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0. Introduction. This article develops and applies general criteria
for the algebraic independence over C{z) of functions of the form p{az),
{(az), and exp(fz). Such questions are interesting as function anualogues
of number theoretic transcendence questions. Buf they also lead to tran-
scendence results for numbers.

The paper ig divided into three main parts. The sections are somewhat
independent, using only the statements but never the techniques of
previous sections, The reader who is so inclined is invited to read only
the sections interesting to him.

Section I. This first part generalizes some differential algebraie
techniques of J. Ax ([1], [2]). He developed them to answer the power
series analogue of a conjecture of 8. Schanuel for the exponential func-
tion. We extend Ax’s theorem to include also the differential algebraic
analogues of Abelian integrals of the first and second kinds. The proof
of the central result follows the general outline of Ax’s original proof,
although of course some new elements are introduced. As an example
of the results to be found at the end of this section, we note the fol-
lowing result: :

Fori =1, ..., n, let p;(2) bs & Welersirass elliptio function and y, be
a power series without constant term. If yi, ..., y, are C-linearly inde-
pendent, then .

t7.deg-¢C (Y1) <+ oy Yns P1(Y1)s -5 Pal¥n)) >0 +1.

Section IL If for example the @4(2) have no complex multiplica-
tions, i.e. a rafio wy/w, of fundamental periods is not imaginary guadratic,
for i =1, ..., n, then the hypotheses in the preceding result that the
#; be C-linearly independent can be weakened to- linear indeperdence
over the rational numbers Q. In order to do this and to obtain the cor-
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responding result when complex multiplication is allowed, techniques
from algebraic groups and Lie groups are introdneced in this section.
The main result is to be found in part D. There seems to be some overlap
of this section with recent work of Ax [3], from which the idea of using
the Lie correspondence for algebraic groups was taken. _

Section III. We develop necessary and sufficient conditions for
the hypotheses of Waldschmidt’s general axiomatization ([21], § 5) of
trangcendence proofs involving functions of the form @(az), £(az), and
exp(fz). Several new transcendence resnlts are deduced. Perhaps the
most striking new results are those showing that of three numbers relzted
to a Weierstrass elliptic function with complex multiplication, at least
two are algebraically Independent over Q.

Let p(2) be a Weiersirass elliptic function having its period ratio
=7 = wyfw, imaginary quadratic and having iis inveriants g,,g. alge-
braic. Asswme that the compler number a iz a cubic irrational. Then ai
least one of plao,), plato,) i transcendenial over Q{w,). _

This seems to be the first result published asserting the algebraic
independence of two or more numbers connected with an elliptic function.

Appendix A shows that when the functions considered are algebraic-
ally dependent over C, then they are actually dependent over the “small-
est” fields possible. In Appendix B, we show that when g, and g, are
algebraic and f(z} has complex multiplications, then w,, 7;, and #», are
linearly dependent over the algebraic numbers.

This work was begun at the NSF 1973 Summer Number Theory
Institute at the University of Michigan. If iz with pleasure that hoth
aunthors thank the National Science Foundation for support that summer
and thank D.d. Lewis, together with his colleagues and the staff at
the University of ]&hehlgan, for making our stay so enjoyable.

The referee has called to our attention that the results of Appen-
dices A and B can be derived with less caleulation by the type of argu-
ment given by D.W. Masser in Elliptic Functions and Transcendence,
Springer Lecture Notes Nr. 437, 1975, pp. 36, 37, 66.

- L DIFFERENTIAT, ALGEBRA

A. Derivations and differentials. From now on, all rings (and fields)
are assumed to be integral domains with characteristic zero quotient
fields, and all modules are assumed to be unitary.

1. Let us recall some standard facts ([15], § 26, §27). ¥ B iz an
A-dlgebra and M is a B‘module, then an A-derivation of B with values
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in M is defined fo be an 4 hnear map D: B-—+M such that for every pair
by, D:¢B, one has

D(byby) = by Db, -+ b, Db,.

The A-derivations of B with values in M form a B-module which iz de-
noted Der 4(B, ). The module of A-differentials of B is a B-module 25,
together with a derivation dg,: B—8g, such that for any A-deri-
vation D: B-»3f, there is a unique B-linear map D*: Rp,—M which
makes the following triangle commute:

dB14
B—-—-—~—~\ ~:.QB, A

D\ z’/b, .

M

Thus the map D—D* is a B-isomorphism of Der (B, M) onto the “dual®
Homp(2g,,, M) of Qp,. Note that D* iz just the map which replaces
“d” with “D*, ie.

When the subscript “B/A” iz not needed for eclarity, we shall usually
write simply d instead of dg,-

I B and 4 are felds, then tr.deg. B = dimp @y, and in fact if
{a;} is & transcendence base of B[4, then {da;} iz a B-bagis of £25,. In
particular, if ¥ =« K = L are fields, then one has a canonical injection
Qpp®xrl—>Lr;. Also, if K and %’ are fields which are algebraically iree
over k, then the canonical map £z @Kk Qg i8 an isomorphism.

I 8 is & multiplicative subset of the ring B and Bg is the local-
ization of B at 8, then the map

54 ®pBs—~ 254
is an iéomorphism_ Although in general, £p;, may have some torsion,
this does not oceur in case B is a valnation ring over a field. More pre-
cisely:
Levva 1. If B is a valuation ring contammg a field & and if K s
the guotient field of B, then the aaiural map

Qpp—>L2p. @K
is injective.

Proof. By the standard constructions for tensor preduets and moedules
of differentials, it suffices to prove the lemma in the case where K is a fi-
nitely generated field extension of k. Also, f wefp; and beB are hoth
non-zero but bw = 0, then there is a finitely generated ring extension ¢
of %[b] with quotient field K such that the image of Oy in 2z, contains
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o and such that be’ = 0 for some preimage w’ of w in L£on- By a theorem
of Zariski ([25], p. 853), there is a regular spot D containing ¢ and domi-
nated by B. Clearly @,, has D-torsion. But this contradicts the fact
that 2y, is a free module ([17], p. 335).

2. Let X be o field extension of a field k. If B a valuation ring over k
with quotient field K, then by Lemma 1, Opy can be identified with
a submodule of Q. A differential in Qg is said to be B-regular if it
Is in Qg (identified with a szbmodule of Qgp), ie. it is of the form
Db, with a,, b,eB. A differential in Rxp. is said to be of the first kind
if i6 is B-regular for every valuation ring B over % with gquotient field ¥,
A differential wefyzy is said to be of the second kind if for every such B
there is an feK such that o —df is B-regular, Clearly every ditferential
of the first kind is also of the second kind. For example, if K iz a function
field of one variable over &, then a differential in gy is of the first (resp.
second) kind if and only if it is without poles {resp. residues) at all valu-
ations of A [k. ' . :

¥ o=} fidg; is a differential in Lgy, then any derivation
DeDer, (K, K) determines a differential

(@) (D, &) = > (Df,dg,—Dg,af,).
4
This is » differential in Qg which does ot depend on the particular
representation of w. If D’ is another k-derivation of K, then (de){D, d)
acts on D’ to. yield

(@) (D, D) = Y (Df, D' 9;—Dg;D'fy).

The differential w is said to be closed if {dw) (D, @)= 0for all DeDer, (K, K).

If K is a function field in one variable over k, then every differential
we Qxy, 15 closed. It K is the function field of an algebraic group definad
over k and o (resp. D, and D,) is & left invariant differential (resp. vector
iields), then one can verify that ([167, p. 140)

(dew)(Dy, D) = -D1(-D;m) “Dz(—wa) —[Dy, Dz}*w = —[Dy, Da]* .

In partieular, if the group is commutative, then every left invariant
differential is closed. '

It will be useful to know that the varicus classes of differentials
are stable ander field extensions. :

Levwva 2. Let ks K c I be a tower of fields ond tdentify Qgy, with
& K-submodule of Qr,.

(1) If weQgy is of the first kind (resp. sccond kind, closed) as a dif-
Jerential in Qg then it 4z also such as a differential in L
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(ii) Let @ be the image of a differential w by the canonical map D,
~>0p . If w is of the first (resp. second) kind, then so is @.

Proof. The assertion about closed differentials iz the omly trowble-
some one. Clearly a differential we Qg which is closed as an element of
21 18 also closed as an element of Qg,. Hence in proving the converse,
it suffices to consider the case where Kk bas a finite transcendence base
By, oony By 1 DeDer, (L, L), then

r

i,
D :ZD:G"(&J;

=1 1

)—}—D' with DY eDerg(L, L).
It follows that

T
(de)(D, &) = ;__S_J:Dw,-fdw) (—;; d)+ (Ao) (D, @)
Each term of the summation is zero sinee o is closed, and if @ = ) f;dg;
with f;, g;<H, then (dw)(D’,d) =0 since D'f; = D'g, = 0.

A differential weQgy is called ewact if it is of the form o = df. If B
is a subset of K, we denote by d¥ the set {de} e« F}. Every non-zero exact
differential is of the second kind, but not of the first kind ([14], p. 169).
A differential is called logarithmic if it in of the form df/f. A non-zero
logarithmic differential is never of the second kind ([14], p. 163).

I A1is a seb of k-derivations of a field K, then a differential we @z,
is said to be A-ezact if there is a y <K such that Dy = D*w for all Ded,
Any such y wilt be denoted by an “indefinite integral” y =Af .

3. The next lemma will not be nsed until Section ILD.

Lmnua 3, Let k < K < L be a tower of fields with L algebraic over K
and k algebraically closed in L, and suppose weQgp. If fel is such thai
w—dfefry is a differential of the first kind, then feK. .

Proof. Tt sutfices to freat the case where % is algebraically close
and L is a finite algebraic extension of X, Liet & be any homomorphism
of I into the splitting field of L/K such that o|g =idg. By the uni-
versal mapping property of Qv the composite map

]

L5 oD% Qo

induces & map L7432,z such that fdg—>o(f)do(g). This map admits
an inverse induced by o', and it reduces to the identity map on Rgy.
Since the isomorphism ¢ establishes a bijection between the set of valu-
ation rings of L and thoge of «(I), the induced map takes differentials
of the first (resp. second) kind to differentials of the same kind.

2 .— Acta Arithmetica XXXIIT,2

2
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In partieular, if @ — df is of the first kind, then so is w — da(f). Hence
the difference d ( f—o(f)) is an exact differential of the second kind.
But then ([14], p. 169), d(f—o¢(f)) = 0, and 80 f = o(f)+ @, With a,ck.
Summing over all ¢, one gets

20 = Dol + Y a, = Trye(fi+ ) a.K,

which shows the lemma.

B. The general theorem

TEEOREM 1. Leét F be o field of characteristic zero, A = Dex(F, F)
be a set of Q-derivations of F, and ¢ = [ kerD. Let w,, ..., w,, be closed

Ded

A-exact differentials of the second kind in Qpo; i, ..., o, be closed dif-
ferentials of the second Find in Que; and of, ..., w, be logarithmic d@‘f-
ferentials in Ly, such that D'o; = D*w; for Ded and i =1,.
Suppose BIC i3 a subextension of F such that

(&) fwiel for i =1,...,m,
4

(D) o 0f, 0 e Qpyp for i =1, ...,m; § =1,...,n.
If the following condilions are satisfied:

1) @iy ..., wy are C-linearly independent modulo dB and

(i) wyy..., 0, are Q-lincarly independent, '
then tr.deg.o B = m+n-rr where r is the dimension of the subspace of
F™F* generated by the weetors (D*wy, ..., D*oy,, D*wl;..., D*w)) as D
ranges through A.
~ For ease of comparison, the notation of Ax [2] is preserved in the
proot to as great a degree as possible.

Proof. (A) Chiange of coordinates. The first step is a change
of coordinates analogous to ones found in proofs of the nnphelt funetion
theorem ([8], p. 18). For notational convenience, set i, = w; for
i =1,..., m. There is a subset J of {1,2,...,m+n} of cardinality r
and derlva,tmns D; for jeJ such that det(D}“wE’)JxJ # 0. Let (ag) be
the rx 7 matrix inverse of (Djw;) and define for ied,

= Y'ayD;eDer(F, ).

FeJ

For each Ded, there are elements b,(D)eF with
COJ = ij _D).D{ a}j’) fOI' jeJ.

{eJ

Detine D" = D~ 3'b,(D)DyeDer(F, F) and seb
e . -

A& = {D]]| i«J}U{D'| Ded}.
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Ly, In addition to all the conditions on A, the sei 4" also satisfies:

) Df o] = by (Eronecker 8) for i, jed and
D*wf =0 for jeJ and D # I;.

Proof. The fact that 4’ satisfies all the conditions on 4 follows
immediately from the definitions and the observation that 4 and 4°
generate the same F-linear subspace of Der (¥, #'). Condition (1) follows
from the definitions of (ay) and the B;(D).

In view of the lemima, we remove the primes from the D' of (1)
a.nd suppose it to hold for A.

(B) Construction of a, differential relation. Suppose that
tr.deg.o B < m+n+tr Let o, = dz,:v!c(fwi) for i = 1,..., m. Then the
m-+n--r differentials

L "

(JJ; Wy, Oy for t =1, ..., m—+n; jGJ

are F-linearly dependent and a fortiori F-linearly dependent. Let

min
(2) D aloi—of)+ D fey =0
frm] Fed

be an equation of F-linear dependence with the least possible positive
number of non-zero coefficients. By dividing through by one of the non-
zero eoefficients, we can require that at least one of the a; or §; be equal
to 1.

(C) Triviality of the f;. For any derivation DeDerg(¥, F) one
can define .

D': Qyo—Qpe by  fidg—Dfdg-+fd(Dg)

- and C-linearity. This map safisfies the Leibnitz rule:

D fo) = fD'o+(Df)w.

LEMmA. If weQpy iz a differential and DeDerg(F, F) iz a derivation
with A(D*w) = 0 and (dw)(D, d) = 0, then D'a = 0.
Proof. Suppose w = 3u,dv;. Then
;

aD*0) = a{ Y uDv) = 2 (du, Do, + u,dDv,)
1 i _

and

(@)D, &) = 3 (Duydo,—duDvy).
1
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Hence
Y = Z (Duidz -{-uideu,)

(Z Drugdoy— du; Do) + ()"du D@,Tﬁidm{)

= (dw)(D, d)+d(D*w) = 0.

By hypothesis, the o;—w; are closed and D*(wi—w]} = 0 for all
Ded and ¢ =1, ..., m+n. Further the: o are closed and dD*w} = 0
for jeJ by part (A) of the proof. Applying the lemma gives

(3) DMwj—ol) =Dlo =0 for i=1,... jed, Ded.
Applying D' to {2) and simplifying with the relations (3) shows

» W20

mn
2 Dai(w;—m:-')—%-ZDﬁjm}’ =0
=1 Jed '

for all Ded. Since at least one of the o; or §; was taken to be 1, this is
an equation of F-linear dependence with fewer non-zero coefficients than
in the minimal equation {2). By minimauﬁty Doy =D, =0 for ¢ =1, .

cym+ng jed, and Ded. Since ¢ = () kerD, it follows that a, jeC
Ded

are constants. Furthermore, applying D* to (2) and mmg {1), it follows
that §; = 0 for all jed.

(D) The residue argument. Let el for i =1, ..
that w; = de;fe; and let py, ..
of ¢ generated by a,, ...,
g0 that

.+ % be such
s ¥ be a Dbasis for the {-linear subspace
a,. Suppose 0 g and ny; ave integers chosen

8

qog = 2 nyy;  for

t=1,..., 7%
i=1 '

and seb

n

P = nz}"v

i=1
Then one ean verify that

4) _}: ( ) 1/q)2y,(d’f).

1=1

By hypothesm, oy wiy ey for § =n41,. ,nm{—m J=1,...,n are
differentials of the second k_md Let K/C be a function field contalmng
all of the z; and satisfying the definition of differential of the seeond kind
a8 applied to these 2m-+n differentials. Suppose ‘dv; # 0 for aﬁ leagt
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one j <. Let E'/C be a subfield of & algebraically closed in K with
tr.deg.- K = 1 and »; transeendental over ¥' for some j < #. Applying
the camonical map QgL to equation (2) yields a velation of the
same form denoted (2'), and this relation can be viewed as ocecnrring in
Drpyz where B is an algebraic closure of B

If p is any place of KE over &', then taking residues ([147, p. 163)
in (2") vields in view of (4} that

{(—=1/9) ijPeR ( )_0 for all p.
j=1
du; i _
But Res, - = ord,7¢Z ([14];, p. 169). Since the y; are {-linearly
)

independent, this last equation gives ord,v; = 0 for all p. Hence 'vjeﬁfnl?.'
== B contrary to hvpotheais Thot do; = 0 for all j =1,...,¢

Ditferentiating »; = [Yz{‘!: yields

=1
n
ay; dz; ) "
G ={—| = yn,-j = yﬂﬁw{.
% 5 % ey

By hypothesis (ii) of the theorém, 7y == 0 for all i and §, and s0 «; = 0
fori=1,...,n Bince g = =0 for i =1, ...,0; jed, (2) is an equa-

k3
vy Oy and dF[U(Zl an_l_iaf w.;). By
t=
hypotheses (a) and (i) of the theorem, it follows that a,,; = 0 for i =1, ...
...y m. This contradicts our choice of {2), and so the theorem iz proved.

Conorrary 1. (a) The conclusion of the theorem still holds true when
condition (i) is reploced by either of the following condilions:
1) wy—& [wy, ..., w,—d [0, are C-linearly independent.
4 . 4

2} wg,...

tion of C-linear dependence of wy,..

s oo, are differentials of the first kind and either [o,, .
4

..,zfcum

are (-linearly mde;pendent modulo O’ or else wy, ..., w, are C-linearly in-

dependtmt
b) If n =0, the eonclusion of the them em still holds true when one
deletes ﬂze condition that w,, ..., w, be of the second kind.

Proof. (A) Suppose condition 1) holds but that Za,m = du with
=

a; «C and weF. For Ded, apply D* to the following equation
m . n

Za{[m;'—d fwi) = d(u—‘—Za,;!co‘)

4=1 4 i=1
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to conclude that -
"

=Dlu- aifcéi) for all Ded.
i=1

Bince (1)} ker D = C, it follows that % — Za foeC, and so du = Z‘aid_[wi
Ded =1 4

Thus
(m —dfmi) =0,
2

and 80 a; =0 for i =1,...,n by condition 1). Hence condition (i) of
the theorem holds, and the conelusion follows.

(B) Condition 2) implies condition 1). In fact, suppose

.

m

Staor = a( S [

=]

By condition 2), the left hand side is a differential of the first kind. The
right hand side is exact and hence not of the first kind unless it is zero.
Hence

m m .
Zaiwi =0 and 2(1‘ fCO,‘EC.
i=1 ’ fm=]l A4

By condition 2), e, =0 for i =1, ..., m a8 degired.
- (0) The condition that e, ..., w, be of the second kind was used

only in the residwe argument. If # = 0, this part of the argument may
be omitited.

C. Applications to Weierstrass p-functions. For simplicity, we restrict
ourselves to the one variable case.

COROLLARY 2. For ¢ =1,..., n, let fo,(2) be o Weierstrass p-function
with invariants g;,, g, respectively, and let y,{¢) be a function holomorphic
in a neighborhood of a point ac<C and vanishing ot a. Suppose ¥y, ..., Y,
are linearly independent over o field K which contains oll the invariants
of the p; as well as the derivatives y™(a) of all orders m > 0. Then

s ¥al?)y 2 (12(8)), o es B (¥al2))) = 1.
Oororrawy 3. Under the hypotheses of Corollary 2,
tr.deg.g C@u(y1),- -, #3(¥,); eXD(Y),"., exp(yn)) = n+1.

COROLLARY 4. Under the hypotheses of Corollary 2, if 8y, ..., BpeK™,
then the field gemerated over C by all the y7s, py(y:)'s, cmd exp(ﬁ,--y,)’s 8
of transcendence degree af least 2n-+1 over C.

tr.deg.g C(y:(2),
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Coro1nARY 5 (Ax). If w,,.
series withoul constant terms, then

Y are Q-linearly independeni power

tr'deg~00(yn ooy Yns €XD(Ha)y ooy exp(y,‘)) =zn+1.

COROLLARY 6. If p iz a Welersirass go-function, let T{z) = 1/p(2).
Then

Tolo...ol

n-times

tr.deg.oC (2, T(2), ToT(2), ..., (2)) = n—+1.

Proof (of corollaries). Identifying the y; with their power series
expansions about a, one ean suppose ¥;eK [[u]], w =z—a. Let F be

‘ )
the field of formal Laurent series in uw over €, d = {%} g0 that

C‘ = () kerD = C. Note {hat since the y; have no constant terms, they
Ded
are K-linearly independent if and only if they are linearly independent

over X modulo K. Since K contains all the coefficients of the y;(w), this
in turn implies that they are C-linearly independent modulo C.
The function field C (@;(z), ga;(z)) over € of the elliptic curve

(@i = 4{p2)f — g foil2) — g1

9049 (1143, p. 163). Since p,(v)

it ag1(50
is non- constant and hence transcendental over C, w; = o)

HOA
a differential of the first kind of the function field C(gﬂ‘- (v}, @:1(%;)). By
Lemma 2, o;is a differential of the first kind in Qg. Clearly w;is d-exact
with [ o; = y,.
4

hag & differential of the first kind

Similarly one has logarithmic differentials e ~ Wigofiti — mf; which

are A-esact with | of = y;. In view of these remarks, Corollary 4 and
4

hence also Corollaries 2 and 3 are conseguences of Corollary 1. The proof
of Corollary b is similar, but using only logarithmie differentials. Finally
Corollary 6 follows by an induction on n using @, = = ... = P = P
and ¥y, =2, Yiu = Ly for 4 =1,...,2—1.

II. GEOMETRIC INTERPRETATION

A. Algebraic varieties. Let P be a hrational point on a non-singular
irreducible projective algebraic variety V of dimension » defined over
a field % of characteristic zero. Mapping a set of uniformizing parameters
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of ¥ at P to the indeterminants @, ..., o, defines a local homomorphism
Op(Vi—E [Emlr veey wﬂ-]]

of the local ring of 2 on T into the power series ring in % variables. Let
%' be n field extension of & which is algebraieally free from k(w,, ..., a,)
over k If y,, ..., ¥y, are power series in &' [[tl, ceay ts]] without constant
terms, then one has a loeal homomorphism deficed by mapping #; to
y; for all 4. If p is the kernel of the composition of the two maps, then
the subvariety W of V defined by p is called the k-subvariety defined by
Fis -0 Uy Clearly W depends on the choice of uniformizing parameters.

A differential weQypyp, where E(V) is the function field of ¥V, is

said to be regular af P if it is expressgible in the form o = Z‘ o, 000, with

%, 2,60p(¥). I wis of this form, then if induees a dL{fewntlal wyre Ly
defined by reducing the w; and v; modulo p {[¢]}. The differential wy can
be viewed as a differential In Opyeyp

Now apply Corollary 1 with f=&{{,...,

A*{(at)

CoRoOLLARY 7. With the above notation, let wy, ..., w, be a sef of k-
linearly independent closed A-ewact differentials of the first kind on T,
all regular at P. Let 21, ..., 2, be O-Unearly independent power series in
Bty .0y 1)) omd suppose 2(0,...,0) =0 for all i. Suppose further
that either the ksabwriety defined by ¥,, ..., ¥, 48 either V ifself or
else that [ (o), ...y f
Then

tr.deg-k'k’ ('.7]11 vers Yo f(ml)w',
. 4

), € =%, and

i=1,..., a} One gets the following result.

& Z,
! ...,e”‘)

"32“.‘?1.! € H

’ f(‘?”n)W: SR
4

is at least n-m--7 where v is the dimension over k'((f, ..
vector space generaled by the wectors

7\ A P W
((B_tj) (o)my - s (B—t,) (0 )37 5‘1;;_-5 s“{.{)

gor § =1, ..., 8.

1)) of the

B. Algebraic curves. Let ¢ be a nonsingular complex projective
plane curve passing through the origin. A Puiseux expansion about the
origin ([14]; p. 104) gives & parametrization z = T, y = q(7). Let
Bz, v)dz be a differential of the first kind on ¢, and let Ly be a formal
Laurent series solution of

{dLgp/dT) = kT"‘IR( , 4(T)).
The result of part A gives -

(wo ) are E-linearly idndependent wmodulo %',
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COROLLARY 8. Lét Y1, vy ¥y, 21y oeey 2 C|[ty, -o-, 1] be formal power
series without constant terms. Suppose 2y, ..., 2, are Q-linearly independent
and 1, Lply), ..., Lgly,) arve C-lineorly independent. Then

tr.deg.cC(;yl, ooy Uns Lp(Us)y ooy LplYa)s 215 oons 2o 3219 SRR Bzm)

28 ot least n+m-Lr, where r {2 the dimension of the veclor space spanned
8y, 0y, 9% Bz,
6tj yrers 61‘5 3&;1 ] 6‘1‘ )fOijl

. €. Algebraje groups. Let G be a connected commutative complex
algebraic group with identity e, # = T,6 be ity 1die algebra, exp: ¥—G

the exponential map, o, the local ring of rational functions regular at e,

and 0, the ring of germs of analytie functions at e. The ring of germs

of analytie functions of ¢ at the origin iz of the form O€x) = CLwy, ...
e @ p m = dim@. Choose ¥, ..., ¥, in k{[#;, ..., £]] to be formal power
series without comstant terms. If one denotes by [(exp)y: T.G—1% ¢

([16], p. 145) the map of the cotangent spaces induced by the exponential

map, then one can form the commutative diagram:

0, 0—= Oy »Cl[ ] CII]
d id d 4 . a
. ; ' }
2,16 Qo 0— Cral G Lepye—— Lopayio
N
|
J’ %k 4’*
THG —= %%
{exD)s

where the maps are either the obvious ones or those obtained from the
universal property of the differentials.
 The C-vector space of left invariant differentials of @ ([21], p. 9),

has & basis w;, ..., ®,€f2, ;¢. These map via the diagram to 2 basis ior
the left mvanant differentials of the Lie group & as they are represented
in T*G. The left invariant differentials of ¥ are represented in T,%
by the subspace gererated by the images of the do; for i =1,...,n
Let 4, denote the set of partial derivatives 9/dx; for 1 =1, ..., The
map (exp)? identifies the left invariant differentials and so the images
of the w; in Qg e are dy-exact with f w; equal to a linear combination

of the 2;’s. It follows that the images &; 1n Lopgyo of the o's are A-exact
| 0
h A=
where { 7,
the y/’s. Since G is commutative, the w;s are closed (§I, A.2).
Now suppose ¢ = L x4 where A is an Abelian variety and L a (@)}
is isomorphie to a product of multiplicative groups @, i.e. L is o com-

j=1, ,r} and that [@; is a lnear eombination of
J :
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mutative linear group with no anipotent part ([21], pp. 4-12). Suppose
the notation above is chosen 80 ¥,, ..., ¥; correspond to L and %4, ..., ¥,
correspond to A. The exponential map of L is (uy, ...; @)—(e", ..., e,
and L has its left invariant differentials generated by da;fe;. The algebraie
subgroups of L eorrespond to Q-linear subspaces of the Lie algebra ¢f of
L. The exponential map of A identifies 4 with €"*/4 where €™ is
the Lie algebra of A and . is a full lattice in C*~* ([22], p. 21). The al-
gebraic subgroups of 4 correspond to subspaces V of €** confaining
sublattices of 4 of dimension twice that of ¥V ([21], p. 21).

We wish to apply Corollary 1 to the differentials of the first kind
Bpygy ey Bpelogmye and  the logarithmic differentials @, — ¢~ “de™,
i=1,..., % If one could verify the hypotheses of the corollary, then for
any field # containing the g;’s and the field of fractions K of the image
g, in C{(#)} of o, would have transcendence degree > n -7 where r is the
rank of the matrix (8y;/dt;). To guarantee the hypothesis of the corollary,
the next lemma is used. :

Leyma 4 If g0, ooy Yy do not Lie in any proper subspace V of %
containing a subloltice of A of dimension twice that of V, then @, ..., ®,
are C-linearly independent.

Proof. Let W be the subvariety of A defined by 9., ..., ¥n,
Lid
and suppose w =  we; i5 a non-trivial lnear combination with
k3

it

wp= 2} a,B; = 0. Sinee the o; ave closed, o = 0 determines 2 complete-
=il -

ly integrable differential system ([16], p. 159), {$,}, He = {X,;] Xekerw}
on the Lie group 4. Since 4 is commutative, kerw is a Lie subalgebra
of ¥. Hence W is contained in the Lie subgroup of 4 corresponding to
ker w. Since w 3 0, this Lie subgroup is proper. But then the group gener-
ated by W is proper. Since W is irreducible, Zariski closed, and contains
the identity of A4, the group generated by W is an algebraic subgroup
of 4 ([21], p. 143), and so is a proper algebraic subgroup of 4. By the
correspondence of the last paragraph, %.,,...,%, lie in a snbspace V
of C** containing a sublattice of A of dimension twice that of V.
Applying the lemma, one sees by Corollary 1:

CororLAmY 9. With the notation as above, suppose that ¥,, sy Yy are
Q-lincarly independent and that y.,,...,y, do not lie in a subspace V
of C** containing o sublattice of A of dimension twice that of V. Then any
subfield B of C(()) with BE (y,, ..., ¥,) algebraic over T is of transcendence
degree over C ot least n - r where v is the rank of the Jacobian matriz (0y;{0).

D. Weijerstrass fanetions. he considerations of the last section lead
to necessary and sufficient conditions for the algebraic independence of
Weierstrass elliptic functions and exponential functions.
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We begin by studying products of lattices. Let ay, al, ..., @,, 7, be
non-zero complex numbers such that the ratios v = aifn; satisfy the
following conditions: '

{(a) 7; is not real for i =1, ..., n,

oty + b
—£
(B) 7 # ==

whenever 4 -£7 and @&, b, ¢, deZ with ad—bec 0.
‘Define for i =1,...,n,
Q)

Q otherwise.

if =, i3 gquadratic
', — § 18 Q ?

For the same range of i, let 4; be the lattice
A = Zo,+ Zoy = {ngoy -+ mpy) g, ngeZ).

Let my, ..., m, be positive integers, d = m;+ ... +m,, and define the
internal direct sums for i =1, ..., n:

A= 1s CFF = W,

A =A% ... x4, = C~

Then A is a discrete 2d-dimensional lattice in C%

Let L be a k-dimensional C-linear subspace of €% It must have
dimension 2k as an' R-vector space. Since A is diserete, it follows from
Eronecker’s Theorem ({97, p. 382), ‘that the dimension of the lattice
InA is at most 2k. When it is exactly 2%, the following erucial result
ghows that I must he of a very special form indeed.

PROPOSITION. If L is a k-dimensional C-linear subspace of C% whioh
conizins o 2k-dimensional sublatiice of A, then L has a basis over C, each
element of which Hes in some W; and has coordinates in K;.

Proof. The proof iz by induction on 4 with ¢ =1 being a frivial
case. Assuming d>1, the proof falls maturally into two not entirely
disjoint cases: _

Case 1. There is an element veLNW, with all m, coordinates from
K, and the first coordinate non-zero. The subset of I consisting of all
elements of L with zero first coordinate can be considered to be a sub-
space of € of dimension k—1. As such if is a sublattice of A™ ™ x4, X
%X ... X4, of dimension 2(k--1}. Tn faet, if K, = @, then clearing the
denominators of v with some integer t gives two Z-linearly independent
elements tn,v and txjv in 4. I K, = Q(r,), the vector zyo has coordi-
nates of the form a--br, with a, beQ; so for some t<Z, the veetors ;v
and fmv = my(7,%) of A are Z-linearly independent. In either case, for
every Aeid, there are integers ¢ and g S}mh that the first coordinate of
A~ ctm,v— dimv is zero. Hemeo Ln(d ' XdyX ... x4,) has dimension
at least 2(k—1). Since LN C* ' has dimension k—1 and A is discrete,
the dimension of the sublattice is exactly 2(k—1).
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" By induetion, this subspace LN C? has a basis B consisting of
vectors each Iying in some W; and having coordinates from XK, and
Bu{r} is a basiz of L of the same kind. In particular, this case applies
when I contains & non-zero element whose only non-zero coordinate
is in the first place.

Case 2. Zero is the only element of I whose final d —1 coordinates
are zero. Then the projection p: C?—C%! onto the final d—1 coordi-
nates is injective when restricted to L. Now p(L) iz a k-dimensional
C-subspace of €% containing a sublattice of A of dimension 2% By
induction, p(L) has a basis B’ of the desired type. If each b'«B’ iz of the
form p{b) for some bel with first coordinate zero, then thesge b
a basis of L of the type needed. *

At any rate, since the dimension of p{L)n A 18 at most 2k and 2%
is the dimension of p{Ln.), the Q-vector space V spanned by ZnA
projects by p onto the Q-vector space spanned by p(IynAd. We know
that each #’'¢B’ is in W, for some 4. For such an 4, mb’ and =;b’ both
lie in W; and in the @-vector space spanned by p(L)ns. Hence there
are elements ¥ and b™ in ¥ with p (%) = =;d", p(b™) = 27b’ and whose
iy -} ey -

Mg
0. It follows that

P(b**) = “ib = 7g(m;h’) = 70 (b%) “”P(T:b*)

Since ¥V < L and p is injeciive on I, b** = 7;b*. Comparing firgt coordi-
‘nates tells us that

form

!
bary - am,

first coordinates are , respectively, with a,b,e,

“d,ny, neeZ and w,n, F

r
bory, + amy

7y {doty - cmy)

Top Ny
T dmy e =0, then b’ = b¥jm, is of the form desired for basis
elements of L.
T de, -+ emp == 0, then

Ny AT+ Tp b
_ Ty 6T+ Na ¥
Now nyng{ad—be) # 0. In fact,
N & be—ad 1 i
gy et +b Ny € ¢ et 4@ o #0,
T o, entd | myoa b
g d?&‘i" q i e=0
Ty G :
—_—— ¢#0 and ad—be = 0,
NEK:
a Ty b .
- if ¢ =0 and ad—bc =0,
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which would contradict the assumption that 7; be non-real. By assump-

tion (b} above, we must have 1 == 1. Clearing denominators in our ex-
pression for 7; shows that either 7, is quadratic or else ¢ = 0. In either
case, b* /7, is 4 basis element of the desired form.

Summing up,

B = {b*=;
iy g basis for L of the form desired.

Tf I.is as in the proposition, then if is defined by equnations of a special
forro. Infact, let B be a basis as in the proposx’non Foreachi=1,..., %,
the set BNW; generates a subspace of E*. This subspace is deimed by
equations with coefficients from K, and mvolvmrr the variables corre-
sponding to the m, coordinates of W;. The set of all these equations for
all values of 4 defines the subspace L. Thus L is defined by equations
each of which involves variables corresponding fo only one set of m;
eoordinates and has coefficients from K.

The following is crucial to -all applications.

TEEOREM 2, For i =1, ..., m, le p,(z) and {(2) be the Weierstrass
functions correspondmg to ihe ﬁmda-menml period pair mwy, my with period
ratio T, = vy . Suppose that

H bV, pb") = ;b b e B'NW}

ar;+b

br;+d

whenever © %= j and a,b, ¢, deZ satisfy ad—be #0. Let Ky = O and
define for ¢ =1, ...,

(5) T 7

% Q{z) if v is quadratic,
T 4] otherwise.
For i=1,...;m+1, et Yy eers Yinge Cllhrs - 2 tel] be K limearly inde-

pendent power seﬂes 'wzﬂwut aonsmnt terms. Defme 7 cmd v’ to be the ranks
of the Jacobian matrices

‘ (ayn) and ( a./u)
atk 'E==}L ...,m-r-l atk i=1,,
j=

J=1,-..,7‘l,7

g Toml,...,8

T, 08

respectively, and let t be the transcendence degree over O of the field obigined
by adjoining to € all the f@;(yy). Then

(i) t=7r.

(if) The transcendence degree over € of the field generated by all of

the “power series”
Ym1,§

Y Pi(yij), €

m4-1

is af least 3 my-t7.
i=L -t
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(ili) The transcendence degree over C of the field generated by all the
“power series™

Yags @i¥)s Celyy), €™
m41
¢ at least D) my+r-+-t.
dem]
CorROLLARY 10. With the notation of the theorem, the tramscendence
degree of the field in part (iii) s at leasi 2 ant A1+ provided that

=1

at least one of the following conditions holds true.

(1) The pylyy) for i =1,
dependent.

(i) The transcendence degree of the field generated by the yy for
i=1,...,m;§=1...,m 48 af most (i.e. equal 1o) r’.

(i) The gy for 4 =1,...,m; § =1, ..., n; are all polynomials.

eams j=1,...,n; are algebraically in-

Proof (of corollary). Condition (i) implies { = Z‘ n; and so part (iii)

of the theorem applies. Since condition (iii) clearly entaﬂs condition (ii),
it suffices to show that the condition (ii) imuplies condifion (i). But this
follows from part (i) of the theorem with n,,.; = 0 since in thiz case
P . .

Proof (of theorem). (i) Using the proposition, one can apply Cor-
ollary 9 to the algebraic group A = A4; X ... x 4, where A, is the product
of n; copies of the elliptic curve parametrized by (@;(2), i(#})). One
conecludes that the transcendence degree of the field generated over C

m

by the y; and the p(yy) for ¢ < m is at least > n,++'. Thus ¢t ="
. i1

(ii) The proof is the same except that one uses the algebraie group
& = L x4 where 4 i3 as above and I is a product of %,,, copies of the
multiplicative group.
(iii) Let T be a set of pairs (i, j) such that the @.(wy), (4,j)<T form
& transcendence base for the field generated over C by all the p,(yy)-
We wish to apply Corollary 1 to the differentials w;—d [ w; of the form
4 _

. ag;( .
g — Ay = ;:Ey?:;) —dy; fori=1,...,mandj=1,..,n,
_ ROWY
By—dtlyg) = LN _gri sor (3, et
01 (935
.and the logarithmic differentials
e ImtL g lmtl,f for j=1,..., B2+
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By Corollary 1, in order to prove assertion (iii), it suffices to show that

the above differentials (6) are C-linearly independent. If not, then let

Zﬂsi(wij—dyij)+ E Bilog — dLilyg)) =0
] ter
where not all of the coefficients ay, f;<C are zero.

For each pair (i,§)eT, we must have fy = 0. In faect, for fized
(i,§)eT, let K be the algebraic elosure in C((f)) of the field generated
over € by all of the @, {yy) where (&, }eI™N{{¢, /)}. All of the P,(¥..)
are algebraic over K (ga;(yﬁ)). The natural map *: QG((,)),C—:»QC«WK applied
+0 the above linear relation shows that there is o differential of the first
kind ® defined over an algebraic extension of K(fy(yy) such that
By(wy)* —w is exact where (wy)" is the image of wy in .Qc(m),g By
Lemma 3, there is 2 function feE (p;(vy), Pi{yy)) such that Sy, —df
ig a differential of the first kind. But K(gai(y,,} @i{y)) is the function
field over K of the elliptic curve associated with the periods wy, wgy.
For this eurve every differential of the second kind can be represented
uniquely as the sum of an exact differential and a linear combination
of ()" and (wgz)* ([14], p- 169). It follows that f; = 0.

Since all the g for (i, j)eT are zero, the linear relation is reduced to

Zaij(wij“dyij) =0
L5

But then Z ay oy = d(z yy) is an exact differential of the fivst kind

and so is zero Hence the wy, Whieh aré just a set of generators for the
left invariant differentials of 4, are linearly dependent over €. By the
last proposition and Lemma 4, we have a contradiction.

ITE. APPLICATIONS

A. Normalization. Necessary and sufficient conditions for the al-
gebraic independence of two Weierstrass elliptie functions have long
been ¥mown ([6], pp. 316-317). They were used by T. Schneider in his

' ground-breaking studies on the transcendence of these functions ([19],

[20], Chapter II, § 4). The criterion for two ﬁmetmns p(z) and p*(z)
with fundamental periods w,, ©; and o], ws, respectively, to be al-
gebraically dependent over € is that there be rational numbers 11, 719 Ta1s
7., Such that

1k
B wy =ty 0+ 10y,

1 %
N MR TS o PP

(7)
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When we form the period ratios

*
2

w
7 =— and T*=—
w0y 0y
the preceding condition implies that
’ at+b
{8} T+ =
' - cr+d

for some a, b, ¢, deZ. The conditions on the period ratios in the main
theorem of the preceding section thus prevent f,(#) and @,(fz) from
_ being algebraicaliy dependent for @,(z) = @.(2). This precaution is necess-
ary for a sharp lower hound on the number of algebraically independent
functions since the other hypotheses concern the arguments of only one
elliptic function at a time.

Actually condition (5) does not restrict the generality of application
of Theorem 2 and iz thus only a normalization requirement. For ]f one
has at hand two funetions @z} and p*{z) with

ar+0b
T* =
ct+d
for some a, b, ¢, deZ, then set
*
Wy
b= cerg -t den;

It follows that
) ﬁ"lwz*f = awg—+ boy.

Thus by (7), @°(f2) and fp(z) are algebraically dependent over C. Hence
for purposes of algebraic independence of functions over C, one may
replace ({z) everywhere by @ (fz). We shall see in Appendix A that
the corlespondiug replacement of £{z) by £*(82) is also permissible as
long as z and @*(f2) lie among the funetlons whose independence is being
consuiered

B Precise conclrnons for algebraic independence. In the case which
is most important for number theoretic transcendence results, the cor-
ollary to Theorem 2 yields exact conditions for the algebraic independence

. of the functions involved.

TEECREM 3. For i =1, ..., m, let go;(2) and §;(2) be the Weierstrass
fumctions corresponding to the pair of fundemental periods wg, wn with
period ratio v; = wy/wy. Suppose that

ar;+b
'Z’j # C'l’i—i"d

(9)
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whenever © #§ and a, b, ¢, deZ satisfy ad—Dbe + 0. Set Koy =

¢, and
define for ¢ =1,...,m,

Ofr;)

x if ©; 18 quadralic,
' 0 otherwise.
For i =1,...,m+1, let ay,..., amieC*. Then the Laurent series for all

the functions
2, Pilaye), Lileyz), explogyse?)

Iigm 1<i<ng, 1<k < Nyyy, are algebraically independent over C
if and only if, jar each i1<igm+l,

(10) {0535« -s g} 05 K, ~linearly independent.

We shal see in Appendix A that if any of the last conditions fails,
then the functions are already algebraically dependent over Q(gu, gim)s
for some 1 < i< m. Moreover we shall determine the coefficients involved
in achieving the normalization (9).

The result with no complex multiplication, f.e. each K, = @, and
without the Welerstrass ¢ funetions follows from a theorem of Kolchin
(REN)E

Now the sufficiency of condition (10) follows immediately from the
corollary to Theorem 2. So we must check only the necessity of (10),
which will follow from the criterion (7) for the dependence of two Weier-
strags elliptie functions and fhe fundamental formulas ([247, p. 437),

(11) (Pi(2)? = 4 (PP — g0 :(2) — a5,
With @i, giseC, and ([24], pp. 440—441),
. 1 @) — @\
— (o) — oy} + (%:%—)))’ o £y mod 4,,
12 i @+ = i (m) ? .
) i = L) e vmos,
oo 2 =y mod A4,

where A; = Zmﬂ%—me

For if ay, ..., o, are K linearly dependent, then we can write one
of the numbers, aa} o;, 28 & non-trivial K;-linear eombination of the
others:

Ay == agctﬂ‘% . »I*Et,,iami.

The above formulas show that g,{a;2) is an algebraic function over

O (9s, 945) Of the functions
| @i(“z@iﬁ), coey B05( 0 00 2).

3 — Acta Arithmetica XXXIIT,2
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Now whenever ac K}, @;(az) is algebraic over (@,(z)) For when o] = w;
and oF = w, in (7), we are requiring there only that (upon dividing by
wy, respectively ;)

- R |
(13} ™ =y reT, 47 =TnT

fOr SOME 711, T13s Pa1y Toz€ @ When aeQF, (13) is satisfied with 7y, =7y = 0.
When K; = Q(r any non-zero ae X, = Q[r;] = Q77 11 also satisties (13).
Thus if ajeKi, got(ajaj,.) is an algebraic function of p;(ay?), § =2, ..., 74.
Consequently @;(o,#) is an algebraic funetion . of pm( au2), .. ,p,(amiz)
over C, as claimed. . '

K. Ramachandra ({18], Lemma 7, p. 83), also gave & criterion guaran-
teeing the algebraic independence over C of more than two ‘Weierstrass
elliptic functions. Using Eronecker’s theorem on simultaneons approxi-
mations, Ramachandra ploved among other things, the following
result:

TarorEM (Ramachandra). Let wq; oy} ..
damenial periods for the Weiersirass elliptic functions @q(2), ..
respectively. If

(8) w;o; is real for every 1<4,j<n and

y {o7% ..., wg'} is Q-linearly independent,
then the funciions @,(%), ..., P,(2) are algebraically independent over .

Since the form of Ramachandra’s result appears so different from
that of Theorer 3 (which was claimed to furnish neeessary and sufficient
conditions), perhaps it would be instructive to see how Ramachandra’s
criterion can be dednced.

Proof of Ramachandra’s Criterion. For a given index ¢, let
§4 =ty 43, -~y J De all the indices for which there are rational numbers
Gy by Cpy @y WItH

.} @, O, Tespectively be fun-

3 g‘)_n(z)t

= O Ty by
e ety

where 7; = wjfw; (for jy, let ay =dy =1, by = ¢; = 0). Letting

Dy .
B = ———t e,

-1 [
a oy Pr = epogt Ay @y,
G300y e Oy ,

one also has
r op—1 ’
wjkﬁk = akm‘-—I—bkw‘-.

Note that fz’ = qo;0F' where g = 6,7;+d,. By the eriterion (7}, the
functions gy, (f?) ) and ga,( ) are algebraically dependent, and hence so
are @5 {(2) and @28y Y. Thus the following conditions arve equivalent:

(1) @4, (2); ..., @5,(2) aTE algebraically independent.
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(1) @:(2), Pe(2B7Y)y -y 0:{287") are algebraically independent.
Theorem 3 shows that condition (ii) is equivalent to
(i) I, Bz %y ..., A7 are K-linearly independent.
In the case E; = Q(7,), the fact that fy' = qo,0p
shows that condition (i) is equivalent to
(iv) oyo5" =1, w07}, ..., ;07" are K linearly independent.
But if

with e X,

- -
PO AL
k
with e, fr<Q, then since z;¢R whereas each w;w;* <R, one actually has

two equations
; e o0t =0
= [ Rt 7 H

kaco,-mj‘kl =0
P

Hypothesis (b} of Ramachandra’s eriterion 1m13].1e;: now that each ¢ and
Ji 18 zero.

If K; = Q, we consider condition (ii) directly. If

Zekﬁ;l =0,
&

with ez¢Q, then we have

%" (Bkck't.;—{— ekdk> m,:m;:‘ = 0.

Since each co,wjkl is real, but r; is not real, we again get two equations

-1 -1
Eekekw,;wjk = 0, Zﬁkdkmiwjk =1, -
Tk ’ F]

Hypothesis (b) shows that for each %, e;6, = g,d, = 0. But since not
both e, and d, can be zero, each e, = 0.

Thus whether K; = @ or not, we see that the hypotheses of Rama-
chandra’s cutenon imyply that the above three equivalent conditions
hoeld.

C. Applications to transcendental numbers. An imporfant component
of modern transcendence proofs is the algebraic independence of the
functions used to construct an auxiliary funetion. Theorem 3 fills a gap
in our previous knowledge about such independence and allows the deduc-
tion of new resuits about the transcendence of certain numbers. The
results fall into four general patterns.’
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Common notation. For i =1,...,m, let fo;(2) be & Weierstrass
elliptic function with period ratio ;, invariants g, and g, and correspond-
ing Weierstrass zeta function {;(2) such that for 7 #§,

av;-+b
o 7 e+ d

for any a, b, ¢, deZ with ad —bc # 0. Furthermore define, for ¢ =1, ..., m,

_ Q)

1] otherwise.

x if 7, is imaginary quadratic,
i

Finally let k.. denote any field of transcendence type < ¢ (see Appendix B
for details). .

Common hypotheses. For i =1,...,m, let the set of complex
. ! m
numbers {ag, ..., %} be K linearly independent, and set P = ‘Zl my.
Let {yis---s iyt Do arbitrary complex numbers, 0 < n; < my, and. seb

i .

Z = 2 n,;.

y=1
i;et {dy, ..., ag} be 2 set of Q-linearly independent complex numbers.
Let {81, ..., fr} also be a set of Q-linearly independent numbers.

A ConvENTION. If all the functions @g(ay2), vy2-t Lilag2) and
exp (ay7) have a common non-zere period, then set 8 == 1. Otherwise set § == 0.

(The ranges of the indices in the theorems will be 1 < igm, 1<ji<my,
1<j<n, 1<d<E and 1 <7< B

TeEOREM 4. If +(2P+2Z+B-+B—8)< R(P4Z-+-B), with strict
inequality in case T =1, then mot all the. following numbers are algebraic
over ky: .

Gizy Oisy PilyBr)s CilogBe)+yiBer exp(aaby).

TEEoREM 5. If ¢/ (2P + 2% +E+RB) < R(L+P+Z+E), with strict in-
equality in case v’ =1, then not all the following numbers are algebraic over k.t

Gizs Gias @t(aﬁﬁr)a Ci(aﬁ‘ﬂr)'*"yi}"ﬂr: exp(ezfb,), fr-

TamoREM 6. If (v —1) (2P +2Z +B+R—2— 8)<(B—2)(P+Z2+H-1)
and P21, then not all the following numbers are algebraie over k.:

Tuy Gizr @ilogBe)s LilagB) vy, exp (az5,), Oys Ogy Pegre

TeeorEM 7. If (v —1){(2P+2Z+E+R—2)<(BE—-2)(P+Z+EH)
and P31, then not all the following numbers are algebraic over ke

Fiay Fia» @i(aﬁﬁr): c{(aﬂ'ﬁr)f exp{asfe), Oyzy Qgy By
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These theorems follow directly from Theorem 3 and Proposition 2,
§5 of [23]. The technigues which Waldschmidi uses to establish that
proposition eome from the work of Schneider [20], Chapter I, Rama-
chandra [18] and Lang [12], Chapter V. When t° = 1, Schneider proved
a much stronger version of the last two theorems. Ramachandra proved
Theorems 4 and 5 in the case v = 1. Lang invented the notion of tran-
scendence type (see Appendix B). The above theorems give new resnlts
when P+Z > 2. For example, Theorem 4 allows us to complete Corollary 3
of [23], §5:

ProposrrioN 1. Let p(z) and p*(2) be Weiersirass elliptic functions
with algebroie invariants g.,gs and g:,gs respectively, and fundamental
pairs of periods wy, wy ond wp, w,, respectively. Assume

wy aw; -+ bw,
0}: OOJg”l"dwl :
for every a, b, ¢, deZ with ad—be # 0. Let {{z) be the Weierstrass zeta

function associated with p(2). Let o* and o = @yo, Gy, With 6,, ageZ
be non-zero periods of @*(2) and @(2), respeciively. Sei

7 =28, (‘E)zi) +2asl (%)}

and let the complem numbers 1, vy, v, be Q-lincarly independent. Then al
least one of the siz values

plon), {{ov)—no;, S{’*(m’kvz‘):
t8 finite omd franscendenial.

Sinee the four main theorems here involve so many parameters,
let us try to geb a feeling for the strength of these resufts. The following
chart lists, for given R, the minimal choices for P, Z, E, when P >0
satisfying the hypotheses of Theorem 4 in the ecase v’ =1, ie. k. i3 an
algebraic number field. I will denote the maximal number of quantities
nvolved in the conclusion of the theorem:

i=1,2,

Table 1
v =1,P=m
R 3 3 3 3 33 4 4455 3 83 44
6§ 000 0000O0CO0O0COT1IT1 111
P 2112 3412312138221
Z 0102 100101000101
FE 112 0001000010000
¥ 13 11 11 16 18 20 10 16 18 12 14 8 13 13 12 10
& % * W R R R A
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The letter # (#7) in script under a column indieates that the case could
be handled by Ramachandra’s (Waldschmidt’s) techniques alone.

Although N is a general upper bound on the number of terms in-
volved in the eonclusion, in & particular application that bound may
well be lowered. As an examyple, let us consider a corollary of the case ()
in Table 1, where there are only 14 numbers involved instead of 18:

Proposrrion 2. Let p(2) be a Weiersirass elliptio fundtion with in-
variants g, ga ond ratio of fundamental periods v, and let

= Q(r) i v is quadratic,
h Q otherwise.

Let ay, as, oy be K-linearly independent and 1, Ba, Bs; fu be Q-linearly
independent. Then ab least one of the 14 numbers

EYIN!EY Ka(aiﬁj)a i=1,23;j=123,4,

is finite and transcendentel.

Tf + # 1, then the Dirichlet box principle implies that +* = 2. The

following chart is the analogue of the above chart for "< 2+ s when

8 = 0, showing only the cases with N 41,

Table 2
'L 4e, =0
R 5 5 h 6 6 6 7T 7T 7T 7T 8 8 8 9 91111
P 1 2 312 312 3322312132
Z 1 0 201 012 120100210
E 3 3 23 %22 21102 112011

N 27 29 41 26 34 36 30 39 41 41 36 36 38 29 40 35 37

Clearly the number of constants involved in the conclusion rises
rather rapidly with . However the less stringent inequalities of the other
theorems allow us to deduce new resnlls involving only a few numbers.

PROPOSITION 3. Let @(2) be a Weierstrass elliptic function having its
period ratio T = w,lw, imaginary quadratic and having s invariants al-
gebraic. Assume that the comples number a is a quartic with [Q(e, 7): @] = 8.
Then for any complex number B 5= 0, af least one of the four numbers

#(8), plaf), ga(azﬁ)l: @(asﬁ)
¢ findte and franscendenial over Q(m).

Proof. Since [Q(a, ¥): Q1 = 8, {1, 4, ¢*, ¢} is linearly independent
over Q(r). Wetake § = Z = B = 0 and m =1, but P = 3 with {eg, ap,
Qyg s} = {B, B, fa, Ba’} and the points B, given by the eight Q-line-
arly independent expressions o'+, i =49,1,2,3; j =0,1. 8o E = 8.
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In Appendix A, we show that f(2) and @(w#) are algebraically de-
pendent over Q(gs, g:). Since Feldman has shown ([5]) that @ (s} has
transcendence type < 24, for every = > 0, the result follows, by The-
orem 5.

Thus = and at least one of the other three numbers mentioned in
the conclusion of the proposition are slgebraically independent. One can
phrase the proposition in a more pointed form as follows:

PropostIoN 4. Tet p{z) and © be as above. Let < C be such that ga(ﬁ)
is algebraic over Q{w). Then at least one of the three values

plaf), pla®p), pla’s)

is finite and franscendental over Q(z).

Tt follows from Feldman’s main result in [32] that i g, and g; are
algebraic and @(#) has complex multiplications, then any non-zero period
o of @(2) has transeendence type < 2--¢ for every s> 0. From this
we can derive what seems to be the first known result about the algebraie
independence of nmmbers related only fo elliptic functions. :

PROPOSITION 5. Let fo(z) be any Weiersirass elliptic funclion with -
variants gy, gy algebraic and also having complew multiplications. If o s
any non-zero period of p(z) and a any cubic irrational number, then at least
one of the two numbers

flaw), pla*o)

i3 transcendental over Q(w).

Feldman’s ‘transcendence measure ([31]) for o when its elliptic
function Las no complex multiplications is < 5--¢ for every &> 0. The
analogue of Proposition 5 would give only that one of the eight numbers
pdfw'), 1<i< 8, will be transcendental over Q(w), when [Qfa, z): O]
=18 and ¢, ¢; are algebraic.

Many other such examples can be cnnstrueted using the known tran-
gcendence types listed in Appendix D. For example, one can deduce the
following result from Theorem B as above, using the fact that 0{e) has
transcendence type <3 ([4])-

PrOPOSTTION 6. Let @l2) and v be as in Proposition 3, but with g
and g, algebraic. Assume that a<C is a quintic. Let B be a mon-zero comi-
plew number with @) algebraic over Q(e). Them at least one of the four
values .

pla), pla2f), p(a), p(a'f),

is finite and transcendental over Q(e). -
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APPENDIX A, THE CONSTANTS IN A DEPENDENCE RELATION

The purpese of this section is to examine more closely the coefficients
involved in normalizing the functions so that (9) holds, as indicated ab
the beginning of Seetion ITI, as well as the coefficients involved in an
algebraic dependency arising from the failure to satisfy (10). The question
is already interesting in itself. However the answer is crucial in appli-
cations to transcendental numbers. For example, the tonclusions of
Propositions 3 to 6 do not mention the constants involved in a depen-
dence relation on f{z) and @{z2) since they are algebraic, as seen below.
A corresponding result for Z{2) is also proved.

In such applications, we shall always use the differential equations
(11) diveetly or through the addition formula (12). Consequently we will
always work over fields containing the constants g, and g, of the appro-
priate equations. Tf @{e) is a Weierstrass elliptic function with lattice
of periods A, in this section we shall write

plz) = p(e]A).

To begin the section, we give a simple proof of a standard result.

Levwma, Let the coefficients of the differential equation for the Weier-
strass function @(z)A) be g4, gs. If © is @ non-zero rational number, then
@zl A) and plrz|A) are algebroically dependent over Q{g, ga)-

Proof. Bay r = 4-m/n, m, neN. Then repeated applications of the
addition formula (12) and differential equation (11) together show that
P(mziA) and g(ne|4) are both algebraic over Q (g, gs, @(2]1)). Since
neither is a constant, g(mz|4) and p(nz|d) are algebraically dependent

over Q{gs, g.). The change of variable zrsz/n shows that g (%l/l)
and p(z|4) are algebraically dependent over Q(gs, gi). Since @(z]A) is
an even funetion, & (—"’?—1’i lA) = plrz| A).

ki

As a consequence, one can, for example, derive the well-known
result that @(z|) takes on values algebraic over £(g,, g:) at all division

1
points of A, that is, points of — AN, for some nelN.
T

1
COROLLARY. Let ae—q;.{l\ll._ Then p(ald) is algebraie over Q(g,, g)-

Proof. By the addition formula, we need only show this for w,/n
and o,/n where n > 1. But by the lemmma, it iz enough to show thiz when

n =2, _since @&|4) and p (—;i zl/l) are algebraically dependent over
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@1g:, g5)- Tt is clear from the definition ([24], p. 434),
(14) pld) =27+ ¥ (z—w)*+ o™,

@A
that p'{2|4) is an odd function of =

e | N e
o (34 = o (-4

and 8o

z with period lattice 4. Thus

A) - (m,-—%— A) =g (if’)i A),

A)ao for  i=1,2.

’ Wy
$ (—2*

From the differential equation {11), we see that for i =1, 2,

o= s el ) oo

PROPOSITION. Let the Weierstrass elliptic functions p(z 4) and p(z] 4%
have lattices of periods A = Zwy+ Zw, and A* = Zoj +Zwy, vespectively;
period rotios T = wyfw; and ©* = w;/wy, respectively; and invariants g, gs
and gy, g3, respectively. Assume thai

11) — 4.

ar+b
cr--d

(15) * =

with a, b, ¢, &deZ and ad—be # 0. Then there is a number B, which is al-
gebraic over Q(gs, gz, g2, g;) such that the functions

plzld), g(e]d")
are dlgebraically dependent over]Q{gy,, g3, 43)-

Proof. Set § = of/(ewy+dw,). Then it follows from (15) that § is
also o [(aw,+bwy) and so A% <= fA. SBeleet 0 = 1, Bus ovs fw 10 De
a complete et of coset representatives for 4 modulo 4*. Then the fune-
tion

(16) pMM)Ep Bl A%,

=]
at any point §;+2, deA", has “infinite part?
(2— B+ ) —((z—B)— 2 = 0.
Since these would be the only possible poles and since the function has

periods A%, it is bounded, and, by Liouville’s theorem, it must be a con-
stant . Evaluation at 2 == 0 gives

0=2mmmy

i=2
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Since mB,e A*, for some positive integer m, the f; are division points
of A*. By the preceding corollary, each

PB:14%, i=2,..

is algebraic over Q(g;, g3). Consequently upon making the change of
variable 2Bz in (16) and applying the addition formula, we see that
©{Bz|B4) is a rational function of g(pfz| A%) with coefficients from a finite
algebraic extension of Q(g;,¢s). From the definition (14) of fo(z|A4), it
is obvious that

s Mty

B p(pe|pA) = plz]A).

Thus we conclude that (2] 4) and @(fz14%) are algebraically dependent

over Q1(g3, g5, B)-
To complete the proof, we recall {[24], p. 437), that

9':2 =60 2’ o™,

wed

where the dash means that the term o = 0 is omitted. Thus

m .
67 = 60 > (Bo)y™ =60 3 > (Bt
wed i=1 w*ed*
where the latter dash indicates that the term §, = 0 = w* is omifited.
When ¢ =1, we have §; =0 and

SR *
80 w Tt =gl
w*ed*

When ¢ =1, §; %0, and

60 ' (Bt o)™t = 10p" (8| 4%,

areAr

ags can be seen by differentiating (14) twice. But since, by (11),

*

9

g7 (2] A% = 6(p(z]4%))*— 5

and since @{B;|4%), i #1, is algebraic over Q{g;, ¢3), we can conclude
that g,f~* is algebraic over Q(g}, ¢3). Consequently f is algebraic over
0(g5, 93, g2}, and the proposition iz proven.

PropogirioN 7. With the notation of Theorem 3, suppose that {ay, ...
vors Oggy 3§ Kplinearly dependent. Then the fumctions @{ag2l4;), ...
vooy Plam| A} are algebraically dependent over O (Geys Gi2)-
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Proof. As the preof of Theorem 3 shows, the question hinges on
whether @(z]4;) and @(az];} are algebraically dependent over Qg fa)
whenever aeH; is non-zero. The lemma above imples that dependence
when aeQ.

So we may assume that H; = Q{z;), with 7; = (& +b ¥ —d)le where
a,b,e,deZ, d> 0. Tt iz easy to check that with § = 2¢%7;, we have
B, € A,;. As in the preceding proof, let 0 = B4, B2, ..., fn De a complete
set of coset representatives for A; modulo f.;. Then

plzldy) = D) pla—B1pA)+C,
i=1

where each @(8;14;), 4 >1, and hence € are algebraic over Q{gsu, gl
Ag before, the variable change si—fz gives rise to

m . m
. - B .
p(Bz|A;) = ; @(Br—pB: | pA)+C = § 2;@( _‘E'l/li) +C,
where the last expression iz a rational function in p(z]4;) with coef-
ficients algebraic over Q1{gyu, gs)

Bince every aeQ{r;) is of the form ¢ == r--¢7;, with r, s¢Q, the
general result follows from the special case § = 2¢%z, upon application
of the addition formula (12) and the lemma of this section.

Prorostrion 8. With the hypotheses of the preceding reswlt, the fume-
tions '

Llanzld), ..y ag#] 4
are olgebraically dependent over
Q (Qiz; Fiss Planz] ), ..o, @(%niﬁ.-’h): z)

Proof. The proof when the coefficients of the linear dependency
ON gy« gy, BLE from @ follows from the addition formula ([6], p. 2871):

L1 pile)—9' ()
c<w)+cw)+~2~(m), 2 % -ty mod 4,
Lloty) = ' 1 g2 .
2w} 7@ # =y mod 4,
o0, # = —ymod 4;.

When K, = Q(z;), the .question hinges on whether [(z}d4;) and
Lozl 4;) are algehraically dependent over @ (gﬁ, Gisy P(2]4y), 2), for every
non-zero ceX;. Again it suffices to check this for any particular ir-
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rational g from X,. Choose § = 2¢%t; as Dhefore, so that §4; = A;. Choose
a complete set of coset representatives as follows:

A =0,

Ay = 3Py,

Ay = %‘ﬁwm

Ay = —3{fwy + poy)

and for %k odd, 4 <k <m,
M = —lpga-

This is possible because fuw,/2, Bw,/2,  B{w,+ w,)/2 represent the
_ three cosets of order two. Then as above

() piBzidy) = 5;”2,“ @(z*— |A4) +C

Ee=l

where f7ip (_ﬂﬁi Ai) = p(i;1p4,), i >1, and hence

¢ = > @k pA)

T2

are algebraic over Q(g, ;). Since ([22], p. 445),

{(eldy) = —p(2]dy),
integrating the expression in (17) gives us

(18) BB ) = 7 Y r:(
k=1

) —0z+D.
We can evaluate D) by evaluating the functions at the origin:

(19) -~ —3-22 (’;" .4,.).

s
Sinee {(z|d4;) iz an odd function of 2, we have

(514 = o5l

when % is 0dd and 4 < % < . So in fact only the first three terms of (19)
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could contribute toward D being non-zero. But by the definition of 4,,

o) -o(-242] - 24
=)o) -

A
Thus D= 0. Moreover, by the proof of the preceding result, both & («-ﬁ£
A
and @' (‘“ﬁﬁ‘
follows upon applying the addition formula to equation (18).

4

Ai) are algebraic over Q{§u, Jy)- The claimed result now

APPENDIX B. LINEAR DEPENDENCE OF PERIODS
AND QUASL-PERIODS

Let A =Zw,+Zwy, T = wyfwy, g+ lA) = L(e|A) Ay, 2 =1,2.
TerEoREM 8. Let v be imaginary quodratic, Then there is a complex
number o algebraic--over Q(g., gs) with

%a = T+ awy

where T i8 the complex conjugate of z.

TUntil recently such a result was known only when g, or g; was zero,
in which caser a == 0. When g, and g, are algebraie, T. Sehneider ([8],
Satz 15, p. 60) has shown that w,/n; is transcendental. Thus our theorem

gives the only (up to multiplication by a constant) linear dependence

relation on @,, %, %, over the algebraic numbers when g, and g, are
algebraie.

. Building on the earlier work of A. Baker {[261, [27]) and J. Coates
{[28], [297, [30]), D. W. Masser has very reeently obtained many striking
results on the linear independence over the algebraic numbers of algebraic
points of g@(z!4). In particular, he obtained our theorem independently
through a different but equally short proof. Moreover, using methods
from the theory of elliptic modular functions, he is able to give a practicat
caleulation method for « when g, and g, are algebraic. '

Proof of theorem. From egquation (17) and the addition formula
for {#|A), one has that the funetion

fl2) = mi(z| 4)~pL(pe| A)—p*Ce
is an él]iptic funetion. Replacing 2z by é+m1 shows that
© gy —20* By —f*Cw, = 0.
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Now m is the index of §4 in A, which is the determinant of multiplication
by |8l. Thus m = |f|>. Substituting this and g ==2C%r into the a.hove
relation gives the resulf. ‘

APPENDIX €. WEIERSTRASS SIGMA FUNCTIONS

Corollary 10 can be extended to include Weierstrass sigma functions
and certain functions related to them. Recall ([247, p. 447) that the sigma.
fanetion is defined by

o) =< T (1m£_) e

we

2

where A is & discrete two dimensional lattice in C, and that the Iogarithmic
derivative of ¢{2} is just the Weilerstrass zeta function {(z). We will be
dealing with funetions of the form

g(2) = eMga(z)

where g(2) is an algebraic function of # analytie at the origin. This includes
the sigma function as well as the fundamental theta function ([13], p. 259),

fle) = 22t 22) o

2
where ml, w, 18 a pair of funda,menta,l periods for A and % denotes the
Dedekind eta function.

TEEOREM 9. Let @1, .oy fms L1y -ovy Cmy Ovs -0y Oy be Wederstrass fune-
tions corresponding to the period pairs wy , wy, with period ratios ;= wyfw;
where
aT;+b
m:,—i—d

T‘ 7—L-

Jor all i 3§ and a, b, ¢, deZ with ad— bc # 0. Por 1Li<m, let g(2)
= 4@ g.(2) where g (2) is an algebraic function of 2 analymc at the origin.
Let K v =Q and for 1< i m, let

K _ Q)  if v; is imaginary quadmtw,

' 18] , otherwise.

Lel Yasoens Yinyy L<E<mA1, be power series in C[[ty, ..., %] without
constani terms such that for each i, yy, ..., Yin; are K linearly independent.
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Suppose that

r = rank ( 094 )
atk ]y, M

Foelieang
k=1,...,8

=tr.deg.a C({yglt =1, ..., m; J =1,..., 5}
Then the transcendence degree T of the field generated over C by all
the functions
) Yir» ultsg): Lolta)y 61",;..;.1,;’ %:(Yg)
i3 precisely
N ”m
nm+1+32ni—}—v.
=1

Proof. By Corollary 10, the transcendence degree of the field gen-
erated over € by all of the functions

Vi £0g) Gy gl

is precisely N,y +2 3 7+r. Hence one need hnly gshow that 7 is no
f==1

smaller than the proposed value.

Let J be a set of indiees (i, §) such that {yyl (i, j)eJ} is a transcen-
dence bage over C for the field generated by the yy; for I<<i<<m and
1<j< n. Let Dy,..., D, be linearly independent linear combinations
of the partials /0%, such that the matrix

(Dky:j}kécarﬂ.i'
[(S) L

is the 1dent1ty matrix, and Dky,,, = 0 for (%, ])EJ and %k > CarddJ, the

cardinality of the set J. For the construction of the Dy, see part (A) of

the proof of Theorem 1. For 1<i<im, 1<y, 1< E<<ny,,,, and
(1, vied, let

_ dpilyy)

Wy = —F—

©:(Yy)

;02U 4p:(Yy)

—dyy

= 7 - & (Vi)

¥ ©elyy) (@)

_ dgi(yij) APy

= +£ ——y

vy = “nlig) — (e ya) + Lolap)) il

Im41,k
mg] de — ML,k
: Yong1,k :

msj!)p == dyw .
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m
If the conclusion of the theorem were false, then these ny,,; + 3 iZ Ty 7
=]

differentials would be linearly dependent. Choose a non-trivial equation
of linear dependence involving the least possible number of wj, say

(20) 2 (ag0y+ By wy+yy 0y + 2 8o +- Z S WS-
%7 % (res

By the first paragraph of the proof, at least ome yy must be non-zero,
and so by dividing by this coefficient, one ean assume that at least one
of the yp, is one.

The differentials have been chosen so that

D;wﬂ- = ..D;:(D;j == _D;CU::; = .D;G.)ga) E 0
for all ,j, k. By the choice of the Dy it follows by applying the D to
equation (20), that e, =0 for all (u,v)ed.

By the second lemma in the proof of Theorem 1, one has for each %
with 1 < k=g that ' -

Diwy = Doy = Dol = 0.
A straightforward computation shows that
Dyowy = —9_’;'-(?/i})-D?!ﬁwij+D?/ij“’;j

where Dj is as defined in part (C) of the proof of Theorem 1.

Applying D to equation (20) and simplifying yields

2 Doy~ &ty vy D) oy HDuBy+ vy Deyy) g + Dy )+

X3

+ DD b0 = 0.
7o :

Since one of the y,4 was equal to 1, thizs equation involves fewer of
the wj; and 80 by minimality is the trivial relation in light of Corollary 10.
Thus
Dyyy = Dyt =0,
Dyy+yyeDryy = 0,
Dkﬂq—?ﬁqu’(!lﬂ)l)k%j = 0.

Bince this holds for all & with 1 < k< 8, it follows that vy and & are
constants and

By = —yyYy+By,
ag = v Gy(Yy) +Cy,
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for some constante By and Cy. Substituting back into equation (20)
gives

2 {vadi(yy) +0y) @y {—yyY;+By) w;:i+f“’ij_w:§;}+2 §of) = 0.
4, 7 .

Taking the exterior derivative of this last équat—ion and using dey
= doy = dof) =0, one gets after simplifying that

—¥iz £ Yi)

: Fi AQyand ) i‘d , d R
17 £:(Yy) Y EPs(3y) — vig @ty 7 dT,(14)

Vi
o] Loyl dp;(yy) = 0.

Now the y, are algebraically dependent on the Yup With (u, v)ed, and
50 the dy;a dp;(y,) and dyya @5{yy) can De expressed as linear eom-
binations of the dy,,A dpi(y,) and dyg,a aZ;(yy) Tespectively. Substi-
tuting into the above equation gives an equation of Iinrear dependenece
of the dy,,A 30:(Yy)y @Youn ALy(yy), and di(yg) A d@y(yy). But by the
first paragraph of the proof, the Yuws P:l¥g)s Cilyy) ave algebraically
independent, and so the relation must be trivial. Hence the vy are all
zero, contrary to the cheice of equation (20),

APPENDIX D. TRANSCENDENCE TYPE

The idea of the transcendence type of a field is due to Lang ([12],
Chapter V}. Although a general theory {[231], § 2), has been developed
when k. iy a finitely generated extension of O lying in C (see also [12],
but beware of accepting the ineqgualities on pages 49, 5@, 53, 54 at face
value), in this appendix we will treat only the case that k. has transcen-
dence degree one over @, since so far the only fields with known tran-
scendence types have transcendence degree one over Q. '

For any non-zero polynomial P{z)<Z [#], we define

size P(@) = max {degP(»), loght P (2)},

where htP(z) is the largest absolute value of any coefficient of Pla).

If k.. has transcendence degree one over €, then we shall say that
ke has transcendence type < ¢’ if there is a transcendental number ek,
and a constant € > 0 such that for all non-zero P(x)eZ [w],

-0 (sizeP(m))" < log1P(x)].
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Tt can be shown ([23], § 2), that, in spite of appearances, this deﬁnit%on
is independent of the transcendental number z chosen. The following
table Hsts the fields related to the exponential funetion known to us
whose algebraic extensions have transcendence type < 7', for some finite 7',

Table 3
k. T’ Investigator
Q(x) 2+4+¢ Feldman [B]
0e") 3-4¢ Cijsouw [4]
Qe 3 Cijsouw [4]
Q(loga) 3+¢& Cijsonw [4]
Q(aﬁ) 446 Gelfond [T]
loga i
4 Cijsouw [4
Q (log 3 ) j [4]

where y is any pon-zero algebraie number, o is algebraic with LOTI-Zero
logarithm, p is sny irrational algebraic number, and § is also algebraic
with non-zero logarithm. Moreover Cijsouw bas obtained transcendence
types for fields of transcendence degree one generated by numbers which
Baker’s method shows to be transcendental ([4]). Cijsouw has also been
able to remove the ¢ from the type of ¢ ([4]).

Added in proof: The authors are indebted to & V. Choodnovsky for

his helpful commenis on the applications in III.C.

1]

(2]
(8l

(41
£5]

{61
i7]
[8]
(ol

[10]

References

T. Ax, On Schanuel's confectures and Skolom’s method, in Proceedings of Symposia

in Pure Mathematice XX, Amer. Math. Soe., Providence, R. 1., 1971.

— On Schanuels conjectures, Annals of Math. 23 (1871), pp. 252-268.

— Roime topiss in differential algebraic geometry I: Anailytic subgroups of al.
gebraic growps, Amer. J. Math. 94 (1972), pp. 1185-1204.

P.L. Cijsouw, Trenscendence Meosures, Thesis, Umvermty of Amsterdam,

1972.

N.I Feldman, On the measure of transcendence of =, Inv. Akad, Na.uk SE8R,
Ser. Mat. 24 (1960), pp. 357-368; Amer. Math. Soc. Tranel, (2) 58 (1968),
P 110-124.

R. Fricke, Filiptische Funidionen, in Encyllopddie der Mathematischen Wisson-
schaften, II. B. 3, Teubner, Leipzig, 1901-1921.

A. 0. Gelfond, Transcendental and Algebraic Numbers, GITTL:, Moscow 1952;
Dover, New York 1960.

R. Gunning and H. Rossi, Analylic Functions of Several C’omplsm Fariables,
Prentice-Hall, Englewood Cliffs, N. J., 1965.

G. H. Hardy and E. M. Wright, 4An Introduction to the Theory of Numbers,
4th ed., Oxford University Press, Oxford 1960.

F. Koizumi, On the differential forms of the first kind on al_qebrm,c varisties,
J. Math. Soc. of Japan 2 (1949), pp. 273-280.

[11]
[12]

{13]
{14]

(15]
[16]
[17]
[18]
[18]

[20]

. [21]

[22]
[23]
f24]
[25]
[26]
(27}
[28]
[29]

[30]

[81]

[32]

Algebraic independence of Welersirass funclions 149

E. Knlchm, Algebraic groups and algebraic dependence, Amer. J. Math. 90
(1968), pp. 11511164,

8. Lang, Introduction ic Transcendenial Numbers, Addison-Wesley, Reading,
Mass., 1885,

— Elliptic Funciions, Addicon-Wesley, Reading, Mass., 1973.

8. Lefschetz, Algebraic Geomeiry, Princeton University Press, Princeton,
N.J., 1958.

H. Matsumurs, Commulaive Algebra, Benjamin, New York 1870.

Y. Matsushima, Differenfial Manifolds, Marcel Dekker, New York 1972.
D. Mumford, Iniroduction to Algebraic Geomeiry, Harvard Lecture Notea.

K. Ramachandra, Coniributions io the theory of transcendendal numbers, I, IT,
Acta Arith. 14 (1969), pp. 65-88.

Th. Schneider, Arithmetische Uniersuchungen sliptischer Tntegrale, Math. Ann.
113 {1937), pp. 1-13.

— Hinfihrung in die lranssendenion Zahlen, Springer, Berlin 1957.
Seminaire C. Chevalley, Classification des Groupes de Tie Algébriques, Keole
Normale Supérieure, Paris 1958.

G. Shimura and Y. Taniyama, Compler Muliplication of Abelian Farietiss,
Pybl. Math. Soe. of Japan, Tekyo 1961.

M. Waldschmidt, Propriétés arithmétiques des valours de fonclions méromorphes
algdbriquement indépendanies, Acta Arith. 23 (1973), pp. 10-88.

E.T. Whittaker and & X. Watson, 4 Course of Modern Analysis, 4th ed.,
Cambridge University Press, Cambridge 1827.

0. Zariski, Local uniformication on algebraio warielies, Annals of Math. 41
(1940), pp. 852-896.

A. Baker, On the periods of the Weiersirass p-function, in Symposia Mathe-
matica, Instituto Nationale Alia Matemation, Vol. IV, Rome 1970, pp. 155-174.
— Omn the quasi-periods of the Welersirass {-function, Nachr. Akad. Wiss, Gotiin.
gen, Math. Phys. Klagse, Nr. 18 {1969), pp. I45-15T.

J. Coates, The transcendence of limear forms in o, wy, 1y, 7y, 20, Amer.
J. Math. 113 {1971), pp. 385-397.

— Linear forms in the periods of the exponential and elliplic functions, Inven-
tiones Math. 12 (1971), pp. 2060-299.

— ILinear velations belween 2rmi and the periods of fwo elliptic ourves, in Pio-
phamtine Approwimation ond ifs Applications, Charles F. Osgood, ed., Acadeniic
Press, New York 1973, pp. 77-98. ‘
N.I. Feldman, The approzimalion of certain franscendental numbers II, Tzv.
Akad. Nauk S88R, Ser, Mat. 15 (1951), pp. 153—176 Amer. Math. Soc. Transl.
(2) 59 (1966), pp. 246-270.

— Simullansous approzimaiion of the perieds of an elliptic fumtson by algebraice
numbers, Izv. Akad. Nauk S8SR, Ser. Mat. 22 (1958), pp. 563-576; Amer,
Math. Soe. Trausl. (2) 59 (1966}, pp- 2V1-284,

Received om 23. 4. 1975
and in revised form on 30. 12. 1875 (701)



