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An upper estimate for the reciprocal sum
' of a sum-free sequence '

by

EvegeNe LeviNe and JoserE O'Svirivaw (Flushing, N. X.)

1. Introduction. Unless otherwise stated, a sequence will mean
a strictly increasing sequence of positive integers. A sequence f with
terms &, << @y << ... is called suin-free if

Gt—1

(1.1) ' af 2] Y ea  with s =0,1.
: k=1 )

Bco
. 1 .
Letting o) = E-a—, Erdos [1] has shown that if o is sum-free, then
: (] .

5 k=1
(1.2) o(sf)<< 103,
It is apparent from the details of Hrdos’ proof that a slight modi-

fieation can decrease the bound in (1.2) considerably. However, since
the best bound for ¢(«) was not determined, apparently no attempt

- was made in [1] to improve the estimate of 103. Although we too do

not find the best bound, we do improve (1.2) to an extent beyond that
which can be achieved by direct spplication of Erdss’ method. In par-
ticular, it is shown that if & is sum-free, then o(ef) << 4. In achieving thig
bound, a. central idea of [1] is retained but is combined with resnlts
found-in [2]. ' _ :
Perhaps the simplest sum-free sequence that comes to mind is the
sequence 1, 2, 4, ... congisting of the powerg of 2. Denoting this sequence
by 7 it follows that p{J) = 2. A naive guess would be to suppose that
the reciprocal sum of any other sum-free sequence is dominated by the
reciprocal sum of Z. The following example illustrates that this is not
the case. Let ¥ be a sequence whose first. terms v,, 2;, ..., ¥y are -

1,2, 4, 8, 19, 37, 55, 73, 91, 109, 127, 145, 163, 181.
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14
Let v =1+ Yo, = 1016, and o, = 2" v, for £>15. It is notb

k=1
diffiealt to verify that ¥ is sum-free and

14

12
o(#) = 5‘_@_ o =205

Letting A = lu.b. p(=f) where s ranges over all sum-free sequences,
it follows from (1.2) and the above example that 2.03 << 1<<103. It is

. suspected that 4 is quite close to the lower extimate. However, as already

indicated, we only show that i 4.
2. Inequalities. Let A (z)
ap<:e .
&f. When s« is sum-free, an inequality established in [1] provides
k

= 31 be the eounting function of sequence

@21) - A< C(Be=1,2,...; 22 0).

E+1

It is then shown that (1.2} follows from (2.1). Inequality (2.1) can be
substantially improved, and this is the substance of the following theorem.

TeeoreM 1. If o is sum-free, then

l S 1,2, ..
(2.2) ﬁ(w)\k+1+k+12 + 1,2,

Proof. Let & be a positive mteger, # a non-negative real, and let
Aw) =n. I <k,

k k
Ax) < Z; ,kl?; @+

- and (2.2) easily follows.
When n > %, consider the integers .

Lo &

2
(2.3) by = D 4+

i=1
The number of integers defined by (2.3) is N =
and
{2.4) L : 0 < by, < by,

with P and g in-the defined range.
Further, the integers b, are distinet, for suppose bpe
p<r. Then .

(p=0,1,,..,k ¢g=p+1,...,n).

(k+1)n—k{k+1)/2

= b,, with

&+

i
-
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which violates the assumption of sum-freeness unless p=rand g =s.
The distinctness of the b,, together with (2.4) imply

k .
Ea"f'}_an = bkn>N
f=1

= (kL) m— (% +1)j2;

hence

L
(2.5) Ao) = g e Ia+1 ;‘ 5

Noting that 4 (z) = u yields a, < , the result easily follows from (2.5).
Inequality (2.2) is somewhat awkward, and instead we focus on
the following weaker version.

THEOREM 2. If o is sum-free, then

- o®
{2.6) A(ﬁ)\'{.ﬂ—l"'f‘% (?21:23'--59}}0)-

Proof. Sinee o is strictly incréasing, a; < a,— (k—1) for i <
a0 application of Theorem 1 yields

3 Z(ak k+@)+_

T k E @

i tEa Tt i ST T

< k. Then

A(w) < T

where k< g, i3 used to -obtain the last inequality.

Sequences satisfying (2.6) will be of primary interest in what follows,
and such sequences will be called x-seguences. In particular, every sam-
free sequence is & x-sequence. Letting x4 = lun.b.g(«f) where the Lu.b.
is over all x-sequences, obviously A < 4, and the objective of what follows.
is to show that u< 4.

One can easily produce exa.mples of »-sequences which are not sum-

- free. However, there is a specific example which can be ‘gingled out

which by its natnre snggests it would have a large reciprocal sum. Namely,
define the sequence 2 with terms gy, g, ... a8 followd. Leb ¢, = 1, then
asfuming ¢,, ..., g,_; have been defined, let ¢, be the least integer such
that (2.6) iz not violated for k =1,...,2—1, ie.

q,.,, = I&X (k»{—l)(n—gk).
1hain—1 . . X

The initial terms of 2 are 1,2,4,6,9,12,15,18,21,24,28,32,... It
happens that o(2) ~ 3.01 and what one might naively guess is thaﬂ;
0(2) dominates the reciprocal sum of any other x-sequence. Here, we
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believe this o be true, i.¢., we conjecture that u = p(2), but we are unable
to prove it. However, subsequent results provide some evidence in support
of this conjecture. Nevertheless, this example does show that u > 3.
A more detailed discussion of the sequence 2 is postponed to Section 4.

3. A general estimate for . In this section a central idea already
found in [1] is combined with inequality (2.6) to obiain an estimate
for ¢ in terms of parameters which will be specified when appropriate.

To hegin, consider a sequence of with terms a1< @ << ... 'which is
a x-gequence, i.e., which gatisfies

(3.1) Alr) <

k—]—l ta (B=1,2,...

;2= 0).

In order to use (3.1) effectively, summing g(sf) by parté yields

- VI NAm—An-l) Y A
(3.2) . ; 4 = . m .n_=.; nln-+1)

Next, the positive integers are partitioned into intervals
(3.3) Jr) =&l 27 < ng 2’}, r=0,1,2,...,
and the guantities ' . '
' v An)
3.4 3= N2
(3.4) | e(?) “?ﬁ‘} win i)
are infroduced, so that

(3.5) olsty = 3 ofr).
jvor}
For v > 0,
; 1 1 1
Py A (27 \1 ety = A (DT ( — )
. ‘ 9( ) ( )?;;g'z;) ﬂ(ﬂ':—l} ( ) 37"—1 +1 2?+1
hence,
A2
(3.6) o(r) < - L ez

Certain parameters arve now introduced which will be specified as
the need arises. Xamely, let ¥ and 3 be positive integers and for sim-
plicity of later eomputation, we specily that M be even. Also let y >0 Le
Teal. Then, congider the sets of integers

. | "o 72
3. A= N Sl
(3.7) | _ E‘ﬂ f>’\ and Am)g?(?—!—l)}
(3.8) | I‘.—_{ﬂ:r>N-andA(2’)> r 4

r(r+1) |
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Equation (3.5) can be rewritten as

by

= Do+ Yo+ o).

r={ rel’ red

(3.9) o)

When red, po(r) can be expected to be “small” and as a matter
of faet, the last term in (3.9) ean be estimated using (3.6) as follows.

1 A2 7
29(“")< AS..J ar g; ri{r+1)

red red .
—] y f— y == I}J —_ ‘P +
r;v r{r+1) r;‘r(r«}-.{) Nt g; r(r+1)

Substituting into (3.9) yields

N
(3.10) e() <2 elr)+ N}is—l "’*"2 (Qm“ ’r(?‘il))'

-

Next, let r<<r;<<r...
[n;N—i—l,
(B11)  in—nzi—f (E33),
lrsiew,

be the integers in 7. Then

where the last inequality follows from the previous two by setting j = 1.
Now, focusing on an ¢ and j with 1> 7> 1, let

|5

. Lt 1

Then from (3.8), ¢<< A(2), henece a,< 2% (if ¢ = 0, interpret ¢, = 0}
and from . (3.1)

o T Tt

2 2 '
"y L —— _— 2,
A(_z ) - g+l o< ( 2" )+ ’
7 4 7;(7; 1)
From the a._bove and (3.6)
#;(r;+1) 1
Q('ri)<«‘ yg,-j -+ 21',:—'."5'.

Uging (3.11) a.nd the fact that #(r+1)/2" is monotomca]ly decreasing
for v > 2,

_ VE)E4jn 1
(3'12) Q(n‘.){ ( ..7}))21\74—;!‘7 - . 2i—.‘f '
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Our interest is in the last term of (3.10). We have
Y] M o
y y
3.13 ——? < SV A _
13 N(er—cl) 2(9(” ) > et
e T= f=e M +1
Letting j — [%] in (3.12) and setting M — 2H,

oo

sy < 2((N+j)(1‘7+j+1) )

N7 i—3
i=M+1 =331 v 2
_WEEWNHE4D) 2 9 pled) . w1
- y2NHE Ty Z w2 2 27
p=N+H+$1 p=H1
_NAHYNAHAL) | 2 (N+H 1)+ 3(N +H+1)+4 1
o y2N+H +'; QN H 9H-1 ’
where use has been made of the identity
V2@ | wtdntd
Lod 2r o 2“"1 )
p=n :
Letting B = ¥ +H, the last inequality can be wntten as
% 3R*+11R 116 1
2 Q(Ti) = T 2R — - ZH_,]_ -
i1 _ _
Combining (3.10), {3.13) and the above,
N L
_ JR*4+11R--16 1
(3.4 o :
) elw)< ) R T3 e
* y(@( o)

At this pomt & choice is made for the parameter y. Let y (which
can be chosen freely) be

Y = ]/ (N 1)( 31?,2 —[—1]_R +16)

This is the valne minimizing the sum of the second and third term in the
right-hand side of (3.14). Upon substituting this value of y into (8.14),

an upper estimate for 9(&4 ) is Obta.med This estimate is provided by the
following theorem,

icm
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THEOREM 3. Lel of be a x»-sequence and let N, M, and H be positive
iniegers with M = 2H. Then

(3.15)  el«s)

- SREFIIETL6 1 ¥,
2 . - ' L] — ’y —_—
< ;’Q(TH ]/ g g ;(e(m ﬁ(ﬂ_ﬂ))

R=N+H and y-— ]/ (¥ +1) BB +11R+16)

A)R

COROLLARY. Using the notation of the theo*rem,

w —
o BB HUE+16
(3.16) o(e) < _}J e(f)+2]/_ (F1)5% 23_1 + 2

=10 i=1

An application of the eorollary provides an immediate improvement
over (1.2). For this purpose, it is first observed that A(fn,) < #, hence -

_V Aln) = 1
elr) = ), Wﬂ(n—{—l)g Z —-+1<10g2

net(r) n=2r—1%
Then, setting ¥ = 4 and M = 2, the corolla.‘ry yields
. .

16
1 |
el < Y o) +1.92+1+2l0g2 < Zn—.{fi +4.32 < 6.76
n=1

r=40
for any x-sequence. Thus,
(3.17) - B 8.8,

A more extensive effort will show u< 4. In anticipation of this
regnlt, this section will conelude with the following lemma.

- TiEnva, 1., For any x-sequence sf,
10g2

+-u- (r=0,1,2,...; k=1,2,...).

(818) o)<
Proot.
An) S
o(r) = 2 mé Z YT
7ed(r) S

a7

1 1 1 1\ log2 g
a1 2 PREI ’“(2f-1+1 _2_"+1)<k+1 T

n-_=2"'"1+1
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4. A specific x-sequence. The x-sequence 2 which was previously
introduced has some interest in view of the conjecturs fhat g = p(2).
By eomputer, all ferms not exceeding 2 were defermined and a few of
these results are summarized as foliows.

A (2™ = 3360,
3360

1
M=« 3.008466...,
Jrane;

i

wn 15
M olr) = 2.995648...,
r=0
q.;]_o = 8964.

.The term gy, i8 specifically mentioned for reasons soon. to become apparent.
Application of (3.18) to the sequence 2 yields

M
ogZ) 1
& Z 0l < e D <

where the last mequality follows by observing that ry, 7, ...,
distinet integers each greater than N.

Egtimating 0{2) using (3.16} with ¥ = 18 and M = 20 {where the
latter selection is quite arbitrary) yields

M(log2)
1 o

Ty are

g(.@)<299565—[— 00145+—- +29(r )< 3+2 o(ry).

g==1 =i

Employing (4.2), the above becomes

20log2 g,

g(.@)<3+w T

Letting % = 410 (which was selected to balance the last two terms)
and recalling that gq,, = 8964, the estimate 5(2)< 3.07 results. Thug

3< p(2)<< B.07.

- 5. The initial terms of a x-sequence. There is a considerable gap
between the estimate for x provided by (3.17) ag opposed to the con-
jectured value y = p(2). To close this gap, this section is devoted to show-
ing that if a =-sequence has a “large” reciprocal sum, then a few of
its initial terms (the first three terms) must coincide with initial terms

of 2. Section 6 will then proceed to use this meager information to obtain

a more effective use of Theorem 3 to estimate a.

icm
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To begin, a lemma which is rather obvious is imtrodnced for com-
pleteness. Roughly, this lemma states that a sequence & is /-sequenee
it (2.6) iz trne when ® is restricted to the terms of the sequence.

LyMma 2. A soquence o is & x-sequence if and only if

(5.1) i< 4,

Y i =1,2,3,..

s k=1,2,3,...).

Proof. By taking # = a;in (2.6), the condition of the lemma is clearly
seen to be mnecessary. To shovx sutticlency, consider an 2 > 0. Let @; he
such that @; < @< gy, (and define @, = 0 for & < a,). Then for any k

7 % +a = ad
ST &y & T
Far S g T
Recalling the terms of 2 are denoted by ¢y, g3, ... (and have values
1, 2,4, 6, ..., respectively); also define g, = 0. The next lemma, though
complicated in defail, is crucial to the remaining results of this section.

Levma 3. Let b, w, v, m be integers with v > 0 and I<h<w<mr
such that

P h+1
(1) \%’ and
(i) < gy — (1) (ga+1).
Let & be a x-sequence with terms by, << b,< ... sueh that b, = q,,
t=%1,...,h and b, =1t=4q, Let o be ¢ sequence obtaiﬂed Jrom & as

Jollows. The values of the terms by, ..., by, are altered to become o1, ..., G,
respectively ; and the d ={—gq, tewms bw+m with p =1, ..., d arve deleted.
Then oFf £8 0 w-Sequence and

—o(@) = E(———)
i=h+1

(5.2) o)

p=1 brp-}—m

Proof. Equality (5.2) simply follows from the manner in which o
is obtained from £. The difficulty here i3 in showing that « is a x-se-
quecnee. _ -

Let A () and B(z) be the connting functions of o and # respectively.
From the conmstruction of «f, A(a,) < B(a,;) except possibly for ¢ = h-}-
+1,...,w, and g, > b except possibly for k = h 41, ..., w. Thus, excepd

fori=»h+41,...,wand k =h41,...,w we can immediately verify (5.1)
since _ o S
a
= ) < — < —
i = A{a;) < Bla) < P + by ] +ay
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Inequality (5.1) is also immediate when ¢ = A+1, ..., w. In these
cases, it &> w, then (5.1) certainly holds. If k< w, then 4 = g; and
a, = g; henee (5.1) holds in view of the fact that 213 a x-3equence. In
fact this argument is valid for all 4 < w. Thus the proof is redmced to
verifying (5.1) for & =h-+1,...,w and i>w. N _

Tixing & with h-+1< k< w, (5.1) must be verified for 7,-> w0, F9r
such an 4, it follows from the construction of o that o, = b, (With s < 7).
Three cases are now considered.

Oage L Let ¢ be such that a, is beyond the last deleted term (i.e.,
8> rd-+m). Then

. a": : o G,-

i = A(a;) = Blay)—d gw_—'ri +by—{t—qny1) _H_w+_1 +Gpp1
&;

Lot =

+a
T+l F

@
E+1
which verifies (5.1) in this caé_e.

Case II. Let ¢ be such that b, < a; < gy (6, m< oL rd+m),

§—m
r

In this range, the number of terms of & deleted up to b, is [
Using (i) and (i), '

i = dla) = Bla) - [ 2] = o= [52]

¥
8= r—1 r—1 m+4(r—1)
<o- (5 )
rt r—1\ _(h+1)(s—gs)
QS( " )-thﬂ’““( ; )!11:\<~ ol Fnea-

(5.3}

Bﬁt & is a x-gequence, hence & g bJ(h}l)-i—b;,, hence b, == (B-+-1)(s— by)
= (h-+1}(¢—¢q). Thus, from (5.3)

@& a;
— <=+,

. bs _ .
@ém + g = ) Ty < 41

which verifies {5.1) iIn this case.

icm

"Before proceeding to the last case, an observation is needed. The .

term. b,, occurs prior to the first deleted term {which is b,..,,). T m > w,
then the latter implies a,, == b, {i.e., when ¢ = m then s = m). For this
special situation, (6.3) yields :

(b1} (m —gp)

(5.4) T ms . w1 +q;h,+1 (for " > W).
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Case IIL Teb ¢ be such that 4;<< b,,. It is still assumed that ¢ > 1.
This means that a; oceurs beyond the last aliered term but prior to the
first deleted term. Thus ¢ = s in this case and it follows that w < i< m.
(It may generally happen that m < w, in which case no such ¢ exists and
this case would hold vaenously.) Using the fact that # is a s-gequence,
i< b /{h-+1)+ B;,, hence,

;= by 2 (h+1)(1—by) = (b 1) (i—gq).
Thus letting f =m—i and use of (5.4) provides

o (A1) (m— qy) (A1) (m—gy) k-1
i —Mffﬂ—“mi—— o — < w1 +Qh+1_(,w+1)f
(A+1) (i — ) a; & G
w1 + i w1 o P ] + oL +

which again verifies (5.1) and completes this casge.
This completes the proof of the lemama.

THEOREM 4. Let # be a x-sequence. Then there evisls a #-8eqUence
o with gy, =1 such that o() > o(B).

Proof. Leiting # =0, w =1, r =1 and m = 1 in Lemma 3, we
obtain a x-sequence . such that a, =1 and '

1 1
elet)=o(@) = 1~ = 351
where ¢ = b,. Since each b;> ¢,
i
1
el —e(@=1- Y= =

At this point, it is mentioned that a result like Theorem 4 should

~ be true for sum-free sequences, but we have not béen able to prove this.

THEOREM b. Let & be a x-sequence. Then there is a x-sequence o such
that 6, =1, a, =2 and p(o) > o(H).
- Proof. From Theorem 4, it may be assumed that one already hag
b, =1. Applying Lemma 3 with b =1, w =2, r =3 and m = 2 yields
& x-sequence o with a; =1, a, =~ 2 and :

{2

feoz
1 1 1 1 1
Q(ﬁ’)—Q(@) :(_E-—ﬁ_z)«_p *=§”p§n -

I bipia -

where? = b,. (The application of Lemma 3 requires one to verify ¢ = g, = 2.
But this holds for obvious reasons.) It must now be shown that the last -
expression is non-negative for ¢ 2.
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Sinee @ is strictly. inereasing, bp., = Da-t-3p =1+3p. But (2.6)

provides 3p +2 < byypa/2 +1, OF by, =2 6p 2. Letting ¢, = max (t+ 35,
6p+2), it follows that by, = & and

For a specific f, one can determine D (t) explicitly and upon doing
this for 2 < t< 14, one finds D(f) > 0 in this range. For i > 15,

1 1.1 |1
P =5- D F5 LT

11 Sl 1 1
BT &k 43 4
11y 1 % 11
g 77 3 itp %
i 1 logd .1 1 log4
_1 S 0.
>3 % T T3 2378 3

THEOREM 6. Let & be a x-sequence. Then there is a =-sequence o such
that ¢y =1, a; = 2, @z = 4 and o(s) = o(&)- :
' Proof. From Theorem 5, we may assume b, — 1 and b, = 2. It
then follows from (2.6) that b3 > 4. Two cases are now considered.
Qase I 4< by < 27. Letting o =2, w =3, r =4, and m =7, the

conditions of Lemma 3 arc easily verified. This guarantees the existenee-

of a x-sequence & sueh that a; =1, 6y =2, @, =4, and

-2

1 1 1
) — (@) = = —2) — Y- where t = b
of ). 0(#) (4 7:) 2 where 3

The striet monotonicity of # provides by,..=bs+(dp+-4) =1+
+(4p+4); while (2.8) with k = 2 yields by, 12p +15. Thus

f—4
1 1 N 1 '
o |- — =) - 2 = D{1).
o() 9(‘%)/(4 t) e max(t+4p-+4, 12p +15) ¥

Upon evaluating D(f) in the range 4 < §< 27 if can be determined that
D)= 0. ' : ‘ ‘

. Case IL by > 28. Application is now made of Lemma 3 with b = 2,
w =35, r =2, and m = 5. Letiing t = J,, the application of Lemma 3
requires one to verify that 2> 9. This follows casily by observing that
i = b, > by = 28. Lemma 3 now yields a sequence o with a, =1, 8, = 2,

An upper estimate for the resiprocal sum 21,

ay = 4 (a8 well as @, = 6 and a; = 9) such that

i-s
: fl 1 1 (1 1 1 1
Fi—olB =i— F+—F+ =} —|— F+ o —| —
ef{ o{%F) \‘1+6+9) bsTb4_Tb5) g

bﬂ;p-]-s

Using an argument similar to that in Case I, the striet monotonicity
of # yields b,,.;>t-+2p, while (2.6) yields by, 6p--9. Letting

Fi—6
% = [""f]’ it then follows that

, 19 /1 1 1 51 ——
(5.5) o(st)— () =—mm(b—+?+_ﬁ)— -
36 3 4 t 2 Bopts pm_‘:f_'_l Bapss
£r-4
19 1 i 1 1 1
sl T e
E 4 = +2p et 0+ 9
Bub :
1 51 51 .1 a1
o : 7
Ga 7+Eﬂ=9:ﬁ>t 2{?;2t
n=1 TP B=0 +ap v P
1 2u+1 1 3
oy} e | &L e —
<3 Og(t 2 )‘“21°g2’
where the lagt imequality results from observing that
t—86 3
201K 2 {— t = — (£—2).
i ( 2 )+ 5 (1—2)
Also '
£—4 1 1 -4 1
BN X e 2 7
p=u+l P p:.:flp+1 .
i-7
1 1 1{ 1 1 L
) —}u—( +oTet )
6 < p+1  B6\i—6 {—5 1—4
p=u+tl

N (5—6)4_' 11, 1
o8 <% 8t 3a )

6 S\us1/ " 2t—6)

where the last inequality follows from u--1> (1—6)/4.
Combining (5.5), (5.6), and (5.7) and using the fact that ;> 28,
b,>29, and t = b, = 30, '

19 (l 1) 1.3 1

1
Hy—po(F)>— —|— +— — — —Zlogd— —=0.
ele)—e(B) >o —log tog) —pleey —glet—>

Tt would be advantagous to be émble to obtain further theorems like
those presented above. We do not see a general procedure for doing this,
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and in fact we are unable to show that a w-sequence = with a “large?
reciprocal sum must have g, = 6 which would be fhe next natnral result
along these lines.

It is also mentioned that slight modification of the above proofs
would show that any x-sequence & such that ¢(+#)> g—e¢ with ¢ suf-
ficiently small must have @, = 1, a, 7~ 2 and a; = 4. It can also be shown,
but we do not include the details, that for small enough ¢, either a, ~ 6
or 28 < a4, < 64. A partial result eoncerning e, is included and will be
msed in estimating . ' _

TEmOREM 7. Let & be a x-sequence. Then there is a x-sequence of with
Gy =1, ay = 2y a4y = 4 and either a4, = 6 or a, > 28 such that o(of) = o(B).

Proof. In view of Theorem 6, it may be assumed that b, =1, 5, = 2
and by = 4. If b, > 28, then there iz nothing further o prove. It follows
from {2.6) with & = 2 that b, > 6. Thus the proof deals only with b, in
the range 6 < b, << 27.

Lemma 3 is now invoked with £ =3, w —4 r =5 and m = 10.
This provides a x-sequence .« with o, = 1 ay =2, @3 =4 and @, =B
guch that

o(et)— () — (%—%)~

p=1 bSp-HO

where ¢ = b, (and thus 6 <

1< 27). From (2.6} with k = 3, it follows
that b5p+10> 20?“}-24:, hence
t—6
1 1
Ay —p(B) == ——}—
oleft—ol) >[5 ~ 3

1
£ 20p+24

By direct computation, one determines that the last axpression is non-
negative for 6 << 27, which completes the proof.

6. A refined estimate for u. Letting & be a w-sequence, the ob-
jective here is to obtain an upper bound for o{«#) which improves upon
{(3.17). In view of Theorem 7, it iz assumed throughout this sestion. that
8, =1, a, =2, a; = 4 and either a, = 6 or a, > 28. It then follows that
A1) =1, A(2) =2, A(8) =2 and A(4) =3, hence

 Am) . 23
6.1 _ N\ _4m 23
(6.1) me_?_gn(ﬂm o

An a.pphc&tmn 0f Theorem 3 with ¥ = 6 a.nd M =6 yields

&

R L= VAL + (et )
. A%k

=0 i=1

- (BT)
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where y = £V1253 ~ 2.2 and 7,
and (6.2),

=174 4=1,...,6 Combining (6.1)

A{n) ¥
29 V 7 ).
(63) el < 2.03 +_Z e (e( W= D
For estimating g(s), two cases are now considered.
Case L a, > 28. In this case, A(n) = 3 for 5 < n < 27. For > 27,
Aln) < A(n—1)-}1, hence A(n)<n—24. But it also follows from (2. 6)
that A{n)< n/i+4. Thos

A< min(n—24, [int+4]) =5, (for n>> 27),
hence _
o1 An) % 3 ST '
SN2 e TB.
(64 g n{n+1) &4 nintl) +n=228 n(n-+1)

Next, Lemma 1 with & = 3 provides

Y <10g2](i__ ¥ )
r{r+1) 4 \2 (i)

o(r)—

4
Recalling fhat p ~ 2.2, it follows that — ? _ <0 for r=1,

or T r(r+1)

hence .

‘ ¥ log2
LI o= <y
From (6.3), (6.4) and (6.5),

(6.6) g(&f)<20392—|- 75+210g2<3 84

in the case a, = > 28. 4
Case IL. a, — 6. From (2.6) with k& =2, 3, 4 it follows that

AR)<int2, An)<intd and A@)<intb.
Since A {n) must also be an integer, it follows that

(for r= 7).

64 . 235 ‘ 39 ’
) [in—+2] Y [fn+4] [n+6] 9
+ < 1.0926.
Z: n(n+1) 5‘:-1{_‘,3 n{n-+1) +ﬂ;_24 n{n+1) nZ: 'n,('n—,—l)
As in Case I, (6.5) holds here too (since it uses only the fact that

ay = 4 and does not depend on ). But it also follows from Lemms 1
with & = 4 that

y log2 (G.Iy).

Y —
STy 2 r(r+l)
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In thir ease 8 __y_'<'0 for 2= 8 (where ‘;1 & 2.2), thus
2r  r(r+1) - !
» log2
.8 - L for r = 8).
68 o= oy < =)
Noting that v, = 7 and »; = 8 for ¢ = 2, combining (6.5) and (6.8) yields
6 v
v N y log2 blog2 =i1 9 875
6.9 2 et — )< T T les2 < T

i=1 t
From (6.3), (6.7) and (6.9) it then follows that
(6.10) plef) < 2.0322 -1-1.0926 +.875 = 3.9998

for the case a, = 6.
The two estimates (6.6) and (6.10} allow us to conclude u < 3.9998,

hence
(6.11) < 4.

7. Concluding remarks, Throughout, varions questions were posed.
Of these, the primary problem iz that of determining the precise value
of / and those sum-free sequences of such that o(&f) = 2 (if they exist).
In contrast with Theorem 4, it wonld be of interest to prove that if a sum-
free sequence «f is such that p{<7) is sufficiently close to A, then a; = 1.
In connection with x-sequences, the problem of determining whether
or not p(£) < u remains unanswered. If this were resolved, one would
have a much better estimate of y than that provided by (6.11), hence a much
better estimate of i _

Perhaps the difficulty in determining u results from the fact that
throughout, sequences were constrained to be integer-valued. We con-
clude by posing a problem which avoids sueh a constraint. Consider the
class of real-valued sequences &7 with cou,ntm@ fiinction A4 (z) and terms
0 < oy < ay < ... which satisfy

€T . .
(7.1} A(m)s;—k——i—ak (h =1,2,3,...; 2= 0).
What is the best bound for o{of) over this class of sequences?
s
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O poBenenun Qynknmi Ref{l(s)}, Tm{l(s)}
"B KPHTHYECKOil Hod0ce
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1. TIycms

) § =g+t g =114,
0<d<o<d<t—d, 4<t,

u ¢(8) obosmadaeT NPOMEMYTOH
(2) T << T4 (2=) T4 (T,
rae p(T) — CKOAb YromHO MEMIIEHHO BOSPACTAINIAA K -+ o0 pyBRIUA.
Ilyers, mambie, _
(3) 8(a, by = D M < Vif2n,

asn<h=a

0003HATALT BIEMEHTAPHYE TPUTOHOMETPHICCKYIO CyMmy {cp. [2], eTp. 34).
Tlonosam

(4) Vit, 8) = Tm{Z(3+ 6 +it)}.
[lokasmen, 9TO WMEET MECTO '

Trorsma 1. Ecau
() 18 (a, B)| < A{d)Va 1,

mo daa kawcloeo de{dy, 85 cjyecmeyem Tl(,fl, y, 8) > 0, maxoe, umo npu
codepoycum sHauenue t Jaa Kormepozo '
(6) - V(t, 5) =0.

Ilyers
(7 .U, 8 =Re{l(3+o+it)}

OtnocmTensuo atoff ysHUME WMeeT MecTo

Trormma 2. Ecau S(a, b) ydogaemeopsem yeaosuw (5), mo daa rasc-
dozo 0e(dy; 8,y cywecmsgem Ty(4, p, ) > 0, makoe, wmo npu T =T,
nposeycymor Q (8) codepycum snouerue ¥, Ga2 KomMopoeo

(8) U, 8 =1.



