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A rational sixteenth power reciprocity law
by

Parrr A. LEONARD* (Tempe, Ariz.) and
KexzerH 8. Wnonrans* (Ottewa, Canada)

1. Introduction. Lot p and g be distinet primes = 1{mod 4} such that

(ﬂ) = (3%—) == 1. There are integers a, b, A, B satisfying
q : :
p=a+b, a—1 =5 = 0{med?),

(1.1) s, po
¢g=A4"+B, A-1=B=0(mod2).

B
Moreover, it is well known that (—q_) = (=1}« D% T k= 0(modg) is

2'-th power modulo g, we seb

L _[+1, Hkisa 2+ th power (modg),
. | —1, otherwise. '

In 19689, Burde [1] proved the following rational biguadratic reciprocity
law. '

TurorEM 1.

(ﬁ)(_{lﬁ) =(—“1)((1w—1),'4(%li£)'
gl.\pvle | -

If p and ¢ are = 1(mod8), and (%) = (%) =1, it follows from:
4 4 .

Burde's law that (M) =1, and from the classical law of biquad-
q .
B . e
ratic reciproeity -that (—q—) = 1. Integers ¢, d, €, D exist satisfying
4 .

(12) p =428, q=0+2D,

*This research was supported by National Research Council of Canada Grant
A-7233. ' '
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b} .
with (W) = 1. Reaently, one of us [7] has proved.the following octic
q

analogue of Burde’s law.
TreoREM 2

) () )

In this paper we shall obfain a gimilar result for sizteenth powers.

Heneeforth, o and g are = 1(mod16), and we suppose thab (-&) = (q_)
q/s Pla
= 1. It follows fmm Theorem 2 that '

(aB—bA) - (cD—dC’)
g ¢/
Our results involve two additional representations of p and g. There

are integers e, f, B, F' satistying
(1.4)

(1.3)

P =82, g =B —-2F,

with (E) =1, and infegers x, u, v, w, X, U, V, W satisfying

200 = u?— 2w — w3,
2XV = P —2T0W W2

The solutlons of {1.4) arise from the factorizations of pand ¢ginZ [1/2],
if, for example, ¢ = B° —2F° = I? —‘?Fi then

B +F, V2 = £(3+2V2 "Egczﬂm

for some integer n. The representation (1.5) appears in the work of Giudici,
Muskat and Robinson ([3], (6.1), (6.2)), and corresponds to factoring p
and g ag products of reciprocal factors in Z[{+ {7, whare { = exp(=i/8).
- In eomplete analogy with the well known system of L. B. Dickson (2],
Pp- 401-405) for primes p = 1(mod?d), all solutions of p = #? + 2u2 4202+
+ 2%, Bprv = u? — 2w —w* are given, in terms of a fixed one (x, u, v, 1),
by Lz, u, v, w), £z, —u, v, —w), % ("I'} Wy =, —U); (&, —w, —v, %)
It 18 eouvement to note tha.t each solution (x, %, v, w) satisfies '

p = m2—}-2u2+292¢2w2,

{1.5
(1.5) e

-1

f

b
+

0
_if’ —
ba

(22 —20%)? = 9(1.:9+2uw—~_w3)2.(rﬁ0dp),

50 that given a, b, ¢, d from (1.1) and (1.2) we can digtinguish the four
solutions 4 {z, Zu, v, +-w) from the four solutions +(z, +w, —2, F u)
by means of the congruence

{1.6) bd (22— 207} = ae{u®-+- 21w —w?) (modyp).
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Tn o similar way, given A, B, ¢, D from (1.1} and (1.2), we may distinguish

(B, F) from (B, —F) by means of the congruence

{1.7} 2BDF = ACH(modyg),

and then require (X, U, ', W) to satisfy the congruence
(1.8) E(X'—27% =2FR(0*+ 2T W) (modg).
Finally, we have the congruences

{1.9)  B{(EFF)WFFUP = (L EF-F) (L FX—FV)(modg),

twhich show that EF —E® = G*(modq) and —EF—F = H*(modyg),

for suitable choices of & and H, and & H* = E*F2(modg). Moreover,
(1.8) guarantees that, if ¢ and H are defined by

(1.10) G(FX—EV) = E{(BE— W — FU){modg)
and '
(1.11) H(—~FX—ET) =E(E+F)W+FU)(modg),

then we have GH = EF(modg).

‘We are now in a position to state our result. _

THEOREM 3. For any choices of a, b, A, B from (11), ¢,d, C, D from
(1.2), (, 1, v, w) from (1.5) subject to (1.6), (E, F) from (1.4) subject to (1.7},
and any G, H- satisfying

(112) & =EBF—-¥, H = EF-F, GH =HF(modg),

1we howve

(1.13)

(p (q _(B) (P) .((_cle—b_A)(aD'—*dC.T)z) (FwwEv—{—Gw—}-gﬁ)
Q)lr:-.%’“):le- TATIA q b q

Tt will be shown that the sixteenth power reciproeity law (1.713) s
independent of the choices of solutions, subject to the conditions
—d¢

.. [eD
given. We note that, if |-

((aB — b4 eD — dC)ﬂ) (aB -—bA) (cD —dC

g /s g 8 q :
restrictions governing the choices of (B, F) and (z, «, v, w) are not necess-
ary, as will be apparent in the course of the proof.

) =1, then in (1.13) we can replace

) . Moreover in this ease the
4

Pl
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Finally, we observe that if (X, I7, 77, W) satisties (1.8) and ¢, H are
defined by (1.10) and (1.11), we have

1) (_._E_‘ic_—Ev—[—war—_{IEt_)I((E W PU)X

q

g

( (B—=F)W —FU)(Fr— Ev)— (B F)w—Fu) (FX —BT) )

g ’

so that Theorem 3 can be given entirely in “rational” form, that is, with
1o need of solving any eongruences in order to apply the law.

The proof of Theorem 3 is similar to (but more complicated than}
the proof of the ralional octic reciprocity law given in [7]. It depends on
properties of Gauss and Jacobi sums, which we introduce in § 4. After
some technical leimas in § 2, we establish in § 3 that our law is indepen-
dent of the choice of solutioms o (1.1), (1.2), (1.4), (1.5} subject to the
regirickions (1.8} and (1.7), and thereafter we work with a particular
choice. The proof of Theorem § is presented in § 6.

2. Techuical lemmas. Let {= exij (wif8), let = be a prime factor of p
in Z[Z], let o;, 1 =1,3,5,7,9,11, 13,15, denote the automorphism
“of Z[£] determined by o;(Z) = ¢, and let oy () = m;, 50 that P = my 7y ... 75
The elements of Z[{] fixed by ¢, and o, make up Z[i] hose fixed
by o, and o, make up Z[l/ 21, those fixed by o, comprise Z[{-+{7],

and those fixed by o and ay give Z[l/ 27. Thus, for example, =,w;mw,%,2
iy in Z[1{). Replacing = by &= if necessary, we MAY ASSUDAE 77,7 g Tyg

= 1{mod2). We define «, b, ¢, d, ¢, f, 2, 4, v, w by setting
a+bi = mmmyw,, o—1=b=

0{mod?2),
e+dV —2 ‘

(2.1) ° = W Wy TeTyny
: 3+f]/2 == Ty Tq Ty T1gy

+u(l LN+ Y2 -+ ’w(ig_‘f' &) = To TeqTby1 g

The first lemma establishes that these values satisfy (1.8).
LEaA 1. If e, b, e, dy e, f, &, %, o, w are specified by (2.1), then
b (2 —
Proof. We have m,my -+ a7, :r—}—'sz‘, where r, 8 eZ. From (2.1}
we obtain .
(0+bi)(r -+ 8i)* = (0 +dV —2)(e—FV2) + (c—dV —2)(e-+fV2) +2p
= 2 {{ce+p) —2dfi},

20*) = ao(w® +2uw —w?) (modp).

giving

(2.2) 2(ce-+p) = a(r>—s?)—2brs,  —4df = 2ars-+b{r>—s?).
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Solving the equations in (2.2) for 72— and reducing modulo p, we

obtain
(2.3) ace = 2bdf(modp).

In addition, we have mwyo, 4wy =1+ m ]/2, where I, m € Z. From (2.1)
we obtain, with ¢« = 7, 7,7, 7,4,

(e+FV2) (L +mV2Y = a0y (a)+oy(a) -0y () + 2p
= 2((#— 202 4 p) + (w2 + 2uw — %) V2,
giving
(2.4) 2{w?2— 202+ p) = e(I® L+ 2m?) + 4flm,

2{u® 4 2uw — w®) = Selm - f{I2-+ 2m?).
Solving the equations in (2.4) for I* 4 2m?, and reducing modulo p, we obtain
{2.5) {22 —20% e = 2{u*4 2uw —w?)f(modp).
The lemma now follows on eleminating e and f from (2.3) and {2.3).

Levma 2. For ¢, d, ¢ and f given by (2.1) and any pairs {C, D) from
(1.2) and (E, F) from (1.4), we have

(thdC) B (eF—fE)
¢ g I

Proof. Let (4, B) be & solution from (1.1). Using 4* =
n (2.2), we obtain

2B%{(ee+p)B —2dfA} = (aB+bA)(rB +s4)(modg).

. (aBJ,—bA) (aB—bA)
Sinee { -

— B*{modg)

=1, fhis implies that (ce +.19')B—-2de
is a square modulo g. The result now follows from the eongruences
2D(eD—a0)(c+2) = ((¢-+2).D--dC)* (modg),
2F (6F —fB)(e+2) = (¢ +2) F—fE) (mod g),
+2) ((ce-+p) B—2df4) = (B(c+2)(e+2) —24f4)* (mod g),
where # satisties 22 = p(modg). _

" LeMMA 3. For any choice of ¢, d, C, D from (1.2), any chotee of (z, 1, v, w)
Jrom (L.5), and any ¢ satisfying #* = p(modyq), we have

feD—ac 22— 202 p -+ 20w
( q ) - ( q )

Proof. Suppose ¢, d, ¢, f, «, u, 7, w are given by (2.1), and let (&, F)
be a solution from (1.4). Using B =2F(modg) in (2.4) we obtain

2P (P (2 — 20"+ p)— E{w +2uw-—'wz)) (elf" —fB){(IF —mE) (modq)

2B(c--z){e
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With 2% = p(modg), we have the congruence

2P(F(a? — 207 + p) — B(u? + 2w -~ w?)) (@2 — 207+ p + 2a2)
= {F(r2—20% | p + 2ae) - Blu® 4 2uw —w)}? (mod g).

The assertion follows, fov ¢ d, o, %, v, w given by (2.1), and any
¢, D from (1.2), from Lemma 2 and the above congruences. As (¢D —dC) x
w(eD+a0) = D*p(modg), the left hand side of the assertion is indepen-
dent of the choiee of (¢, d), and as

(22— 202+ p)? —4pa® = 2 (u®+2uw —w?)?,

. the right hand side is independent of the choices of {w, u, », w) and of z.
Lmnata 4. For (x, u, v, w) from (1.5), (B, F} from (1.4), G, H satisfying
(1.12), and any z salisfying 2* = p(mody), we have '

(Fa: —Ev +Gaw +Hu) . (Fw —Fv +Fz)
g q '

Proof. The result follows immediately from the congruence

2{(Fz— Fo+ Fz)(Fo— Bv 4 Guw+ Hu) = (Fr— Bo+ Gw + Hu -+ Fe)* (modg).

3. Independence of choice of solutions. In this seetion we show that
the symbols appearing in Theorem 3 are independent of the choices of
solutions to (1.1), (1.2), (1.4) and (1.5}, subject to (1.6) and (1.7). Here
all congruences are taken modulo ¢

First, we note the two congruences

(aB—bA)(aB-+bA) = B'p  and (eD—dC)(cD-+dC) = Dp.

Co eD - dC .
‘When (—-—q -—) =1, these give

(aB_——bA) _ (dB—_%—bA)

q P q 8

(aB—bA4)(eD—dC)
q

of solutions in {1.1) and {1.2). When (c ' C) = -1, they imply fthat

(oDde) B (cD—i—dG)
g 4 q 4,

so that in this case ( ) is invariant under all changes
. 8

D {{aB b — Aoy
the expression BD ((a A){eD —dC)
A0 g

of solutions in (L.1) and (1.2). Also the symbol(

) i§ invariant under all changes
8 ’ - -

Fm—E’o—}-G’bb—l—Hu)

. Y 4
is invariant under (&, H)—>(—G, - H) a8 (Fo— Bv)?— (Gw-+ Hu)? = Ip.

icm

371

A rational sixteenth power reciprocity law
Next, appealing to Lemma 4, we check that

Fo— Ho4 Fz

eD—dlC
(255}
q

and

P | Py— Eo+Fz . e —dc
-], if —_— = —1,
E ¢ g

.a,re invariant under (&, F)—+(3E -+ 4F, 2E+3F), and (E, F)—~(3E —4F,
— 28 4 3F). The invariance under the first of these transformations follows
from the congruences

F*(Fz-—~Bv—F2){(2E4 3F)z— (3B + 4F)v + (2E + 3F)2)
. = ((2E - 3F)Gu+ FHw),

2E+3F F
3E-+4F B

F*(Fx — Bo— Fe)|( — 2B +3F)a — (3B — 4F)v+(— 2B +3F)2)
: ’ = ((—2E+3F)Hw+FGu)2,

and

, and the second from the congruences

g —HEASF _F
v v T
(3.1) (P — B + F2)(Fo— Bo— Fz) = (Hu+Guw)*.

: Fo-—-Ev+4Fz
Moreover (3.1) shows that [~————

ig invariant wnder (x, %, v, w0}
4 (&, ~u,v, +w) and z——z Furfher it is clear from.the congruence

{3.2) (Fz— Bo+ Fz)(Fo+ Ho+ Fz) = F* (22— 20"+ p + 2a2)

' : : cD—dC
and Lemma 3 that the condition (1.6) is necessary _precisely when ( )

= —1, .
This completes the proof that the symbols
Fo—Ev-+Gw+Hu e —dd
: =)=
q .

and _ ]
¥ | Fo—Ev4 Gu- Hu . eD —adl
__( oo (2 =
B q q

are independent of the choices of solutions from (1.1), (1.2), (1.4), (1.5),

' (1.12), subject to the restrictions (1.8) and (1.7). Henceforth we agsume
. that a, b, ¢; d, ¢, f; %, u, v, w aTe given by (2.1).
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4. Gauss and Jacobi sums. With = as defined in §2, we define the

gymbol (—{) for rational integers » by setting
ST

).

For rational integers k and I, the Gauss and Jacobi sums are defined by

_ e
“le, it

x 5 0(modp) and zP~V = ¥ (modx),
z = 0(modp).

0< k<15,

3 i eV 1=\
-3 5) ma e = S0,

The follomng properties of these snms will be used:

. Gk )G(l) _
{4.2) G(8) = p'?,
(+.3) GG (—B =(—1) ¥ p, for k =0(modl86),
(4.4) J, DI (k, 1) =p, for k,1,k+1% 0(mod16),
=1,
(438) Tk, H=(=1) % "J(k, —(k+1), for 1, k-+1 = 0(mod16),
{4.6) J(4,4) =1(mod2),
{4.7) G(B)G(2k) = ™G (k)G(8-+k), m even.
(For (4.1)-(4.8), see [5]; for (4.7), Jacobi’s Theorem, see [4], "equ. (B),
. 442)
From (4.1}, we have
. dmye
J(L, DFT(2,2)3 T (4, 4 *:—w-{———,
L, DPT @, 2 (4, b} RCET

which (using (4.2)) gives =
W W — P (L DFTE, DRI, O,
We relate the Jacobi sums in (4.8) to the qua,ntlmes specified in (2.1),
by means of Stickelberger’s determination (gee for example [6]) of the
prime decompositicn of Jacobi snms.
x\t
As-(_) =0, £1or 44,
% /16
Theoreny, J (4, 4) ~ % 7y, in Z[i]. Therefore, J(4,4) = wo, w;m,%,,
where w == 1, L4,
and {4.6)), so that v = +1, and we have

{4.9) (J(4, &

J(4, 4) lies in Z[¢], and by Stickelberger’s

3 = {m s m )t =

(- bi)2.

But oJ(4,4) = mmmems = 1(mod?) (using (2.1)
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Now, by {(4.1) (with k¥ = 2,1 = 2, 8) and (4.7) (with & = 2) we have

J(2,2) =7 J(2, 8). By Stickelberger’s Theorem, o (2, 8) ~ 5,7y,

and as
GB)F(8)
G4

'G(2)6(8)

ay (7(2, 8)) (10)

=J(6,8) =

= J(2, 8),

J(2,8) lies in ZIV =21 Thus J(2, 2) = + I "™ @, mamemnsg, and we have

(4.10) (7(2,2)) = (mmymemy)t =Y+ aV —2).

Finally, nsing (4.7) with & = 7, and the other properties of these
sumg, we have

_ ey {Eusyr  pleid)
el (1) =0T = @ TR G
= P —1)P-DG 1) 6 (15) -G (14) {6 (15))°

v--im( _

l)(p—l)llﬁJ(l, 14) = f‘*mJ(l, 1) = £J(1,1)

ag m is even. Thus {J (1, 1)}*eZ[Z+17). As mym,mymy e Z[£+47], and

J(L, 1) ~ my @y 7y, by Stickelberger’s Theorem, we have {J(1,1)}*

= {70, g 70y, Taq)?, Where w is & unib of Z[{+{"]. By (4.4), u% = 1, so that
= -1, and we have

{411) J{1,1 ¥ = (70, 7y Tyy 70ys)° = {& +“(C+C +v1/§+’w(53+f:”)}“
Raising (4.8) to the power (q 1)/16, and using (4. 8)«-(4 11), we llaNe the
following result.

Lumwma 5.

Gt = p(q-l)llﬁ(a + iy (o g V-2 (tz—lll4 (m +u(C+EN) 4

+7v I/?; 1w (C3+ Q’”))(q—lnz )

5. FEvaluations modulo ¢. In this section, we determine fhe residues
(modq) of the expressions appearing in Lemma 5

First, B{e-+bi) = aB—bd(mod 4+ Bi) a-nd Ba-+bi) = aB+b4
(mod A —Bi). Moreover, (aB— —bA4 (a,B—*—bA) = pB*(modg) implies
(aB -+ DAY V® = (4B — DAY ”’B(modg} Usmg these facts together with
{1.3), we obtain

(5.1 (a4 bi)a I = (?) (@B —bA)e V8 (mod 4 + Bi),
. .
amnd .
(5.2)  (a+bife = (GD do)( ) (aB —b4)e " (mod.A — Bi).
' g NG/

6 — Acta Arithmetica XXXITL4
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Combining (5.1) and (5
(5.3) (a-Fbijleur

L=

_%E(Jz) (aB--bAY e, i (

.2), we have {modg)

D — a0
i (7=

c_D—dO’)
7
Next, D{c+dV —2) = ¢D-—-d0(modC+DV —2) and D(c+dv —2)

= ¢l +d0(mod ¢ — DV —2). Moreover, (eD—dacC) (oD + d0) pDz(modg)
implies (eD-+dC) e = (oD —d0yY@ M (modg). Thus, we have

(B4} (e+aY —2)EI = (?) (eD —aACYe Y (mod 0+ DV —2),
4
and

(5.5) (o4 dY —g)je-n

= (32?9«) (%) (eD —d0)T Y (mod 0 — DV —32).

Combining (5.4) and (3.5} we have (modg)

(5.8) (c-+dy —2ye i

(D) (ch-—dO)'
g /s g 4,
Y : -
— _Iﬁ/_____ (2) (GD__dG)(qAI),’:L, it (GD dO’) -1
g1 . '
Finally, we observe that
2F (Frz— Bo+Fa) o+ u(C + ) +oV2 w2 + &)

= {(Fr— Bo+Fe) + {Fi— (B— F)w) (2 + ) (med B - FV3)
from which we have ' o

(5.7)  fp+uwl+) +oVew(

}(Q*“ 12

 (Fo—Byt s _

In a simiar manner we obtain

(6.8) {e+u(f+H Lo¥VD w (g e

Fo+E F —
= (mi(;—“L—ﬁ) (mod BE— FV3).
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U+ ) VB (e

Combining {5.7) and (5.8) using Lemms 3 and (3.2), we have (modg)
! (Fm—Ev—}-Fz)
T T s

{5.9)
i (GD—{IC)=1’
q q

FV2 [Fe—Ev+4-Fe i cD-—dC’) _
E ¢ ’ g |7

6. Proof of Theorem 3. As has already heen noted, we may prove

Theorem 3 for the values of a, b, ¢, 4, ¢, f, ¢, u, v, w given in (2.1). We have

B=1 .
2wz \\4
oo ={ 5]l
{ { )} L—S\g % ) P p l ’
so that, working module ¢, we obtain
M S
s 7 e P
-1 p-1 2 -
EG)FWﬁ%ﬂ)
R AT y":ul % /16 »

where we have set go = y(modp).

li

(3—) ),

7

Thus we have (%) {G(1)} = G(1){modg), and as p # ¢ and ¢ I8 &
: 18

rational integer, this implies

(i) (@)1 = 1(modg).
Pl

Since pl—P6 = (2) (modg), this eongruence and Lemma 5 imply that
' a4/

we have (modg)

e P 9
(6.1) (?)16(}))16

= (a4 b)) g+ @y = 2 @t (C+ 1) F oV 2w+ ).
Theorem 3 now follows from (1.7), (5.3), (3.6), (5.9), (6.1) and Lemma 4.

7. Numerical examples. We illustrate our results Wlth some numeri-
cal examples.

EBxamrre L. p = 113, ¢ = 97.



376 . P. A, Leonard and K. 8. Williams

We choose any solutions te 118 = a®+b® = ¢*--24* with o odd,
say (a,b) = (7, 8), (¢, d) = (9, 4). To satisfy (1.6}, we take (z, %, w)
={1, 6, 4, 2) in (1.5). For g = 97, we take (4, B} = (9, 4), {C, D} = (5, 8),
and satisty (1.7) by choosing (B, F) = (13, —6). Then (¢, H) = (74, —43)
satisties (1.12). Fvaluabing the symbols in (1.13) we have

B D {aB —bAY (oD — dO)
(ﬂ_) -1, (_) = 41, ((a e ach ) —
G/ q1/s q 8
(FwwE'v—z—G’w+Hu) _
q = T+

and

(2[5,

verifying Theorem & in this case. We note that (aD—dQ) = ~1in
q

" this examplsé.
Exawrir 2. p = 433, ¢ = 449,
We begin with {(a,b) = (17,12), (4,B) = (7, 20) from (L.1) and
{¢, d) = (19, 6), (¢, D) = (21, 2) from (1.2). In this case we have (M)

. q
= +1. We choose (H, F) = (29, 14), so that (1.7) is satisfied. The sol-

uti?ns (y %y, v, w) ={1,2, —14,4) and (X, U, V, W) = (8,12, —2, 6) for
{1.5) are such that (1.6) and (1.8} are satisfied as well. Using the “rational”
form (1.14) of Theorem 3, we have o '

CRCRE ORI
AT 449/, ’ p 15_ 433)I6— -

B) (D) aB—bA oD —dC
i R e IS T et B oD—dly
(qa- el ’( q ) +1’( q )W_l’

8 4
BF-NhW-FU
() = o,

(((E"—F}TV—FU) (¥z— Bv)— (B —F)w— Fu) (FX — BY) )

q .
_(415 L
T lade] 7

veritying this form of Theorem 3 for p = 433 and g = 449.

icm
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