of this paper. In the third section we have given a brief account of related recent work and open problems on character sums. The final section consists of tables displaying pertinent computational results.

2. In this section we assume χ is a real primitive character mod k, where k is prime, and thus we may take $\chi(n)$ to be the Legendre symbol $\binom{n}{k}$.

6 - Acta Arithmetica XXXIII,1