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Elementary methods in the theory of L-functions, VIII
Real zeros of real L-functions

5\ by
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1. In papers I [4], TL [5], IV [6] and V [7] of this series we discussed
the problem of real zeros of real L-functions, and among other things
we proved the theorems of Hecke [1], Landau [1], Page [3], Siegel [8],
Walfisz [10], and Tatuzawa [9]. The aim of this paper is to prove these
theorems in a new, simple, unique way. Differently from the former
papers of this series, we shall also use some complex analysis, namely the
notion of amalytic continuation {and Cauchy inequalibty for the deriva-
tive, but this is avoidable). Without this, we do not use any special knowl-
edge from number theory or analysis(!). We note that until now there
was no unique treatment for these problems (though on the one hand
the theorems of Hecke and Siegel, on the other hand the theorems of .
Landau and Page were proved similarly). The former proofs are also
more complicated (espeeially Tatuzawa's theorem) and they use deep
results of complex analysis. It iz interesting that without any hand compu-
tation, we also improve the best constants in case of Landau’s and of
Page’s theorem. (Regarding Page's theorem this improvement is also
contained in paper V [7], where it is proved in another way.)

2. TeworeM 1. (Siegel-Walfisz), For an arbitrary &> 0 there is an
ineffective constant. c(e) such that for & real primitive character x(mod D),
L{s, x) has ne zero in the interval [1—ec(e)D™°, 1]

THEOREM 2 (Heeke ). If y i8 a real non-principal character (mod D),
and L(s, x) has ne zero in the dnterval [1—8, 1] with 0 < § < 1/logD,
then

L1, 5> (L4o(1))e™8.

TemoREM 3 (Siegel). For an arbitrary s> 0, there is an inefféctive
constant ¢ (&) such that for @ veal primitive ohamctmf % (mod D)

L1, ) > &' (&) D™ :

{t) Except for the class number formula in Theorem 7 to show the eonsequence
of Theorem 6 for the class number of imaginary quadratic flelds
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Theorems 1 and 3 are also true for real non-principal characters
¥ (mod D) becanse if x iz induced by the primitive g, (mod D;), then
L(s, %) and L(s, y,) have the same zeros for Res > 0; D, < D,_furth_er

s,z [ (- nitl)s

nn

L1, 1)

Tk, z) = loglogD "

TeeorReEM 4 (Page). If x iz a real non-principal character (mod D),
then L(s, ¥} has at most one, simple zero in the interval

G
[1  logD’ 1]
where ¢ == 140(1) if we do nof use the Pdlfya—Vmo gradov m&gual@ty, and
¢ =2+4o0(1} if we use ii.
{This was proved with these congtants in paper V, where we noticed
that with Burgess inequality we get even ¢ = 4—}-0(1) The fmmer best
result, ¢ = 0.28 is due to Miech [2].).

TaroREM b (Landau). If yy 55 y, are real primitive characters (mod D)
and (mod D,) resp. and for real 5, &,

L1 =8, ) = L{1l—8,, zs) = 0
then

’

4

max(él, 62)> m,

where ¢ = $+o(l) if we do not use the Pdlyo—Vinogradov inequality;
¢ =1-+0{l) if we use 4t

(The former best result ¢ = 0.1 is due to Miech [2].)

TrroREM 6 (Tatuzawa) If 0 < e<C1/5, % 'és_a{ real primitive character

(tmod D), where D= D, (absolute effective constant) then
(2.1) Lis,x} #0 for se[1—g/TD% 1]
ond

(2.2) L, x) > ¢/351°,

with the possible emceptwn not more then one D, and one real primitive
character (mod D).

THEOREM 7 (Tatuzawa). If 0<esc1/5, ¢—D< 0 is a fundamenial
diseriminant, D) > D, (absolute effective constant), then for the class number
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h{—D) of the imaginary quadratic field with diseriminant —D

—D) > —— D'

kLT

with the possible exception of at most one fundamenial diseriminant.
If hzl, D> (2000k{logh+10)) and D> D, (absolute effective
eonstant) then

(2.4) R(—=DYy>h

with the possible exception of at most one fundamental discriminant.

3. First we shall prove 3 1emmama

© Lmvva 1. Let 6; (4=1,2 ,3) be awmbewheoretw funcmmw, _
for which 8;(n) = O(1) and for cm a,rbv,tmﬁy )

| Sea]<a
'.d=l

{3.1)

Let further

=1, 09 = 30 T4 =,
(3.2) fimy= D> 6,(@) ... 6(d)
- dﬂdl"‘dj=m

Then for an arbitrary y = A we have

Zf(ﬂﬂ-—dl H 1 +0(( )uwlogf-ly)‘

My

(3.3)

{(where the constant in the O symbol is depending only on j). _
Proof. We shall prove by complete induetion with respect to the

number j, that for z< ¥y

| ﬂj(dj) < Ajlogjﬂly o g“'.

(3.4) ACARS

mey m=dgdy...d
d_;-}>lz 1

(8.4) is true for j =1, as in this case, applying Abe_l’s inequality,
from (3.1) we get:

1 Loy
o0 3 S wan 5 aw Sread
m<y madodl 2ecdy <y z‘gé":

dy >z
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Further if (3.4) is true for j —1, then

(3.6) 2

mgum=d0dl...dj,dj>z

= Do YD @ ..

dy<wlz n<yfdy 'n=dud2...d'j,dj>z

B.(dy) ... 8;(d;)

0;(d;)

\ | Y ia ¥ Y =
< 4\_,—41'&“;10%’ T Sy log! 'y,
a=uz t ;

ie. (3.4) is true also for j, thus (3.4) is proved. For the proof of (3.3) we
note that by Abel’s inequality from (3.1) we have

1 0i(d) <<:i1i

(3.7) -
& 4 ¢
and thus
' & 6. 0 ()
_ (1) = PN log A;.
(38) L1 ; Tt L <logd,+0(1) <logd,

We shall prove (3.3) also by eomplete induction according to j. {3.3)
is true for § = 1, as in consequence of (3.4) and (3.7) we have

(3.9) 5‘29&1_29 1+5’ Zﬁ(d

mEy me=dydy Ay Ve dlm m<y m=dydy
e misy ‘ rIpVg.ﬂTA-i

= ) 6 -—-+0( D )—3—O(A11/ )

dls-l/?l-dr d<yyd] y 1

A, o e
=y L, (1)+ 0(?1 m) +O(VAy) + O(VAy).

Further if (3.3) is true for j —1, then applying (3.4), (:
we get with a 2 <y to be choosen later

o 3 Y oiwr o0

my m=dyd...
=26j(dj) 2 ACARSANC AN RN S W NU AR ACAY
l'f?'gz n=dud‘1...dj,_! m=y m= dﬂdl d

n<yldy diz

3.7) and (3.8)
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- Son [Taorwol S [Jar3) "we-3) -

a<e CVdpste d=l ]

j=1 s
A
y+ofy [T rin 2 +
j-1 y S\ oy
» AYZY 1oty b - 0 (A logt Ly
of o [ [ 4 (5] vy +olstes )

-1

[1Az

= y[!jfir(l)-i—o (Iogf—ly (jzg_ + (E””a’:)w))‘

AR (< gy we get (3.3) for j, which

=y(ﬁLi(1))L

=

Now choosing = = (yAf(
proves Lemina 1. *

Now we prove 2 lemmata for Dirichlet ﬁerles whose coefficients
f(m) satisty an equality of type (3.3). '

= Z‘ f(m)m™* where
m=1 )

S‘f = ylatr(y) = J(‘1*0((‘:)1’f’+1)10gf“1y))

m<v

Lenvma 2. Let F(s)

(3.11)

withan o 7= 0, A > 0, j =1 and for an mbttm,rj Y= A
Then F(s) can be analitically continued in the half-plane o = Res
> 1-1/{j4-1) except o single pole in s = 1, and we have for o > 1 — 1/(F+2)

A Y
(3.12) f +T9-—?w““+0(181 (’g) at~clogi~'z )

ML e

{where the constant in O symbol depends only on f).
Proof. For ¢ > 1 we can write

ML M>X

(3.13)
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.Using (3.11) we have for ¢> 1

3
(3.14) Zﬂmﬂ? - ‘i(f) +3f—f-frt7)dz

m>x

o0 (=]
an at (%)% #{1)1
s [t ST s [
&

+ &

G e i f‘” (1)
8~1a} vz F 43 - dt.

&L
Here. the firgt térm iz analytie in the whole plane except & single
pole in § = 1, the second term is analytic in the whole plane, and the
third one is by (5.11) analytic for ¢ > 1—1/(j+ 1) and for ¢ > 1 —1/(j+2)
- vt : o
(3.15) f m—y:s) dt = O( AN ggi~1g. g HI+I+1—0)
x .
bolds. Lemma 2 now follows from (3.11), (3.13), (3.14) and (3.15).
Now applying the Cauchy-inequality for the function ‘

. [s4 g f(m) ) %
#(s) = P(s)+ - —mi -
with » = 1/{j+2){j+3) we get

Leyma 3(2). If the function I (s) sotisfies the conditions of Lemma 2,
them for 2 2= A, 621 —-1/(j4+3) we have

(3.16) — Z f%(mifgm

MET

a 1 A+ '
= =8l _loo J=1,, . pl—0
B (s} -+ 1 % i (1 p logm) +O.([s|( ) log™"w-

{(where the constant in the O symbol depends only on 7).

4. Henceforth let x, y; and g, (¥, # %) be real non-prineipal (and in
case of y; and y, primitive} characters (mod D), (mod D) and (mod D) resp.
Let

Fi(s) =F(s; 5) = {(8) L(s, 2
Hy(8) = F(s, g1, 32) = £(8) L(s, (s, xz)L(S.; 1 X2) -

Then Lemma 1 (and so Lemmas 2 and 3) are valid for F,(s) = ZD’O Film)m™*
m=1

(*) We ean get Lemmnia 3 without using the Cauchy inequality, directly from (3.11)
applying the same methed a8 in Lemma 2. '
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in case of F(s,y) with A =D, j =1, and in case of F(s, x1, y») with

A = (D1 D) § = 3. Further f;(1) =1, f;(m)>0 and f{#¥ >1. This
follows from the Huler product considering

, 11+ 2(p")
log B(s, x) = Z ET

p r=l
and
1 (L4 (L +2(00)
g (0, ) = 3 > L@
f p=1

where the coefficients are for odd » non-negative, and for even r positive.

Now we turn to the proofs of Theorems 1-7.

Proof of Theorem 1. Let 0 < & <1/5 and y; be a real primitive
character (mod D,) for which with a real y < ¢/3, L(l—y, ) =0. (If
such g does not exist, Theorem. 1 is obviously true.) Henceforth let this
character y, (depending only on &) be fixed. Let g, be any real primitive
character (mod D) (x # z1) for which L(1— 8, y2) = 0 with a real . § < .
(If such x, does not exist, Theorem 1 is obviously true.) Let us regard

B(s) = Fls, 1y 1) = Y Flmm™

for real s > 1—1/20. If we set @ = A¥ = (D;D,)® then the error ferm
in Lemma 2 is o{1), and as f(1) =1, f(m) = 0, if for a real v with 0 << 7
<1/20, F(1—7) = 0 then we have by Lemma 2 :

' Jm) o .

(1+0(1)) F = —@ .

T

(4.1)

m=x

Applying this with 7 = § and z =y we have by 8<y

| ) @ s
(4.2) (1+o(1))%w” = Z%@y > Z% = (L+od)) 5o

m=L Mz
and so
s s Ptolly o Bely | Qroty 19
= ﬂ’ﬂ’ 3._6_ D.l M Dﬂ
(D.Dy) * _ -

Proof of Theorem 2. Let us apply Lemma 2 for

F(s) =Fls,p) = D flmym’

m=l

Cwith @ = A% = D¥, s =1—f, where 0<p<1/logD<1/10. Then

the error term is o(1); thus in conseguence of our assumption and L(1)=0
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we have L(1-—g)> 0 and so F(1—£) < 0. Thus considering f(1) = 1,
flm)z=90 we have -

flm) La
(4.4) 1-+o(1) < {1 +o(1))?;§r——m1_,, F(1=f)+ 5 of
a a_Dg.s ey _ e L(1, y)
SPCTET ST 5

Theorem § iz the immediate consequence of Theorems 1 and 2.

Proof of Theorems 4 and 5. If the function F(s) satisfies the con- .

ditions of Lemma 3, further a> 0, f(m) > 0 and f(4) > 1, then F(s) has
ali most one, simple zero in the interval [l— M,l].
- . log A
Namely, if we choose # = A'** where &> 0, A > A,{s, ) and if
1—-1/logz < s < 1, then the error term in Lemma 3 ig 0(1), 50 we have
by (3.16): '

- . f('m)logm a 1
4.5). F(8) = — — 1—a _
(4.5) (s) ,;-Z-; o ‘ T " (1_8 logm)+o(l)
log4

4

S +o{l)< 0. .

Applying this for #(s) = P(s, 5) we get Theorem 4 {(in case of the
trivial 4 = D with e= 1-+0(1);in case of the Pélya—Vinogradov inequality
-4 =2V/_ﬁlogl) with ¢ =2+0(1)) for F(s) = F(s, Z1s xs) we get The-
orem b (with the constants ¢ = 4+o0(1) and ¢ = 14-0(1) resp.)
Proofof Theorem 6. Let D, be the minimal modulus (> D, absolute
constant) for which there exists a real primitive character y, with a Siegel
zero 11—y, where y < £/7D§. Let D; > D, another modulus, 4, a real
primitive character (mod D,) (g, # %) -for which L(1—¢, y,) =0.
Let D =DyD,, @ = D* (< DE). We shall use that " is maximal for
r = 1/logx, and is monotonically decreasing for 7> 1flogz. We shall
further use that by Theorem 5 if D, =Dy, D, = D, then

1
(4.6) max(y, & —
. x>

Thus in case of 6>y we have

1 1 £)2 e

& fe>—"_s_ 1 o 2
. 8logD ~ Zelogh = 2D® ~ TDi
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Let ns assnme d < y. Then

£ 1
I
(48) 6~ 7 3log.D logx

Now let us regard F(s) = F(s, g1, 25). From (4.3) for D, > D, = D,
using (4.8) and "¢ < D, we get

(4.9) 5>

e 1 1
7D*® < TelogD < logD
follows directly from (4.9).

Prooi of Theorem 7. Applying Dirichlet’s clags number formula

CAs

and ¢ < 5 on applying Theorem 2 (2.2}

VD —D
B(—D) =——L{l, ) (zpln) = (T) D> 1)

. from (2.2) we get (2.3).

I Dz [2000h(loghk+10)? and Dz D, then applying (2.3) with
&= [2(logh+10)]" with-the postible exception of at most one funda- -
mental disecriminant —I), we getb

1 Lo e
—_ Ny — Toghrid
(£10)  R{ Y= O oeh ¥ 10)
= —““"1—‘ 20000'91;_10;" {logh _|_10)1—lug;+10
# T0n{logh+10)
2000°7 h 20002 h>h.n
- ; = 10 *
T0we(logh - 10)\osh+10 70me V10 -
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