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On the size of prime factors of integers
by '

J. D. Bovey (Cardiff)

1, Introduction. For n & positive integer and 3 >1 a real mumber
we define

d(y, n) = max{d| din; p|d and p prime=p < y}

and y(y, n) = (logd(y, n))/logy.
In this paper we make more precise some results of Krdds [4] on the
siza of ¥ (p, ») where p is a prime factor of n. For real w 3> 0 define

plum = 3 1,

»in
Hpn)>u

we then have the following “Turfn’s method” result:

TerorEM 1. For ¢u,n) as defined above and <(u) defined below we
have

() D p(u, n) = afl+o(1) w(u)logsx + o(x),
sy
(ii) Z {o (4, n) —7 (u)log,n)* m{o((r u)10g,x) )—}—O(1+r(w, loggm)}
B ]

uniformly in uw as w—o0.
Here and elsewhere in this paper log,n denotes the k-fold iterated

logarithm, 7
The function z(w) is defined as follows. Let o(u} be the real valued
fonction defined by the following properties
olw) =0 (W< 0); o(w) =1 (0w, ,
wp'(u) = ~p(u—1) (vu>1); ¢(u) is continuous for 4> 0.
De Bruijn [3] has studied the asymptotic behaviour of g(u) in some
detail and in particular has shown that '
(2) o(u) = exp{~ulogu—ulog,u+0(w)} a5 u—>oo,
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We define
[=<]

(o) = e"f el(v)dv

U
For large w, (%) behaves very like o{u), in fact we have
(3) t(w) = [ +o(1)) (u+1)ofut1)  as
A proof of (3) goes as follows

U2,

() =67 f p{v—1)dv
u+1
= —g 7 f v’ (v) dv

H+1

by (1)

=]

= —e ' [vo(@)]zn+e [ e(n)d

wd-1
which gives

v(u)—7{u+1) = e (w1 elu-+1).

Summing we get
{u) = e "{ut+1)p{ut+1)+e 2 ut+Eyelutk).

Tt can easily be verified from De Bruijn’s asymptotic fermula for o(u) [3]

that p{u+1) <€ g(w)jw and (3) follows.
Put :
P(n) = maxy(p,n).

pin

Trdos [4] has shown that for almost all # (i.e. on a sequence with asymp-
totie density 1)

4y - _ P(n) = (L+o(1))logyn/log,n.

Using Theorem 1 we can obtain a more precise result than this. For -
we define £(#) to be the root of

r(Hlogw = 1.
TarorEM. 2. For almost all infegers n
" Pln) = &) +o(1).
Proof. T follows from (2) and (3) that for any &> 0
r(&(w)+s)iog,m->0 and  v(&(»
bust this, combined with the slow rate of growth of £(n) and with, Ih_eorem 1,

)—s)logzm—}oo ag  g->00
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implies that for almost all »
p{é(n)+e,n) =0

and the result follows.

In the same paper Erdds 011thned a proof that there exists a con-
tinunous function ¢(z) snch that for fixed » and almost all = p(u, n)
= (L+o0(1))p(u)logsn. It follows at once from Theorem 1 that this result
holds with ¢(4) = z{%) and in fact we have

TaroreM 3. For almost all infegers n

and  ¢{£(n) —e, n)>oo

| elu, n)
log,n

Proof. Let &> 0, it is enough to show that for almost all # and
all uz0

sap
=0

—z(u) —

lplu, n)flogan —v(u)| < &.

Choose an integer N > 0 and areal number 4 > 0 to satisfy r{4) < /4
and A{N < /2. By Theorem 1 {i}

Dlp(4,n)log,n <

nSx

r(dyz+o(x) < (/3)w  for large w,

and 50 we can certainly say that for almost all n aﬁd foruz A
(e, n)floggm —z (u)] < e.
Next, by Theorem 1 (ii), we can sa.y that for almost all » and for integer &

with 0 <<k N
kA g
AT

4 < A there is some % such that 54 /N < u < (k+1).4 /N and we

p (k4[N , )
log,n

For 0 <
have
. 4
o (1, n)flog,n 7 ()] < % (kAN —2((k+1) 4/N) < -;- +5 <.

We can also determine thé average value of y{p, ») for almost all n

[=<]

-1
y(p,n) = — f“dqo(%:’ﬂ)
Iogz'n, % logan P
integrating by parts
_ f” p(u, )
J  logan !
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and ib is not hard to how using Theorem 3 and Theorem 1 (i) that for
almost all n '

LICEONPa (o) [ wlwidu — (L+o(L)f (@) = 1+o01),
log,n J

with f(z) as defined in §2. Hence for almost all integers

2?(13,?1) — [1+o(1).

If y > w = 0 are Teal numberb we use the notation Z“””a n) to denote

logan

the sum of a(n) only over » with no prime factors < w or =¥y. We ab-
breviste Y'Y by Y. To prove Theorom 1 we have %o estimate sums of

the form
yw,'y 1
o o

a>y%

Th’lS conld probably be done using the methods of de Bruijn ([1] and [2]),
but instead we use a different method using Fourier transforms and a
result borrowed from probability theory (Lemma 3). This has the advan-
tage of being fairly self contained and also enables us to get better error
terms than T was able to geb nusing de Bruijn’s methods. In' § 2 we prove
some lemmas and Theorem 1 (i), then in §3 we complete the proof of
Theorem 1. '

2, For real % and real y = 0 we define

=[]~ >+

<y ayt

then for each y F,(u) is a distribution function with support in (0, eo).
For complex z with Rez < logy we define

F, (@ = [ €“dF,(u).
[1]

If we write the integral as a sum we see that

® wior = [ [1=2) 1~ semmmes)

L=<y
and so0 f,(2) is analytic for Rez << logy.
Finally we define

(6 F&) = €77 [ e olu)du.
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LEMwmaA 1.

o) = exp{

C’L—-ﬁ

. o Eh
ok

£

Proof.

(2]

flay =¢77 f ey 1) du

0

oo
—a"’e‘”f “up'(u}dw by (1)
' .
= —g e — e f e (u)d a3 o'fu) =0 for 0<u<l

- e ; {[e, o(w) P —z a{ e"zg(u)du}
= "%z (2)-+ 1 (%)),

ie.

Hence
flz) = cexp{ff%l ds} == pg(2) say.

Integrating (6) by parts gwes
zeg (2) ='zf( z) = e Y[ g u)}""we"’f o" () du.

It we put & = if and let {-»co the integral on the right tends to 0 and we
get
=7 = clim4tg(it) = e¢™*  (see [3] for example)
t—c0 . :
and so ¢ = 1.
If we put 2z = 0 in (6} we see that

[=+]

a""f o{w)du =1

Y

3
and so if we define F(u)=¢"" [ o{w)dw then F (u)is a distribution function.
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_ Lmvma 2. For any complexr number z
(1) limf,(z) = f(2).
Y- .
In addition for veal t and indeger ¥ = 3 with 0 < 1 < logy
o . . i
(if) ‘lfy(it) —f(it)] = O(log™"y) ——= T
S(+d)  f(1+i7)
(iif) d — = (0(lo A
ey F(1) log™) t+1
(iv). £,(1) =f(1)] = O(log™ 9).
Proof. Let ¢ = Rez and logy > 20. We will show that
fi(2) - eF—1 &’
(7) o +o( )
' Fu(2) % logy

H we integrate (7) and observe that f;,(b) = f{0)y =1 we see that logf, (=)
-+logf(z) as y-»>oc0 and (i) follows. The proofs of (i), (iii) and (iv) are very
similar and so we just prove (iii). Write

_ L+ f()
B0 = Fa T,
then
GO _ 1RO+ pasany o -
AGEER VAT f(l+'it))_0(10g o by @
I we put
t r
0 =[50
then
Gy(t)=0(tlog‘1y) and  g,(1) = exp@,{1).
Hence -

0,0 ~1 = G, (t){{exp 6, ¢ )JG (f)} = O(tlog™y)
for < logy. Mul'biplying by f (1+2-t? [fQ) we get

fll-it) _ fii+in
D FO)

and {iii) follows as (114t is easﬂy shown to be bounded.

= ff(1-}-4t) O (log™9)
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Wenow prove (7).

f;(z) = y 10.:,1’ p(zﬂugv) 1(1 p(zflagv] 1)-1
fy(® _ L logy
L 1 logp
(=flog )1
loo‘y = b logp+0 (logy 2 P_u-aﬂogy))
(Bﬁo"'l»')-ll o e°
logy y? o8P (logy)

as the sum in brackets is convergent for 2o < logy. Tf we write the sum
above as an integral we get

foled 1
, ful®)

¥ ' 1
f oS og g A[lim] +~——
logy

v
f;ﬂ’”"g”’"l loge- d[m{x) —liw]+
. logy : . i :

65’
0 (10gy )’

where liz is the logarithmic integral

1-3 1 x 1
hm(f Tﬁ—dt_}_ oot dt)
eso\y lOgT 1 08

and z(%) is the number of primes < . The first integral above is equal
fo

v Z
1 fm‘zﬂ“g")_ldwﬁ e—1
logy

g

as required.
Tf the second integral is integrated by parts it equals
¥

Ioiy' [ (wt@) —1ic) o= =20 loga) da

sy [afertoe A og (i) — i) [{ —

e { logy

logx
& e dm} :
logy | ¥ #?

(rly) i) + | [rlo) ~1ia)

and the result

but by the prime number theorem ]r.:(w) lim} <

(1 gm.)2

follows.
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The next lemma is due to Esseen ([5], Theorem 2a). We have replaced
the condition |&'(w)|< M by (G(w)~6(®))/(u—v)< M but the proot
is the same. ' :

Lenua 3. If G(u) and H(w) are two distribution functions,

g{t) = f edG), k() = [ e™aH (u)

and (G (1) —G(v))/(u—v) < M for all w and v then

. T ,...]
Gt —Hye [ LM gy 2

for all w and oll T > 0.

- 'We are now ready to obtain our estimate for F,(u).
Leamaa 4. For integer v 2 and reol w0

[10-5) 35 =wo( )

<y oyl

Proof. For y == 2 and u > 0 the left hand side is zero but the error
term is greater than the main term. For y > 3 write

o0

=f,1), e=/[¢a fa,
0

¢, = f 4R, (v)
Q

G,(u) = [e"dF,(v) and G(u f dF (v

Then ¢;* G, (%) and ¢~ @ (u) are distribution functions and

af a6 6 ) = f DR, () = f}lf s,
similarly
N (¢ R R )
fe e G () = T

0

@(u) elearly satisfies the condition of Lemma 3 with M = sup 6 o (),
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and s0 by Lemma (iii) and Lemma 3

lozy

dt 1 . log.y
logy J t+1 " logy = logy ’

iy Gy () — o™ G (u)] <€

Lemma 2 (iv) implies that ¢;* = ¢+ 0 (log™"y) and so, for yz3anduz 0,

(8) : Gy(u) = G (1) -+ 0(logey logy).
Now '
1 v 1 r . o
g(l—;)g _‘;:uf aF,(v) =!6 da, (v)

integrating by parts

- te”G,,(v)]ff+ [ 6, (v)d
=[G+ [ "G (0)dv+ 0(¢logy/logy) by (8)

= f e a6 (v) + O (e *log,y [logy) = v{u)+ O(e™“logzyflogy)

a8 required.

Our final lemma in this section is due to de Bruijn [1]

Leamus 5. Let @(x, y) denvie the number of integers < o all of whose
prime factors ave =y, then

o@n-t=s][[1-Zr@)

. By
where

p(® y) =1+0(™%) for y=2,u=0

and a an absolute posztwe constant.

Proof. For # 3> 1 this follows at once from [1], 1.16. For 0 <u< 1
the result is trivial as Dz, ¥) =1if s <y.

We are now ready to prove Theorem 1 (i). If we write

5 ) 1 if  pln and y{p,n)>u,
U n) = .
' 0  otherwise
then
P &
Y’w ) Zf’a(u,p,n S Sowpm=3 3 @(E,p)

RELT PET P nSr :ugz a>_-p“r
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ISl
P<E gmpt

say, where ¥ (u,#) is the number of n <& whose largest prime factor is

< M09, Tt 35 not hard to see fhat
o(x) if
O(z) = ofyge(u)log,a) if
Applying Lemma 3 we geb '

D [ et

w = log,w,

®) N, m) = ! u < log,w.

)-I-N(u @},

p<z 19 <p a>ph
1
If we abreviate 2 (1 - -—,) by #,, we can write
‘ p'<p P : '
{10) D pu, n) = @8+, + N (u, 2)
f L] . .
where

Sl=2‘;‘ﬂp "w% and »6'2:2%%2?1(#3(2) 1)

=z > ) Pz as>ph
By Lemma 4 :

' 1 1 log,p
1) 8, = o)™ » /=
(1) 8 =< D +0me™ >

PET P

(1 +0 (1)]17(%)10g2w +0(e ™).

If we consider separately the cases u > 10g49: and % < log,x we see at

once that

(12) e~ o(1)+o{r{%) logzm)

We now deal with §,. »(z, ¥) is bounded for all z,y and 80 we have
8,€ 8,4+ 8,48,

where, writing z' = giti+2lE

8, = E 31;.1,, ZP%, A =2%”ﬂ Zp % :

sy gt Pz a>p¥t1ogge
and
Z Zm
SS —_ T i G““.logﬁx .
p<z’ pU<gpitlons
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8, < logyaf(logz)® = o(1) and it follows from Lemma 4 that &,
<log,w/loge = o(l). Also by Lemma 4

log,
plogp

8, <€ v{u)log(u+14-2log,a) + = r{w)o(logsx) -+ o{1)
h TP
a8 required.
 We have shown that 8, = o (z(#)log.a)+0(1) and this in conjunction
with {9), (10), (11) and (12) completes the proof of Theorem 1 (i).
3. Theorem 1 (ii). Before we can complete the proof of Theovem 1
we need two more lemmas.

Levva 6. For integer o, w with y > w = 2 and for all = 0 we have

103 275

wEp<y azy

log{» +1))
v

7(%)—{—0(

withv = (logy)/logw.

Proof, If we define

[10-3) X%

WpY ay¥

Fw,v(.u) =

then F,,(w) is & distribution funetion with characteristic funetion
Fylit)/f,o(it/2). In the light of Lemma 3-it will be enough to show that

_ O(BM)_
v

=l — O{1) for t< v and all 2

f flit)
5 Ifw(itif'v)

Clearly f,(itJo) = 1+O0(tfv) and f,(it/v)

Hence
[I20 g

Fulitfo)

)% f ) — ot (i8]

- at 1po
< f =01+ 04

1 ¢ ar . log(o+1)
PREES] ®

by Lemma. 2 (ii} and becanse #f{1) is bounded
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Levma 7. For all real w, w with w > 14> 0 we have

©0

;%{F(u (u—%)} = 0(10g%)+0(1).
Proot
QI{F(M)——F(M——E»)} = f%{F(u)“F(M——)}dm—l-O( )

changing the order of integrafiom
U
0 .
= f log(

- flog%@(u—fv)dv+0(1) )
0

w,l(-u-—v)

f gt dwdo -+ 0 (1)

) )d§+0(1)

1 w .
< 6.“"flog—if~e"dv~{—e_“flogﬂ dy L 0{1)
)
0 1

asing the fact that g{v)<€ ¢ and log—'bE

- = 0. The first infegral above

is <e“logw+0(1)

— ¢™log =~ +¢™"logu+0(1) < log =+ O(1)

as required. Integrating the second integral by parts we get

w T f1 w ‘
“”[log -—e"] e f —¢&%dv = log — —e ¥logw -+ 0(1) < logiu— + 0(1)
v 4 J T 2 _ %
ag required.

The proof of Theorem 1 will follow easily if we prove that

) Dlelw,ar =offi-ro(1) (s(x)

n=x

logya)*+ 0 (r(w)log,a) + O}
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Now
-
{14} Z (u %)2 = Z Z _54 alu, pynydlu, q,n)
nez n<z P < .

Blaey p, 1) 8w, g, )+ D, (s )

P<g=T DET n<x

, g) L 20 (r(u)loggw-l-l)

1 pl pql @
=2$2-_kﬁp,-_.J a’ %l y ( )-im

b
abpyg
PLgET o p¥ B> q'l-lfap

where E denotes a function of z and w bounded by the error term in (13).
Tirst we deal with the term arising from the error term in Lemma 6,
and show that

1 1 lo 1o
as > o Z”Emg( 84 +1)ﬂ — Oc{w)logas) + O(1).

ped e logp logg

The sum above is clearly bounded by

1 1 log (v+1) 1
Z;ﬂp ZPE 2 y E

pEE amp¥ Io<log aflogn plegs

1 lo 17
€ Skn 373 SN L opapone )
pE a>pt v=1

as in the proof of part (i).
We next deal with the sum where ¢“/ap < b < ¢* Because of Lem-
ma 6 and (15) we can replace

al loge lo
mlw D) by (u ~ oz 1ogp) —H,
gtap<b<gh 4 81
and so it is enough to get a bound for

1 p.]_ ' loga lagp) }
- Npfly——— — |1 .
Z Py p Zu o { (u logg ~ logg ()

n<g<sE a<<p
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If we replace the s X inteer , o
e got 1Y sum over e by an integral and take the sum over ¢ inside

17 0 ogp
s Flu— logp’
g{ Jﬁ;ngl{ (“ votd) ogq) F(”.)}de’(w)

oo logz

f 2 ’u<qu-"+1 g {F (u B w:’: 1 ) MF(W/)}JFP (?ID)

ilJ<:c *% k=l P

< Z%uf Z—i—{lﬂ(u— w;;l)—lp(u)}wp(w)

p<z =1
1 w+1 1
<Z§f log———dF,(w)+ > — [ aF,(w)
p<z ] rez u

by Lemma 7 The second term above is just

Do y~=0(r wlogya+1).
azp¥

P

YIwairdefineda;. i
oo ;1(3 ) iy $.In the proof of Lema 4 then the first term-above

L oeag ().

a8 flog

n<z

If we integrate by parts, apply (8), and th .
we find that (16) oquals (8), en reverse the partial integration

w+1 - 1
Z f“’g 6w )+O(ZPL§;%)

<z
® DL

1
ar (w)+0(1).

=10g2mf10g W
%

Now

-flog

)='—f10g YL )

r{)]+f

dw< —-r () + f olw-1) by ('3)

[Iog

< T(w)
as required.

\
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We are now left with

p.2 1 @2
"ﬂgi"ﬂ Z w(abpq q) = 8,8, say,

13<q<z a}p B

o 1 Pl 17:!11
S =2 25@'%2 Tl G

PRIST as>pt bo-g
and

Somte 3 meny 3 2min, 37 o))

pgse a>pY b

By (15) we can Teplace @/, Zp 'qi in §, by 7(%) and we get

=g

1 pl
= 24 E 3 —+E
8; = 2av{u) 77 T, ’ 4—7

Begss asp
log,p
=§3::15(1:(u))2 v—»——i—O("wr( %) (——~) + &
= o {7(w)log,z)*-+ &,

which, gives us the main term. ;
8§, can be dealt with in the same way as its counterpart in Theorem 1.

We write
7 = wl[(zu-}-z«i—alogga:)
and divide the sum up a3 follows:
i) o <g<so,
(i) a> p"‘”"gﬂm or b > gitlen®,
( ) q< 2 p <a <Pu+luggz <b< qu—&-logzz .
We then find that 8, = @o ((z'(u)logzm) )+ o(x) and this eompletes

the proof of (13).
Theorem 1 (ii) now follows easily.

E (o2, m)— z(uylogm)*
n<Tw
== E plu, n)2—2v (%) E @, nlogyn+T(u)* 2(105;5

= m{ (( (1) ]og,) )-I—O( u)log3¢)+0(1 }
+21(w) > pln, n)(log.z—logyn)
nen .

but the sum on the right is easily shown to bé o{®) and the result follows.
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On character sums and the non-vanishing for s> 0 of
Dirichlet L-series belonging to real odd characters

by

8. Cmowna (Princeton, N. J.), 1. KussLER, and M. LIvINGSTON
(Bdwardsville, T11.)

1. Iniroduction. Let y be a real non-principal character modk. I

(1.1) - Malmy=0  for all 3

=l

it follows by partial summation that

has no real zeros in the inferval 0 <s<C1,

1.2 L, = D B

=1
and

(1.3) L(1,%)>¢ where ¢ is some positive absolute constant > 2/8.

At the present time it is not known if there are infinitely many real primi-

tive characters y for which (1.2) helds. On the other hand, it has been

— {1, 4
ghown that if  is a real primitive character mod k then lim—(—’i)
1o loglogk

"> 0 ([2], [8]), but it is unknown if the k% for which (1.3) holds have & non-

zero density in the sequence of positive integers.

The results of our numerical investigations concerning the primes
p =3 (mod 4} for which (1.1) holds suggest that these primes possess
a positive limiting frequency in the sequence of all rational primes =3
(mod 4). Our results in this connection are presented in Section 2 of this
paper. In the third section we have given & brief account of related recent
work and open problems on character sums. The final section ¢onsists of
tables displaying pertinent computational Tesults.

2. In this section we assume x is a real primitive character mod &,
where % is prime, and thus we may take yx(m) to be the Legendre sym-

“n
bol l—].
O(k)
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