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Homogeneous additive equations and Waring’s problem
by

R. C. Vauerax (London)

1. Introduction. Let %> 3 be a natural number. Davenport and
Lewis [7] define I'*(k) and 6* (%) as follows. If ¢, ..., ¢, are integers such
that for every prime power p™ the eongrnence

(1.1 ey -+ Coth + ooy A-0,F == 0 (modp™)

has a solution with ..., s, not all divisible by p, then ¢,..., ¢, are
said to satisfy the congruemee condifion. The number I'™(%) is the least
number § such that every seb of s integers ¢,, ..., ¢, satisfies the congruence
condition, and G (k) is the least number such. that ifs> G (k)and e, ..., ¢,

are any s integers, not all the same sign when & is even, which gatisfy the
congruence condition, then the equa,tion

(1.2) o Cti o i L et =0

has & solution in integers 2, ..., x,, not aﬂ of which are zero.
The major part of their paper is-devoted to showing that

(1.3) : (k)< ¥+1,

with equality Whenevel & +1 is & prime. However, their Theorem 2 implies
that when 5> 18

(1.4) _ G R <EF+1. _
They also indicate that the methods of Davenpors ([3], [B]) will give
this when k < 6, and observe that it seems doubiful whether the solubility
of (1.2 for s> %* -1 can he proved for all the intermediate values
E=T,...,17 by existing metheds. Our purpose is to Teduee the gap.

THEOREM. We have 67(9) < 91, G¥(10) << 107, GF(11) <122, 67(12)
< 137, G*(13) < 153, G*(14) < 168, G*(15) < 184, @*(16) < 200, G*(17)
< 216. '

CoroLLARY. When 11< k<17 we have (1.4). _

As far az B = 7, 8 are concerned, the method of Davenport [6] when

adapted to this problem is still the most effective and gives G (7)< 53
and @* (8) < 72.
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The argument used here is an adaptation of one of Vinogradov [10],
Chapter IV, related to the estimation of G(k) in Waring’s problem (see
algo Chen [1]). For large k it gives

. i <3
(1.5) IH:-L?I) klogk

and by comparison the method of Davenport and Lewis gives this with
the 3 replaced by 4. By adapting another method of Vinogradov [11]
it is possible to show that

*
LE®
klogL
 Althongh there iz quite a wide range of choice of the parameters involved
in the proof of (1.6), it appears that the argument used here is always
more effective when % is less than about 50000.

We observe that when applied to Waring’s problem our method
gives the above theorem with G replaced by @ In particular this im-
proves on the known hounds for G(9) and ¢(10) due to Cook [2]. '

' We further note that to prove the theorem it suffices to assmme that
G1y .00y € are all non-zero.

Fhroughout, & is a fixed but sufficiently small pogitive real number
in terms of ¢, ¢;..., ¢ and k, where ¢,¢,,...,c, are non-zero integers
and % is a natural nu_mber with k= 9. Formulae containing ¢ hold for every
sufficiently small positive & and the implied constants in the =, 0, < and>
symbols depend at most on ¢, ¢, ¢q, ..., ¢, &k, and 4. :

2. Preliminary lemmas _

Lmyva 1. Let @, (0 = M +1,..., M+ N) and b, (v =1,..., R) be
complex numbers, suppose that the =, (r =1,..., R) are real mumbers
which are distinet module one, and define : '

(1.6)

6 = min |z, —x

_ where the minimum is taken over all pairs r,1 with r =1, and where |uil
denotes the distance of u from the nearest integer. Then

. M+¥ R | MaN ‘ ;

- 2 L s—13)1/2
| Y Yademn) <{ Y el }jlbm(NTa Y.
n=3+1 r=1 fo== 41 r=1

Proof. At once from Cauchy’s inequality and Theorem 1 of Mont-
gomery and Vaughan [9] _
Lmvaa 2. Suppose that ¢ = 0, X is a real number with X > 1, lo—a/q]
<X (a,0) = 1, ¢ < X, o, (Inl < ) are compler numbers, la —afg!
> ¢ X  awhen g < X, and :

S{a) = Z € (aopt pErt + anp®)

1,01, 09,7
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where the summatwns are over \n| << X" 1< p<iX r< XV and
Dy, Po << X 70 Then

8(a) @XH'IC( 2 o, ig)li'u
]n§<Xﬂ‘

This iz essentially Lemma 2 of Vinogradov [10], Chapter IV, but
the use of the factor
2.1) 2, elacplplr®

Ii-Pa.r

ig new. The purpose of the apparenily superfluous variable r is to ensure
that when the variable ,, where s, is to be defined, of {1.2) appears in
the singular series it is summed over a complete set of residues, rather
than & reduced set. This is of paramount importance, for oi;herwzse the
congrnence condition eanmot be meb.

Proof. We first of all treat (2.1). Since |a—ajql < g“IX“"”C and the
number of different pnme divisors of g is O(¢") we have

@2 > (aﬂplp"'r‘)“y V (g%pk”’k)+0(f g g X,

plmrn:" T 1’1:117
{P103,9)~1

For a gwen 7, let o = acr® g, e¥), -q’ = q/{g, ") so that (@ ,q) =1
and ¢3¢ > ¢X % If (b, ¢') = 1, then the number of solutions of n* =h
(mod g") with 1 <{n << ¢’ is 0(¢°). Hénce, by Cauchy’s inequality,

4

7 2
. a, _ I mo * -
] > ( 1911)») < XA+ X “/q)z Ee(gif’z);
B12Pa patq
(p1D2,2)=1

| < TEPLLT
Thus, by (2.2},
23 > elacplpirt) < X7 £ XN

D1.Ba.7

The proof now divides into two parts according as ¢ > X or g <C-X.
This largely follows Vinogradov. Suppose first that g > X. We have

. a a 'CE) ]5))
Y = et = .
(2.4) Zane(anp)mzz 2 e(n(qr—[—(a 7 fod |
n,p r=1 n v P
p¥=r(modg) .
Let g(r) be the number of primes p which satisty Pt = r(modq) and enun-
merate them as py{7), ...y Porn (1) Then

(2.5) o o(r) < (X*g ' +1)g"s
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Let o = maxo(r), define ¥ to be 1 if §< ¢(r) and 0 otherwiseé, and for Thus, by (2.7) and T.emma 1,
eonvenience define p;(r) to be 0 if j > o(r). Then, by (2.4), - .
. \ D auelonp®) < q(ZlanI) HEH Y
@2.6) N agelanpt) = > Z N, 1 (n (—‘f v+ (a— 3) pj(-r)k)). & )
o == \\g q This with (2.3) gives the desired conclusion.

The next lemmsa is an extension of Theorem 2 of Davenport and
Trdos [6]. When s > 3 it is apparently new.

Ievma 3. Suppose thal §2= 3, ¢,..., ¢, are non-zero infegers,

For a fixed j, consider the numbers

' a @\
@, = —1r+t (am—)Pj(’”)z' (r=1,...,0)-
q g

1 - ' P—k—~1
' : @8 b=1l-% m=Fhawe BT Bk
Modnlo one, the numbers ar/q are distinet and spaced 1/gq apart. More- ) +hk— TR A
over © and 8 denotes the number af solutions of
la—ajglpy ) < ¢ e RN < g7 '
e (rF—1f)
Thus the x, are spaced at least 4¢ ' apart modulo one. Hence, by Lemma 1, Z
W& with ' '
E \ anbgﬁe( (—T-t—(a-—z)_’p_, )) (Z |t * ‘{’ 125 (X”‘Jrq)) X<y, ty<2X, Xo<r,t,<2X¥n, X pc2x T (3<i<s).
"o Then
% (2 10%12)1!2 (.Xk '{— qllﬂ)miﬂ(.x, gljg) . 8 < XI+12+73+736+“.-1-1353_3 e
R ) : .
Henee, by (2.5) and (2.8), : ' Proof. Let 8, denote the number of solutions of
s / S 9 . n '
D apelamp) < (g7 +1)g° [ Y 1ol (X4 ¢")min (X, ¢). Mot —ih=0 :
HD 13 . j=1

Hqg¢> Xz', then this gives the lemma at once, and if X < Qg X2, then

with » t.. Since 8; = 0 we have
it follows efsily trom this and (2.3). m 7 I 1 :

_ Now suppose that ¢ < X. Define 5® to be 0 unless § X° < gr4-9< 3.X° _ X L LR Ly g3
and gr+-s is prime in which case define it to be 1. Then (2:9) : 8= ',;g; Bk : To : -
' g1 ‘ Moréover, :
. 1 a a i 27,18 T,
(@.7) Z e {ang®) = Z Z Zanb,(.‘}e(ﬂ (E L (a_E) (q'r+s)"))- : (2.10) WAVS S P ol
w0 a=0 n r ’ .
For a fixed s, take We write ,
a al (2.11) 8, = Sm+28 {(m == 3)
7, = —s" 4 (a—— {gr4-s)t. o S, th b
g4 q where S, is the number of solutions with r1 =1 and e number
The o, are all confained in an interval of length at most 47", Thus f with 7, > £ Then ,
. N (2.12) 8, < XT,,
&, — ]| = ] gr 4+ — (gt + )" where T,, is the number of solutions of
50 thatb : ' ' ‘ 3 :
: 213 o (rf 1) = 0.
min o, — )] 3 X~%. : (243) ,; S
rsab
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If m = 3, then at once
(2.14) : T, < X5,

It m > 3, then since v, < 7,8, given any set of 1y, %y, ..., £y, the number
of choices for ry, 1y, ...y 1y, Tor which (2.13) holds is < 1. Henee

(2.15) T g XT3y,

e

‘We now turn to the treatment of 8. The number of chomes for
Toy Ta I8 < X7 For :a,ny such chome we have

(2.16) A+cl(ri‘—t?)+2 o{rf—1) = 0
i=

where 4 is fixed. Let b = r, —%,. Then ¥ — % > BX* 1. Also

e
4+ Fotg—t< T

i=s
Hence 0 <k < X*27%*! and (2.16) can be rewritten in the form
(2.17) Aot +rF—1) < X X,

For a given &, let ¢ and ¢+7 De two possible values of ¢, for which (2.17)
holds. Then

iR (R < X,
whence AjX*~* < X™™: Thus the number of possible choices for #, is
<1 +_Xk'3—k+2h—1.

For given ry, t;, (2.16) becomes
ki
(218) | A+ Dl =0
E i=3

- . ] - - —
where A, is fixed, The number of choices for f,, ..., 1, , is < XF-+ai™*
and for any sueh choice the number of choices for 73, ..., 7, i8 < 1.

Given 13, ...,%, 1,73, covy Tpoay (2.18) becomes

Ayt cﬂ»(rﬁ""t{;) =0
and since #, +# 1, the number of choices for r,,t, is < X° Thus

219) Sr< X
0<hg X

The lemmsa now follows from this,‘(?,.g), vy {2.12), (2.14) and (2.15). :

feTg—k42 o _q o e LT —4
(A4 X gy g
kra—R41 C

H{2.21)  gi(h,m) = |{{ .7:,
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For future reference we note that by (2.8),

B 3K k42,
kg + k2__ k255—3

Leyma 4. Suppose that 1<<r<k—2, 0<r<<1, % and ¥ are
finite subsets of Z" f: XV [ =X, T 1671INE and wrile

rim, ) = {{z,u): X<z 2X,uc,cc®+flu,v) =m}|,
E(m,v) = [{u: uec¥, flu, ») =mj,

8 =§§r(m,v)’ and =22R(mo v)".

e veF”

(220) 1Tyt 14 ... 1,08 = k(l»-—

Then
S < ITTX,,H 2—TT+X(,+3)(1~q—r) ,.n-r_,.ETI -3—?'3 141?7‘%%.?—'.

where %), |¥7| denote the cardinalities of ¥ and ¥ respectively.
Proof. This follows that of Theorem 1 of Davenport [4] with one
important modification, due o the fact that f may not be one-to-one.
‘It suffices to prove the result when |#7| = 1. For then the more
general result follows by summing over all possible v and applying Holder’s
inequality o the last expression on the right. We henceforth suppress
the ». Let '
#Hy ={h: b = {hyy ...y B}y B> 03 By € A7 hg,.-., <X}
and

c X< < 2Xue¥;ed; (m RBiy.- 3)+

+f = m}|
" where 4, is the usual jth iterate of the forward difference operator. Now let
(2.22) ¥; = ) M Rimgh,m).
he.}fj m .
Then ‘
(2.23) - 8 < XT+N,

and, by Cauchy’s ineguality, _
N} « XT3 N gk, mf < DHID(XHETLN).
Fi) m . .
Therefore ‘ ' ,
N— & X”+5'“2T+(X"*"“ITN,_H)”*.

Hence, by induction on 7,

(2.24) N, < X°¥° s—rT+X(v+l)(l~—q——T) ra=T pl-g=T -N:l-_i.g
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By (2.21) and (2.22),
N,y <X (2 Rim))" = X"’

e

This with (2.23) and (2.24) gives the desired conclusion.
As an immediate corollary we have '

LEvwia 5. Im addition to the premises of Lemma 4 suppose that

T € Xy, 1 < XCHD 0 9T
and
r< (r+1—a(k—1)){(2—1+0a)
where 0 < a< 1. Then ‘
. 8 < X'y

The next lamma follows by adapting the proof of Theorem 4 of Daven-
port [4] in the same way that we ada.pted the proof of his 'l‘heorem 1 to
give our Lemma 4.

Levma 6. We assume the hypothesis of Lemma 4 with t =9 and
suppose further thot + = 6 or r < b and r is odd, that
r{im, p,v) = [{{z, u): ¥Y<a<2X,pfr,uwec®,c’+p°f(u,v) =m}|
and that

§= N X Yrimp,of.
pex{l—"9 m wve¥
9p+l

Then _
& < X1T+Xr+v—2“TT+X(t+v)(l—2‘.7')—ri"r+aT1-~2‘”" l%lzl"’r I.VIZ"T
where T = (10—v)/9.
Leswa 7. In addition to the premises of Lemma 6 we assume that
T <« X, | <X, ygor
and '
9 +10 —T72a
P e
9.2"4+ 90 -8
where 0 << a << 1. Then
Sr X(IU—V},’Q-{-BI%l I,y-l

Proof. Immed.ta;te by Lemma 6.
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3. Definitions. The case I > 9. Let

31 ' § =1
(3.1) = Z
and
443
. lcr - -
3.2 8y == 34 [0 (Bk 4+14=7a):|
(8.2) L= 3 SSPrT :

We shall form the variables 2, ..., &, into four groups, the first two con-
taining s, variables each; the third s,+1 where 5, is yeb to be defined,
and the fourth the remainder.

Let:

t=20(k=10), t=24(k=11), =27 (k=12),

3.3 ] k- $__Dn2 g )
&) t:4+[(log(l° R 22| f(-tog0)| k213,

B+i
—3ER2
(3.4) “a(m} =1-— m‘a— PRy ’
(3.8) £y = min(s,, ),

pk-2p )51_:1 ('2’:-2 4 E—1 ))“1
LT Ly T ?

(88) @ =1—(2""+k-1) (k+(_2*'“3—1 1= alt)

: . 1
(3.7) _ ‘12:1’”? +4(1—ay),

- kag+2"-2—1 —a(t zk“"e
1431 [(leg( e g )/1 8lgrT_

[
!
(3.8) s _—_{ (as> a(_t}),

B =28 — k42
2 A 2 % ald
H[(Iog( F—a) ))/( l°gf’)] (a2 < a(0)

and . ) .
(3.9) 8 = (k) = 28,48, +1.

In particular this gives s,(10) = 107, 8,(11) = 122, &(12) =137, 8,{13)
=153, s,(14) = 168, 5,(18) = 184, 5,(18) == 200, §(17) = 216, and we
ghall show that for s> 8, (1.2) has a non-frivial solution providing that
the congruence condition is satisfied, and this estabhshes the theorem
when k& > 9.
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Let .
(3.10) b =0 ($,—t+4<m< sy,
7&2—76—1
{3.11) Ogytys = W’
k-1
319 __m=-v
(3.12) Tt = S
and define inductively on s, —#,+2—4 for s;—#, +1 =izl
N 81 j
1 v
1 L= —
(313) w=52 [0
. F=i r=i41
and
gzk—z
(3.14) b = .
257 14y,
Now define .
i .
(3.15) hia=he =[]0 (i=1,..8)
iy
and
) 1 i—B8y -
(3.16) = H Bryopsy (0 == 2811, .00, 28, +8,).
j=2 _

‘When % is even we are given that not all the ¢; are of the same sign,
We can also assume this when % iz odd, since we can always replace ¢
by —¢; and —af by (—;)". Then by relabeling we can further suppose
that g - :

317 >0, <.
Let P be a large real number and write .
- (3.18) Py = |e;|"*P, _Pz =P, Py = P4,
(3.19) fzi—2+j(‘1) = 3(aczi—2+j$k) (4 = 1: ey 813 f = 1,2y,
Pﬁi<m<2f').‘25 ’
7

.o 28

(3.20) | F(a) = [ [ 1),
i=1

(321) gl@ = D} eleeh) (i=2541,...,2+8,),

P;i<x<2P§i

icm
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8y
(3.22) Ha)= Y []gmuitep®
_ ) PR o pepplit i=1
(3.23) Bla) = Y e(a, pipir),
231&72{.?*(!*6) T<P6“’k
(3.24) hile) = 3 e(ac;a®) (i =s+1,...,8),
<Pl
) 5
(3.25) B(a) = n ki{a)
i=gp+?
and
) 1
(3.26) H(P) = [ Fla)H(a)h({e) F{a)da.
. L]

Clearly .4 (P) is the number of solutions of (1.2) with the variables restric-
fed in various ways. We ghall show that the congruence condition implies
that A (P)—>co0 a8 P—oo. This will establish the theorem when % > 9.

" 4. Definitions. The case k — 9. Let

(4.1) 0=% i=38, 3 =32, & =26 & =091,
(4.2) b =0 (28 < m < 32),
71
. By = —em
(4.3} 2w = T
44 6, — 81— &
( . ) . 26 T 90_965!

and inductively on 26 —¢,

33 j

-1 ] . .
(4.5) m=g 2 []o a<i<on
j=1i r=itl
and
8 1 (1 B5—T2n ‘
S o Cmin|—, Bk — 25,9
6 79 mm(32’ 280+9y,;) (8 =25, 24),
8 1 . (1 B4—T2u\
U AR LIl 1| ~323, ...
(4.6) 8; o gmln(64, 568+9p{) (¢ =23, ..., 20},
8 1 . I 81 —ugy ..
S b min{——, TR - 2).
9 T mm(128 ST B AR
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Let

| - .
WD A =r=[ 86082, A =5[] b
i=2 2

(65 < 4 < 90).

As in the case k> 9 we can assume that (3.17) holds and further let

(4.8) P1 = ;cgil"pp; Py = Gi{gP: P, = P!
and ' :
- 5% B .
@) Q=P T ges), @ =P, 7 (65<i<90)
where P is large. | '
Let
A10) funle) = D elamaye®) (1532, =1,2)
‘ - P;f2f<d<2Pf2i ‘ -
and '
. 36 ) . 64
(411)  F(a)=([]h@} 3 ... 3 . 3 elad @, p)) [ [Filaps... p3)
=i 37 Tag Prg P 1=49
where

(£12) Az, p)

) o 4 .9 5 9 3 a 9 8 .0 9
= €33 Ty T O3 Pys +?;9(039m39+ 64030+ Dzo (%1”41 oo Pag (Gar Wy + i) - - ))

and the summations are over
(4.13) PRl <, < 2PP-1, | PRi<an << 2P, py<<Qy,
- Pt yi%ag_yy D1

Let i

(4.14) glay = D' elage®) (i=65,...,90)
P§i<z<‘_’P§"i ' .
and .
(415)  H{a)
T4 90
= D[ Jote™) 3. 3 3. Selap’Blw, p)) [ | g:(en’ sl .- i)
P i=E5 %77 Zge P77 Pg2 1=83 .

where

(4.16) B(zx,p) = 077"1’3; +p3: (€7Sw38 +P33{'37.95°39+ L ) '
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and the summations are over

@A) PR<o<2PY, pi<@, pitm, Spitl, RPE<p< 3Pl

Further, let _
(4.18) May = > elacupipis),
PrpgePU— ) ¢ <p0.36
(419) h(a) = D) elaga®) (92 <i<s)
z<Pli?

(4.20) Ba) = ﬁhi(a}
~and o

(4.21) " A (P) =jF(a)H(a)h(a)E‘(a)da.

5. The Farey dissection. Let
(5.1) Mg, a) = {a: ]Ea—g < g—lP”ﬂ—’f}-

denote & typical major arc and write

a
(5.2) M= U U D, a)
a<pit (;: gil

- for their union amd

(5.3) m = (PUF 1L PRy N aR
for their eomplement, the minor ares.
Let -
(5.4) 7 = o,
define
| .
(6.5) - (g, ) = o ;a_gl < gl
‘ o ]

to be & truncated major are and

(5.6) | = U Lq) R(q, a)
‘ qsph(a?qz]il

to be their union.

4 — Acta Arithmetica XXXIIT3
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The point of our definitions in §§ 3 and 4 is to make the most effective
use of the lemmas of §2 on the minor arcs, and to keep the variables
Byy ..., & Of (1.2) explicit.

The estimation of the major ares are, as usual, nothing more than
g maftter of technigue.

We proceed now to examine the minor ares.

Levwma 8. We have

{B.7) | 1F(@)lda < PHAF(0).

Proof. We first of all consider the case %> 9. By Schwarz's in-
equality, (3.19), (3.20) and Parseval’s identity the square of the integral
on the left of (5.7) is majorized by the product of the two expressions

(5.8) Dnmy (j=1,2) .

81

i Y s - :
ry{m) == i{(ml, PR M 2‘ czf_ﬂﬂ-.cr;} =m, PP < m;< 213}2’} .
: =1

By first of all invoking Lemma 3 witﬁ § = ¢, and then successively applying
Lemmsa 5 with #+ = k—2 we find, providing that ‘
(5.9) E—1<kO,<E—182F% (2<ig<s—1),
that '
2?}(m)2 < P12+l4+...+1231+a< Pa—knllp(o-)'
m ) )
This gives the desired comclusion when k> 9 on establishing (5.9). For

k=10, 11 and 12 it can be checked by direct calculation. For k> 12
we observe that ‘

k- 443
ok=2 1 18 ot 9 (13 Lkl 24 ——_)
mm(k +% P42,k Jrk)( = )((}k +14L)

>k"*—4k3+5k2+k—2+22“’°(k3—3k~+k+é).
Thusg, by (3.2), (3.3} and (3.5),
| (BP+E) P > B — AP L5+ k24224 (% - 35"+ K+ 2).
Therefore

(B—1+2"5) (B — 31+ b -+2) 6970 < B -p- I8 = I 612,
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]
g
413

Heuee, by (2.8), (2.20), (3.10), ..., (3.13),

—8K+k+2 1
e T
B4k g4 F—1427*
and this with (5.14) gives (5.9) for ¢ = g, 1, +1. Since y, is a decreasing
funetion of ¢ it follows at once that (5.9) also holds when 4 < s, — 1.

The proof in the case k = 9 is similar. We first of all observe that
by {4.11) and (4.12) the integral in question iz bounded by

J.Z"'EiFIFm ‘iH fajln if,.

P19 Pay igven

S0 lmﬁsl—tlﬂ =

where F; contains the xz; with 7 odd and F, the ones with 4 even.
By the Caunchy-Schwarz inequality this iz bounded by the square
root of the product of the two expressions

[ DHpy an, L U=1,2)
Py Yag

and by Parseval's identity this is
EIM-EZT](m,p 7“"?‘24)2

Ee L] Pzg
with
T1{My Prgy -- vy Dog)
1 [ 9 3
= ]{w- oy @ -+ eaity + .. “Lesrrsf +1’19 {039:2’:'39 +3}*4(C49%9 oo b CgaTigg) e )

= M, Pi’z"l < Ty < 2P121"I: By i"rﬁ—ih

with a similar expression for »,. We first of all use Lenuma 3 with & = 8,

~ then apply Lemma 7 twice with r = 5 and four times with r = 6. Finally

we apply Lemma 5 suceessively eighteen times with r = 7, The choice
of the parameters in (4.2,)..., (1.6} ensures that the hypotheses of the
lemmas are satisfied. '

Thug we have

2 e 2., ﬁ’lj (Mg Doy +ony Pagy € Qug Do -+ Q;s-Pl’HSJF'"HﬁsH .

Pro Lgy M
< PE A F(0).
This completes the proof of the lemma.

Lravma 6, We have p; = a; (6> 9), g, > 0.96149 (k =9) and g,
> 0.98185 (k = 9).

Proof. Congider first &> 9. By (3.1), (3.10), ..., (3.13),
' F—ght F—k—1

A £—2y
Bk —geht k2'+k——k8‘1“3“1—91 )

Bpig 0 = 1+
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and thus, by (3.4),
Hg—~ti4+1 = a(ts).

If 5, < £, then by (3.5) and (3.6) we have u, = a,. Thus we can suppose

that s, > ¢ = £,. By (3.13) and (3.14), for i < s, —1y,

1 ’ 1 1 2572 gy
. = . = - .—|— 1 e -
=g Fhama =3 ( 7.:) P N

On rearrangement this becomes

2k_2“1+kﬂi 2k-2 6-“1 21\‘—2_1+kﬂi+1

1-—p; 2% 1—1 1—p
Hence, by (3.5) and (5.10),

e e (zHa—l =t 952 1 4 Ra (1)
| 1—at)

On rearrangement and comparison with {3 6) we obtain uy; = e; once
more. .
Now consider & = 9. By (4.1), ..., {4.5)

14444893

Fas = oosgTTAL
By (4.5), )
P = 1f9+ 6i+11ui+1'

We now use this with (4.6) to successively ca.icula,te the value of u;. We
find that

firg > 0,88136.
Then, since 1024(1 —u;) < 127+ u; for 1< 16 we can use the formmula
e (127"”“' 1— g
127 +9u,  \144 ) 127 -9 g

to give the desired lower bounds for u, and u,.
Lemsra 10. Let o em. Then

. H{a)h(a) ‘gp-ﬂé-k;rkﬂlﬂ(a)h(O).

Proof Suppose tirst of all that k> 9. Choose a, ¢ so that (a,q)
=1, la~ajgl < g P and ¢< P¥%. Then, by (5.1), (5.2) and (5.3),
whenever g < P" we have

la—afg] > g PRI,
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Hence, by (3.16), (3.18), (3.21), (3.22) and (3. 23), the hypothsesis of Lemms 2
is satlsﬁed with X = P and 8(e) = H(e)h{c). Thus

3/5-+kfa . ajl/2
(5.11) H{a)h(a) < P (%:7 (my)
where
28 L8y - .
r(m) = }{m: Z el = m,P§‘5< r; << 2P§'i} ;
=2 11

The sum }'r(m)? is estimated in the same way as the analogous sums
amsmg in the proof of Lemma 8. Thus

Z?’(m € Phoryite s pay b
m

whenee, by (3.8), (3.18) and the same argument ag in the first part of
the proof of Lemma $,

E r{m)* g Po0ike pliyg) p1tee bllhg gy

m
Hence, by (3.21), (3.22), (3.23) and (5.11),
H(a)h(a)y < P~2-t+1-2) 71 () 3,(0).

The desired result then follows from (3.7) and Lemma 9,

In the case & = 9 we follow fhe same a.rgument G0 begin with. This
gives (b.11) with

¥ (m) = 2 Z "(m:fjw:---;.'psﬂ)

Poy<@py  Pga<lp
where
r(m, .'p'm -3 Paa)
= i{oer el +. +077m.,,+p77(073x73—i— o F o (O @igt oo g thy) v
' Py < ay < 2PH, p; 1y, 91 p;+ 1)
Hence, by Canchy’s inequa]ity, '
vr(m} <€ Q. ‘-Qe‘__, 22 P(My Doz aeey Pe)’s
i gy M
We now follow the argument of the case % = 9 of Lemma 8. This gives

AR E 2 Py Prgyveny Pra)’ € Qg oo Qg PlosteHlapie
Pg Pga M ’

Thus, by (4.5) and (4.7),

9 . .
ez i
Zr'(m)g <€ Pa : ?Q?n rer Q§2P§AG5+"'+“"".

m



icm

248 R. ¢. Vaughan

Henece, by (5.11), (+.14), (4£.15) and (4.18),

K
H(a)h(a) < PP, H{0)k(0)

The proof iz now completed by a:i)pealhlg to Demma 9.
Combining Lemmas 8 and 10 establishes

(5.12) fF H{a)k(e)Blo)da < P”" "F(O)H(O)h(O)E(O),

and conclndes the discussion of the minor ares.

6. The truncation of the major arcs. Let

q

(6.1) Bilay @y = D) elac*[g),
. r=1 .
1 . .
62) Wip= > " e(bs) (li—j,i<2n,i=1,2),
ij-"i<r<P§‘;'i :
(6.3) - fila, g, 0 = ¢ S(G W (—g)
and ' .
(6.4) f: : lf {c; q,49) 7(“ e Wig, a)},
. 0 {a ¢ T).

We note that by (3.2) and (4.1), 5, > k.
LEMMA 11. We have ' :

2k42 22
JIL] #) ( i) <27 ] 3,0
. 1 ) '

Proof. Let a € Mg, a). Since 7, > §* (1—m) > = (2<<2k+2)
it follows from Lemma 8 of Davenport [3] that
65y Fle)—fi (@) < g,
By Lemma 3 of Hardy and Littlewood [8],
(6.6) S'E(Q} a) < leuk: (a: Q) =1,

Thus, by {6.2),
©n Jia) Fla) <€ PR (i< 2k+2).

.., (6.5), for g << P,
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By Lemma.9 of Davenport [3],

a

68)  fil@),fl(a) < -‘f’u.v(lwe"fm—E

._f,ﬁﬂ
L
—
=N
I
}_l
E

Thus, by (6.5) and (8.7),

(?Ijﬂff(“)) -—"(ﬁﬁ(a)) < qs‘g_;?(u—zﬂ a_ﬁl) HP;

The lemma follows eagily from this.
Levma 12. We have

ks T

[ H \ff (@)l da < P7*" ”nf‘(ﬂ

AN ==

- Proof. Let o e NI Then, by (5.2) and (5.6), there exist a, g such
that |a—ajgl < ¢ P~ (a,¢) =1 and 1< a<g< P and more-
over such that if g < P*", then la—ajql = g *P**. By (6.7) and (6.8),

3E+s 5 k12

H fi (a)i < ‘2"“”‘(1 Pt a—~‘ Hf,«(m

Thus the integral in question is

2k+2

<[ 3 g Jopans 2 P [ 70)
qcPkn —IPI-"J-k > Pfn Fem]
and thig gives the lemma.
By Lremmas 11 and 12 we see that
(6.9} f Fla)H{(a) h{c)E(a) da < PEF{0)H (0 R(0) B (0).
SR _ _
7. The truncated major arcs. Let
. , f.'l. agta
(1.1) (o, Ty = D™t 3 etanjg) [] 8i(g, o).
g<X =1 i=1
{z.q)=1
Tanva 13. Suppose that |n} < P, Then
Tht2 : ks

Jetem [ diteida =7 (P&, 00, BT +OE N ] [ 540

i=1

w;m J(P) = 1.
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Proof. By Lemmsa 11 it suffices to prove the result Wlth each f,
in the integrand replaced by fi. Let a & (g, ). By (5.5), (6.7) and (6.8),

2k+2 2h+42 2k+3

j‘e‘(w)nﬁ(a)da _ f ( )Hf” a)da+ 0( —3~2fk pkn~8—Fk nﬁ(“)
g, a) i=1 Rlg.a)
g+§ 2k+2 2+2
_ f e( )Hfi(a, g,a)da—]—O( ~1-2fk p—k— "”Hf 0))

1
[LIR

=~

Thus, by (6.3) and on summing over all the N (g, ), we have

k42 2her2

@) Jetan) [] fde)da = T, (P)&, (0, P*7)4-0 (P "] 740)-

By (6.2), .
' Jip)=3.. ¥ By, .. g

where the summations are over
P ok phio;
_Pj- 2 <7 mzlv_2+j < 2 Pj i

subject to 6,@,+ ... 0y a@y iy = 0. Tt now follows from (3.17), (3.18)
and (4.8) that _
: 2k+2

HP) = P[] £40).

This with (7.2) gives the lemma.
Levua 14, We have

) _BJF(é)H(a) () B(a) da —(J(P)@:'+0 )P~ ’”F(O)H(O)h(ﬁ) #(0)

where
T4 - &= i’q‘”jﬁ&q,a)
- =l a=1 je1
a,g)=1

‘ Proof. We consider the cage % == 9. The case % > 9 is similar but
simpler. By Lemma 13 the integral on the left of (7.3) ia

15 @ Zf,w)) 2 261 (Dl p), 7 +

+0{P~ “‘“"F(O)H(O)h(o E(0)

[Ba}
4
[
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where
Dx,p) =eyn Bt v CosBast A, P D5 . PaclCsiot -+ Ceaie)+
+9° (9553’25 Foes g+ B(@, ) DY - Do (it .- caﬂmgﬂ)) +
+ Coy PYDATY, F Con iy oo G5,
A and B are given by (4.12) and. (4.16), and the summations are over
Phici< gy, < 2P, Phi< g, < 2PR (i< 32),
D<@y,  DitOyuZen,  9p+1l (19124,
Phi < m,< 2P% (85 <1< 90),
Pi<Qi  pitEyy, 9P+l (77 i< 82},
R << 3P,
Pl? PE < P(l-‘é)i‘l?
gy < P26

and

2 < P (i 92).

By (7.1}, the multiple sum in (7 5) can be written in the form

Z g 'Z(H&z q,ar))Z D (x, p)/q)-

(ag)=1

For each variable @; we can replaee the snm over the ; by an expression
of the form

Phg84(g, am)+0(0)

(4 iz 1/2 when @ 92 and 6/36 when i = 91, and P; is > when 4 > 91)
unlesg 37 <4< 48 or 77 <4 < 82 in whleh cage we obta.m an expression
of the form

Pjig™ (Si(q,am:) —8; (q, m;p;) 9)) +0(g

The number m; is either 1 or a product of prime numbers. In view of (6.6) -
and (5.4) the contribution from the O terms can be accomodated in the
error term -in (7.5). Since the number-of different prime divisors of g is
0(g") we can, for each g in the range, neglect those p for which at least
oné element dnndes ¢. But then for the p that rémain we can replace ‘all
thé m, and m,;p} by one. We can then add back those p we neglected, the total
error in doing so being easily aecomodated in the error term .of (7.5).
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Now we observe that

Pi= 3 140 = D} 1+001)
P;i<x;<2P§i z,-<P;-“’5
and
Prl Z 14+0(1).
P 1<m@<’P}'i
P. ‘l'%

The O terms are again eagily accomodated in the ercor term in (7.5) and
the resulting main term is

J(PYPU RO H(0)R(0)E(0) D ¢~ H Si(g, @).
gggﬂ '(a?q)il =
"By (6.6) we can complete the summation to infinity with a neghglble
error term, and this gives the lemma.

8. Completion of the proof. By (3.26), (4.21), (5.3} and (5.12),
H(F) = fF_(a)H"(a)h(a)E(a)da—]»O(P’“I‘“"F.(O)'H(O)h(O)E(O))
7 : :

and by (6.9) and Lemma 14

i) B(ayda = (J (PYS+O(P~") P~ F(0) H (0)h(0) E(0).
fF E ( )Pk

The hypothesis that the congruence condition is satistied énsurés that
by standard arguments & » 1. Thus A4 (P)—»oco as P—oco which proves
the theorem.
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