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On indefinite quadratic forms in four variables
-

HeEnrYE IwaNmEc (Warszawa)

1. Iniroduction. A well-known theorem of Meyer {for 2 proof and
references see [10], Chapter 11) tells that if Q{x) = @(x,..., »,) iz an
indefinite integral quadratie form in at least 5 variables then the equation

Qz) =0

has a non-trivial solution in integers, lL.e. in integers «y, ..., %,, nof all
zero. It led to the famous conjecture of Oppenheim (see, for example, [137)
that for any indefinite quadratic form @({z,,...,®,) in » > 5 variables
with real eoefficients the inequality

(L1) | 19z} < ¢
is non-trivially soluble for every &> 0.

In the special case when the guadratic form is of the shape L]+ ...
... + 2.2} the conjecture was proved by Davenport and Heilbronn [9].
They used a modified version of the Hardy-Littlewood eirele method.
The corresponding result with 9 in place 5 was proved earlier by Chowla {5]
who used a theorem on lattice-points in & five-dimensional ellipsoid.

In 1856-57 Davenport ([6], [7]) made first progress towards proving
the conjecture in its full generality. He established the conjecture subject
only to conditions on the signature of the form. The idea of the proof was
based on & certain theorem of Cassels [4] and alse on the modified form
of the Hardy-Littlewood method. Developing. this method Davenport,
Ridont and Birch ([2], 13], [8], [14]) obtained various results which
all together completed the proof of Oppenheim’s eonjecture for all # = 21.

If an indefinite quadratic form Q(ax;, ..., 2,) has rational coefficients
and 1Q(x)] assumes values arbitrary near to 0 for suitable integral values
of the variables, not all 0, then @(z) actually represents 0. The following
form

Qo) = &+ —3 (23 +af)
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does not represent zero. Therefore Oppenheim’s conjecture cannot be
true for arbitrary indefinite quadratic form ¢ with real coefficients in
four or less variables. It iz however conjectured that i an indefinite quad-
ratic form @ (x) in at least 3 variables with real coefficients is not pro-
portional to an integral form, the inequality (1.1) is still soluble for every
e> 0 in infegers, not all zero. Of course, this cannot be true for binary
quadratic forms. If 6 is a pogitive irrational number whose square root
has the continued fraction expansion with bounded partial quotients
then ix®- 0y®| does not assume values which arve arbitrarily small.

The first result concerning the above conjecture was given by Oppen-
heim [12]. He investigated eertain special forms in four variables. To illus-
trate his results and methods we select the simple case

_ Qx) = @ + o5 +u5 — O}
with pogitive irrational f. Oppenheim used the faet that the form i+

+25+ 2] represents all members of the arithmetic progression 8m --1
and then reduced the problem (1.1} fo approximation

8m+1— 2% < &.

Next results in this direction were established by Watson [157 for
other types of forms in three and four variables whose coefficients are
particular quadratic irrationals. He considered ternary forms

Q,y,2) = 27 —aby*— (6 +1)2*
and guaternary forms
Qle, 9, 2,w) = a2+ dy>— y2(et + du?)
where ¢ and d are positive infegers, 6 the positive solution of 2 = af+1
and y e @ V D), D non-square integer of the form u2+ dv® with integral «, ».
In Watson’s method suitable properties of the continumed fraction

expansions of # and ¢ play a very important réle. It is a very special method.
It does not work for emmple in the case

Q@) = a2~ VI + ).
In this paper we shall prove .
TrEOREM 1. Lel Q(#) = o]+ a5 — 0(x; +x3), where 6 is a real positive
irrational number. Then for every & > 0 the inequality
(1.2) ' ' Q) <e
has infinitely many solutions in infegers, :
The methods of linear and half-dimensional sieves are main tools

in the proof of Theorem 1. We do not make use of any other non-elementary
devices.
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Let b*(m) denote the characteristic function of the set of integers
represented properly as the sum of fiwo squares, i.e.

1 #m=ut+0v®, (u,v) =1,

5" (m) = .
0 otherwige.

‘We shall prove the following quantitative resulb

TEROREM 2. There exist absolute consignis k>0 and K> 0 such
that for |0—~M|N|< N2, (M,N) =1, ¥N > (8-+6% and for any &(N)
satisfying N~* < B{N) < 1 we have :

L UICOL) S

(1.3) - > B m)b ).
16 10gN o<u:k(_1“\)7\,-
Im ng"?{f_k(m
E(N)N)2
We are also able to prove the upper hound Z’b* (m)b* (n) € ._—-( l(og)lﬁ)—

but to make paper shorter we do not give the proof.
If seems possible to prove (1.3) in a shghtly more general case for
an indefinite form

@ (x) = ‘P(wx; Ta) + By (s, @),

where ¢ and y are binary quadratic forms with rational coefficients and
non-zero diseriminants and 0 is irrational. To make use of sieve methods
in that case we need a characterization of the numbers # and # represen-
ted by forms ¢ and v in terms of residue classes of # and m a8 well ag their
prime divisors modulo diseriminants of ¢ and . Thiz kind of character-
ization is Jmown since Gauss for disecriminants with one class of forms in
every genus. After Linnik created his ergodic method, it became also
possible to obtain a useful characterization in the general case {see [1]).
The method pregented in this paper yields nothing for forms in four
variables having three coetlicients linearly independent over the rationals.
' I wonld like to express my thanks to Professor Jane Pitman for
calling my attention to this problem. The present version of the paper
hag benefited greatly from her eritical remarks. I would also like to thank
Dr George Greaves for stimulating digeuszions.

2. Auxiliary results, In this section we gather together known results
concerning sieve methods which will he used in the paper.
Let & be a finite sequence of integers, P sebt of primes and for any

‘real number z>= 2

f_ .P(z}r—"np.

p<e, PP

2 — Acia Atifhmetica XXXIIL3
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The sieve methods deal with the éifting fonetion
8(st; P2} = la ed; (@, P(2)) =1},

where |{...}| denotes cardinality of the sequence {...}. To estlma,te Sl P, 2)
we need the following guantities

g ={ne; a =0(modd)},
w{d) — multiplicative function satisfying 0 < w(p) < p,

we = []{1- "’(p)),_

PPz r
w(d)
B(s;d) = [ﬁdi—“é_xz

where X i3 3 suitable real number > 1. ITn fact R(«/; d) depends also on

w(dy a8 well ag X. For the sake of simplicity we shall not indicate it.

We shall use linear sieve in the form stated in [117], Theorem 8.3. We say

that & multiplicative funetion w(d) satisfies Halberstam—Richert’s con-

ditions, if '
o(p)

1 .
) . 0" gl—— for peP, «lp)=201Ffor p¢P,
P 4, ’

w
(Qg(, L)) —L-< Z wizﬂlogp ;clog -;; < A, 2<uw<<w,
ucp<w
where 4,, A, and I are suitable constants > 1 and x > 0.

Levma 3 (Halberstam—Richert). If w{d) samsfws co:ra,dmmw (£29)
and (£2,(1, L)) then for 2 < s< 3 we have '

©1) 8P, 8> W(z)xlilog(s_1)+0 L(logz)" ")\ — B
s ‘

where C = 0.577... is the Euler constant and

(2.2) B= ) 39 \B(at; d)].
. dP{zy
d<z¥ .
The constant involved in the symbol O depends only on 4, and A,.
In the paper we shall use a new upper bound method which can be
called “double sieve”. It shall be applied twice, so we introduce here
general notions and sketeh the principal ideas.

Let # be a finite sequence of pairs of integers and P, P, sets of
primes. For a real number 2> 2 lef

-Pi(ﬁ)=HP: i=1,2,
p<z
pek,
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and define an appropriate sifting funection as follows
B3P, Py, 2) = |y, ko) e 3[R, Pi(2)) =1, 4 =1, 24,
To estimate §(s#'; Py, P,,2) we need the following quantities
Ha,ay = {1l bs) €585 By = 0(moddy), i = 1,2},

w(d;) — muliplicative functions satistying 0 < o,(p) < p, 1 =1, 2,

W;{z)ﬁn(i';fﬁ{m@), i=1,3,

$iPite) »
Q) = ¥ i=1,2,
d<l H % (p)
2Pz)
©03(d) 05 (d)

E(#;d;,d) = :%ﬂdl,di] = Z

dldg‘
where % i3 a suitable real number > 1.
Lievva 2. We have

7

S(#; P, Py, 2 .\{--——m-—m——
(#5 Py Pay 2) G (216 (2)

+ Z 8V NR(HE 8y, 4
(=}

1,2

ATl
9
d!-<z*‘,z

llm

The proof of Lemms 2 easily follows from the following

Leamva 3 (A, Selberg). Let us suppose that o multiplicative function
wi{d) satisfies imequality 0< w(p)<<p for any p(P(z). Then, there exisis
a sequenoe {o,) of real numbers satisfying the conditions

(2.3) er=1, Ne,>0 for any nlP(2),
din
(2.4) leadl <3 for any 4| P(),
(2.5) g =0 for d> 22,
' a(d) 1
9.6 - .
(2:6) : 2 % T dE)
dip(z)

Proof. Tt is implicitly given in [11], Cha,pber 3, Bection 1. We have
taken

-
Qd _ ; l.i.,dl Adﬁ'_ .
iy, dq)=2

The inequality (2.3) follows from

Sa- (S

dln ol
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The other formulae {2.4)-(2.6) follow from formulae (3.1.2), (3.1.7); (3.1.8)
and (3.1.11) of [11].

Proof of Lemma 2, By Lemma 3 there exist sequences {9(')} of real
numbers satisfying conditions {2.3)42.6) with « and P replaeed by oy
and P; respectively, ¢ = 1, 2. Henece we geb

B oy
SersPu P (D @) D )

{hy.lia)e dll(hl,Pl(z)) dﬂl(hg,?ﬂ[ﬁ})
\ T a (ds) (2) g () 1) () .
=£()gﬁjfﬂ(§f%—a— N @R d, b
d1iP(2) dp]Py{2) d IPI«,(E)
1=1,2
St N SRR 4,4,
1{2} G- (2) le()
d; T
1—1 2

To make use of Lemmata 1 a.nd 2 we shall need esthmates for W(z) and
Ge). '

Leywva 4 (Ha,lberstam—Richert). If w{d) satisfies (£2;) and [Qg(x, )
then

1 _ (X ” ]
R
and — .
A . L
v = [J =)0 5] v

»
where the infinite product is convergent. The constant in the symbol O depends
only on A,, A, and .
-Proof. See [11], Lemmata (5.3) and (5.4).
We shall apply Lemmata 1 and 4 twice with » = 1/2 and 1. Tn each
case the constants 4,, 4, as well as I will be absolute,

_ LemvA 5 (Mertens). Fora = -+ 1 there emist absolute constants ¢, (a) > 0
and e,{a) > 0 such that

1 1
2 5 Wlorrlogw—l—cl(a Y+ O{(logm) ™),
-a(mu&é) .
S logp

1
2 P =Elogm+-0(1),

nsx
p=a(modl)

] (1—%)* — (loga)!™{es(@)+ O{(loga)™")}

pEx
p=e(mod4)
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for all &= 2. The constant involved in the symbol O is absolute.
Lemwa 6. If = is a real non-inleger number then

\7 "rm.’cl <___
e [l
=1

where |\ is the distance of @ from the nearest integer taken positively.

3. Application of Sieve Metheds to Theorem 3. For the fixed coprime

positive integers a, y we can find integer nmumbers B, 0 satisfying eon-
ditions

(3.1) ab—fy =1,

3.2y a<<f<2a, y<Tdg3y

For a real number S > 4 let®B stand for the sequence of pairs
(3.3) B = {(m, n) = (ar+ Bt yr+ o0},

where r, 1 run over all positive integers < § suck that
(r,8) = (6—p,a—y)(med4) and (e, 1) =1.

Henes, for {m, n) B we have

(3.4) . {myn) = (1,1} (mod 4),
(3.5) (m,n) =1

and for B = ma.:&:i‘3 {m,n} we have

(3.6) e Haet+y)I8 < B<3(a+y)8.

We are now In position to formulate

TAEOREM 3. There erist absolute constants 0<+< 1, ¢> 10 such
that for any

3fT
8> (a+y)"'+e(i + 1)
. 7‘1 a
we have

2]

NT 4= * L
2 5 (m)b"(n) > Tmlogé'z .

(eriym}e B
Theorem 2 will be obtained by applying Theorem 3 with ¢ = M
= N, where M [N iz a suitable approximation to 8,
We shall express the sum 3'8%(m)b*(n) as a sifting function and
then we shall use the sieve methods. In order to do this we construct
from the sequence B a new sequence (of the same length)

¥

€ = {mn; (m,n) eB}.
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Tt is known that a positive integer m is represented properly as z sum of
two squares if and only if it is not divisible by 4 and by any primes from
PT ={p; p = ~1(mod4)}.

This proves formula

(3.7) )b = 8(€; P, B).
(m,n)eB .

) 2
~ We gee from Lemma 5 that w(p) = 7 f 7 or 0 according as p e P~

or not, satisfies Halberstam—Richert’s conditions (£2;) and (;(22(1, L))
with some absolute constants A,, A;, L. We caloulate the infinite product
invelved in Lemma 4 as follows

e e

Therefore, on applying Lemma 1 with w ag above and X = }(8/x)® we get
TEMMA 7. For 2< s< 3 and any 23 2 we have

& i -
(3.8) S8(€; P, 2) > Salogd log(s —1) + O{{loga)~"}} — B,
where
By — }_j. 3 |R(C, d)]
tZlP N?z)
and
r)u(ti} 1 1y 1 S 2
pld
The constant in the symbol O is absoluie.
By (3.7) for 4| P (2) we have
(3.9) Cal = 3 Baq,f | :

& damd
g0, we can express R{C€, d) in terms of

118y
{3.10) B (B3 dyy do) = By, 0l — A H( ) _2"(_7;)

. © pldyds
a8 follows

R(€,d) = 2 E(B;d;, &)
: dyda=4

icm
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and thus
< Q) SUUR®; 4, ).
czldfP @
We shall deal with the last sum in the next section. Leb us remark here
that the estimation of 8{€; P, 2) given by Lemma 7 cannot be applied
direetly to (8.7). It requires » being as large as B, but unforfunately we

are enable o estimate %, suceessfully for such #'s. We shall use Lemma 7

with ¢ little greater than 2 and # liftle smaller than BY2. We have to esti-
mabe

SE; P ,2)—~8(€; P, B).

To do this, we estimate the above difference af first by a sum of double
sifting functions and then we apply Lemma 2
Let us assume BY® < z< B and set

Q=g =ap<Bjs; 2<p<VB,peP,a,2P" (2)) =1},
WD = [(m]g, mn); (m,n} eB,.}, -
ND = {(mn, njg); (m,n) B},
. = {p; p = 1(mod4)}.
LEMMA 8 For BY® < z<2 B we have

8(€; P™, %) —8(E; P, BY< D) S(W; PH, P, 0+ 3 BRI, P, PH, 2).
qs@ : [T}

Proof. Let us suppose that the pa,n' {m,n)eB contnbutes to

8(C; P, 9)—8(C; P, B), i

(mn,P‘(z)} =1 and (mn,P (B)>1.

The last inequality says that either m or n, say m, is divisible by & pﬁme
from P, Then, by (3.4) we see that m has to be divigible by at least two
primes from P~ (not necessarily distinet). Therefore

m = app’,
where p,p’ e P~ and p <p’. By {m, P~(2)) =1 we obtain

s<p<Vor <Vm <VB
and

ap =mjp' <mlz < B/z
We have shown that.q = ap €Q. Since m/q = p' ¢ P~ and {mn, P~ (2)) =1

we gee that pair (m/g, mn) is counted in S{MM?; P+, P~,¢). This com-
pletes the proof of the lemma.
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LEsns 9. Por 2 <3<z and g eQ we have

2

8
M. pt p- —_— |+ B9
(3.11) S(Em s P, P73 < 0 (q(lﬁga)m) + s
where

B = Y SUWROO; 4, 4
dy d.-.<a~
‘11!P+(3}sd 1P—(3)

and

or(ds) 1v-F S
(812)  R(WY; 4y, &) = (Mg, 1~ P+;)2Wf
‘ pldydy
The constant in the symbol O is absolute.

Proof. We apply Lemma 2 with

‘%:m@i P, =P7, Py=PrT, # =3,

:_[]@+)ﬂ§a

nlg
and
(pip+1) i peP™, pig, 2plp+1) it peP-,
w;(p) = i1 if pePt,plg, wy(p)=
0 if pePt; ] i peP.

One can eafily show by Lemma 5 that o, and w, satisfy the Halberstam~
" Richert’s conditions with absolute constants A4,, 4., I and parameters
% =12, 1 respectively. Henece, it follows from Lemma 4

1 1
——— «<({logz}™"* and
iy < losd) &)

where the constant in the symbol < is absolute. For any d,|P*(3) and:
1P~ (3) we have (g, d;} = 1 which implies

oyl@ou(ds) 3 by ey
dyds dﬂlj(_ﬁg%ﬁ'

This proves (3.12) and completes the proof of the lemma.
Imania 10, For 2 < 3<2 we have :

< {logz)™

YEOs 3} £UPIR(B; D, Dy
gt D) Dy B 158
(D, Do)=1,2+D Dy
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Prooi. For any 4] P"(3) and 4.]P {3) we have
(3.13) m%m— 2 By

80, we can express &(I?; d,, d;) in terms of (3.10) as follows

RO d,,dy) = N R(B; d,d5, d)

dylly =2,
and thus
(3.14) B < Y 3708%) \R(SB; qd, d;, d3)) -

dy.dads<s®
P (3, dedls |P—)

Let us consider a pair of numbers I}y = gd,d, and D, = d,, where d,,
dy, d; Tun over the same range as in {3.14) and ¢ runs over ¢. It is easily
seen, that d, and d, are uniguely determined by D, and D, and f = d,ds
is a square-free divisor of D,. Hence we get

(3.15:‘ 2 3:”(dldéd:2')___<; 37(1)2} Z ”2 (f)3v(f] — 3v(l)ﬂ) 41:(131}'
g,dy,d0,dy Ty

‘We have also

(3.18) 24D,Dy, (Dy,Dy) =1 and DD, < Be it

Therefore, by (3.14), {(3.15) and (3.16) we obtain the proof of the lemma.
LEMMA 11.. For B <z< B we have

- _
- 2? < {log2Bz"*y"(logz)"".

qeqd
The constant in the symbol. < is absolute.
Proot. For g e we have ¢ = ap, where
e<p<B®, a<Blpe<Bri<z and [a,2P(2) =1.
Tt follows that & is divisible only by primes from P+, Therefore
1 s 1y, 1 ‘
2l Xl 2 7)
q<0 agBz?"  epeB?

where dash denqtes that summation is taken over numbers divisibie
only by primes from £*. From the Merfens’ Lemma 5 we geb

2 —_< H (1——) < (log2Be2)e

peP+
p<Bz
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and
log B
vV L s (° )+0((10gz)“1)
expeni P 2
Bz o 10 2.8.4_2
~ tog(1+ L)+o((1ogz>—l) & log2Be
logz

‘which completes the proof of the lemma.
Now Lemmata 9, 10 and 11 give

S, PP <

70 Dy Dy<Ba 5t
- {2y, Dg)==1,2+ D1 Dy

£ODN BB D, D) A

0 log2Bz72\%* &
- logsy logz /"

The same estimate may be proved for 3 §(W?; P~, P*, 3). Therefore,

by Lemmata 7 and 8 we get
Leavwa 12. For 2<s< 3, 2< 3<2and BY* <2< B we have

4

. g _ing , {log2Ba7 "
3 3 4D R84, 4.

) dy<max{z®, Bs—1zh
{23,951, 24 dy

The constant in the symbol O is absolute.

%,

4. Central Lemma

Lenvmwa 13, For any 0 << & << 1 /4 thers ewisls a posmfue eonstant c(g) > 1.
depending only on & such that

. ! 2
#O [R5 6, 4| < el + 2 (B 4
&)ty <BI—40 - roe
(21.d)=1,21d1

Proof.

I. Divigion of the sum |By 41 Using (3.1)-(3.5) and the fact that

2 w(a) is 1 or 0 according as & is 1 or not we see thab
alk

(4.1)  Bagl = Y e Y1y Y ae M1,

a<H I3 a>H’ T, t

where, in each case, 7, { run over positive mtegers 8 guch that

alr, alt, (rt) =(—p,a—9) y{mod4), d,|oerdpt, dsjpr+ 8t
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and 1< H < 8 is to be choosen later. The Iast swn can be easily estimated
{on average) as follows

(4.2) 4’%@9) | 2 21 T ptad

a>H r! dlkar-i-ﬂt
)T+ oL

< 6, (n) B 282 < a(nB S,
a>H .

where # i8 an arbitrary positive constant and ¢ (n) depends only on 4.

‘We shall express 2 > asa tngonometﬂc sum in the following way

astH

(4.3) Dlu@ 21 - = SN dur ),
H

a aH rt u,_(moddl)

1=1,2

ﬁhere now the range for », ¢ is
0<r, it 8la, a(r,) =(@—F,y—35)(modd),
e(w) denotes ™%, J = d,d, and
(4.4) | = a{ou ds-+yiu, i) /d,
(4.5) Hy = B(fuyds + duydy) fd.

Denoting the set of all integers by Z we divide the set of pairs (u,, %) _

" (u(modd,), ¢ =1,2) into four clasges

A peZ, melsd,

B . eZ, ptZ,

C meZ, pwei,

D ' B84, py L.

Using the fact that (d,, d,) == 1, (a, y) = {8, ) = 1, we note that
(4.6} Yy By |othyan dy| @iiay,

(4.7) Uy € Zdy|au, B A dg|ou,d,

(4.8) prEZA s € Z-dy | @ty A dol oy,

Let A(dly dz)s B(dy, dy), G(dly dy) and D{d,, d;) stand for thﬁl parts of
the som (4.3) which correspond to the pairs (uy, #.) from elasses A, B, G,
and D respectively. Then .

(4.9) 2 u{ af)Zl = A(dy, dy) + B(dy, dp) +0(dy, ds) + D(dy, ds).

asH
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II. Agynptotic formula for 4(d,, d,). The main term of [SB‘I]l 4,
will he obta.med tfrom the 4(d,, d;). By (4.8) we have '

1 ={a,d){a, d;) = (a, d)

(ug.ug}ed.

and thus

v (8 #
_)_J u(a) _S (g —rou))

up.ug)ed

Ady, 4

Sul)—-l

”‘L‘t:

h

Z“(“) (@, d) {16a2 +0("f?)}’

@41
ps:
T

Moreover writing v{d) for the number of positive divisors of d we have

NPT R AN
D p@)h = 8 H(h;) ,

2fa ma
((}, @) 0
= . y=—2 —1
2 < _%’ca;m (a0} < (@ H,
v (5,d) y
2 QZG M (aoy < w(d)logsH.
a<H @ ©eld aEﬁ}'c
Hence
. 1 1\ & a
(410)  A(d,,dy) — EH(H“}T) o +0(7d) (S'“E‘1+SlogH)).
pia

Liet us note here that
Z o Floata) (didﬂ) (2 o T4 )) <loghD, Dx2.
dyde<}

. IJII. Estimates of B(d,, ds)and C’(dl, ds). First let us consider class B.
‘We have, by Lemma 6,

> ettty = ( X otusn) ( Y tud) < 2 vt
Tt r ¢
which gives
: I
(411) B, d) <= D' a7 D jpl
a<<H,2{a (up,up)e B
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We see from (4.6) that for (u,, u.) e B
& ds
—_— Ty = ———— 1]
(aa, dy) n : (ay, ds)
where U, and U, run through complete sets of residues modulo {aa, d,)

and (ay, d,) respectively, in such a way that u, ¢Z. Substituting the
above value of «; and %, to (4.5) we get

_( 8T, 5T, )
o= aa, ) ap da))”

For a partienlar pair (U, U,) it is easily seen that there is 2 unique io-
teger L such thab

Uy =

g, = (L/@)(mod1), 0< L<g,
‘where

Q = (aa, di}(ay, ds)/(e, d).
Two pairs (T, Us), (T;, U.) yield the same value of L if and only if

(aa d1) — (a%dz))
(s, dﬂ) U =0 (m"d (4, &)

and thug the number of pairs U,, U, which yield a particular value of L is

U, = U;(

. (’a_s dl)(a: dy) = (ﬂ, d).
This leads to '

1

i —
i Ly
2 psl™ = (a, & y ” 0 %
(U3 Ug}e B 0<L<Q HIA I
— 2(a, d) ) Q/L<2(a 40logQ < 2(aay, d)logd.
) 1<L<Q!“

Finally we obtain

(412) By, )< S

logd Z % {aay, d)

a «
e H.
= 8 2ay, Dlogd (@, ) < 48 T(d) (ay, &logdlog3H.
a asH @
Analogously, we consider ¢(d,, d,) and obtain
($13) ' Cld,, d) < 4S—Li(ﬁ§ &)logdlog&ﬂ
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Let us note here that

& d
N gty T "( 2) (af8, dy )

dydy<D

< ( Zw)r(c))( 2 i) iglldﬂ) < to(7) (afyd)logt D,

clagpd dydy <D 1%

where » 18 an arbitrary positive number and ¢,(x) depends only on ».

IV. Divigion of the sum D(d,, d,). We have, by Lemma 6,

D el + pat) < Il ™ 4pe] ™

b
which gives
1 1
(4.14)  D(dy, d) < = —
v d-z—; 2): ol [
2fa

It is easily seen that there are nnique integers L, and L, such that
I, "
du, = F(modl), 0 < |E) < d/2,

L
tpp = —2(modl), 0< Lyl < d}2,

50 _
Ml = 14l/d, il = (Ll/d
ahd thus
' ' 1
4, AT )
(13 ,D(dl,dﬂ)<d2 Z A

. ag“-?‘f {tg,u3)eD
Tor a.rbitmry integers L, and L, let us seb

A(Lyy L) = (Bl — alis) (8L —yLy).

We divide the sum (4.15) into two sums

1 -
(416)  D(d,,dy) < d Y‘ Z +d2 2 1
| o | Ll %A

. 1atighed alF (up,up)e D
e MLy, Ly)=0 2te A(L,, Ta)st0 :

= D (@, &)+ D (s, ).
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V. Estimate of D'(d,, d,). We have sither AL, = aly or 6L; = yL,.
Henee, by. {(«, 8) = 1, {y, 8) =1 we have either a|L, and f|L, or y|L,
and ¢|ZL;. In each case

o1 RN 5 T R & SR 5 T
s = + Ps A +;v5 log"3d

(ugm)eD i L] af yé a-cilyl Bl <d of
d( Ly, La) =1
and thus
. . , 71 1 .
(4.17) D'(dy, dy < 4 |— + | dH1og*3d.
afi = yd

Lt us note here that

S“ 4708 4, < D Y 4”@)—(—-)— < P lng D.

dld;,<D =D

VI. Estimate of D"(d;;d,) {on average). Using (4.4) and (4.5)
one can easily show that '

{4¢.18) - (ea, dy) (ay, d) Ly and  (af, di){ad, d,)[ Ly,
(4.19) pL, = aly(moddy) and 6L, = yLy(modd,).

Two pairs {u;, u.)eD and (#7, %3) € D yield the same value of I, if and
onlty if

oy Eu;(mod Uy =y (mod s )

d; )
(@, dy) ' {ay, ds)
and thus the nurnber of pairs (u,, u,) which yield a particular value of L, is

| (aa, &) (ay, dy). |
This together with {4.18) and (4.19) gives

(aa, dl) JRay,y Gy) 2)
(4.20) N 2
. Lo |L1L21

{ui,ug)ED =
ML, Lz)#ﬂ

where dash denotes that swmmation is taken over all integers L,, L,
satisfying -

| 0< IL4, 1Zal < @2,
(4.21) ALy, Ly # 0, - d]A{Ly, L),
(aa, dy) (a/y, do)l Ly and  {af, di)(ad, &) L.

The estimate (4.20) is rather weak. However the conditions (4.21) say -
that for fixed L., L, there are only few d = d,d, for which the sum {4.20)
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are noti empty. Therefore, we can get from (4.20) a good estimate on
average

£OB D (dy, dy)y <D Y 1AW

dydac D a<H0<lLII,{L2|<D ETE]
{dy, dq) 1,2¢d;dy e A(Dy D)0
Obviously

|4} << (a+B)(y+ 8)D*
and thus

D4 < gy () (ap DY,

a4

where » is an arbitrary positive number and e;(%) depends only on 'r,l Finaily
we obtain
(4.22) D

dydo <D
(G da)=1.3t s

OB, , dy) < caln) (ay DY DH(3log D).

VI, Completion of the prooi. To complete the proof of Lemma 13
it remains to gather together estimates (4.2}, (4.10), (4.12), (4£.13), (4.17)
and (4.22) and to choose the parameters D, H and » optimally. We obtain

.
#{thdg) .
D veE®B; 4, )
<D
(A1, dz)=1,2¢d1dy

¢ 5 > (i A
< (8afyBDS) |3 + DH+D'H 7+ y&)]

where # is an arbitrary positive number and the constant involved in
the symbol < depends only on 7.
From (3.1), (83.2) and (3.6) we get

a>B,f68(i.+1) and ﬁ>B/68(.ff-+-l)
y al : y o«

and thus

Seedeioshed
For D < B we have also

' afySBDS < BE.
Therefore our sum is

< (—“i Jrl)d;rs'ﬁﬂ(’g2 +DH+(DS) H).
¥ a -\ H

~1
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On putting D = B'™*, H = 8§*° and 5 = £/24 we get

a e : LIEN s ] —L35 e s ’ 2 .
< |— + S B / (S_v..ae +Bl 1.:.2} < (H "IL ___) (B_:_ S.,)l—-s
¥ a ¥ a

This completes the proof of the lemma.

- 5. Completion of the proof of Theorem 3. Let & be a positive number
< 1/24, For

143
188

all requirements of Lemma 12 are satisfied. We have
‘max(2®, Bz75Y) = max (B, B < B,

2 =B B o

Hence from Central Lerima and Lemma 12 we get

o

(5.1) S({@€;P, B) > —- EP gB{

—log(1—8e)+ 0 {(log By 4 6*} —

i) 2 ’ N
~3e(e) (— + 1) B+,
bd o
where the constant in the symbol U is abgolute. For

(5.2) ’ 8> (aty)

we obtam by (3.8) S<B<38”“’“ 9 (B8 48" and thus
by (5.1)

8(C; P, B) >

2

o 8s 5 ‘ :
— 2 1 —114)
fog [% +0{") 1+ 0{(log 8)7*)

—12e(e) (% 4 l)ghl_?_g_ﬁ],

where the constant in the symbol O is absolute. For '

[~

a . 3le
(5.3) 5> oo (% + i) exp(s™)\.
y o } .
“the term in the square bracket equals
N “}*0("33;2)7'
™

where the constant in thé symbol O is a,bsolute ‘Hence for sui':f:tciently-
small e > 0 we have
s 52

“8{E; P, B)/21()HS ' o

3 - Acta Arithmetica XXXITL.3
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provided (5.2) and (3.3). Theorem 3 follows now by putting = = ¢ and
¢ = {e{e)exp (s_in))s"‘.

6. Proof of Theorem 2. We derive Theorem 2 from Theorem 3. It
will be ghown that

EF=t2 and K =12jr42log,8¢c
fulfils the recjuirements of Theorem 2, where 7 and ¢ are such as in The-
orem 3. Let .
§—M|N|< N*, |(M,N)=1,
N> (04+070H%, NF<kN)<I.

k()
4

Iwepnta =M,y =N and 8§ = N then all assumptions of The-

orem. 3 will be satisfied. For, it is enough to show two inequalities

(6.1) . 8> 2(a+y),
_ e
(6.2) 8> 2 (»5'i +1) .
. ¥ a

Prooi of (6.1). We have
) Sz {NUH o LNV
On the other hand

1—t N .
2a4y) T =2 (% +1) N < 224+ ) N "< 4(B+ 6N,

Henee
Uat+y) TR <160 YN T LA6(64- 07 NTIE L 16(0+ B“)_‘" <1.
This eonapletes the proof of (6.1).
Proof of (6.2). "We have _
I(B ) —1)(1—7,’2)1{ P i(fH“ B_I)sz.
On the other hand
fa | pVF —1y)8/r
2e|— + ) < 2e(2(8+ 07,
Yy o .
Henece '
a p\ X "
2¢ (~ +»~) 871 < 8- 287 (g 4 g7 TS £ R 2SR 1,
¥ a
This completes the proof of (6.2).
 Applying Theorem 3 we geb

2 B (m)b* () = k.—wk(N)N)z
ot =" 16log¥N

icm

~
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On the other hand we have

D Bmptm< N pmb(n)
{m,m)eB d<n <A_'{j\’).\"2

Im~tn| <k{N}

{m,nie=1

because each pair (m,n) € B satisties the conditions

0<<n<g (?*1"(5)8 3yS < B(NY N,

! f ' 1 4
im— On| < mﬁin‘ + i 6«——2%< +— - <—§=k(N),
Yo v Y 4
(m,n) =1.

This completes the proof of Theorem 2.
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