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INTRODUCTION

At the present state of Computer Science it seems that a mathematical theory of
computing systems needs some motivation. Computer Science being a relatively
new field of scientific interest, it has achieved many important, often very deep
results, e.g., in automata theory, mathematical linguistics, theory of complexity,
theory of programs, etc. All these theories refer in a more or less direct way to
some physical reality—which is the computer. However, it is a paradox that in the
whole Computer Science there is no widely agreed formal notion of a computer
(as well as of a programming language, for instance). It seems that an explanation
of this fact is to be sought in the historical background: the construction of com-
puters created so many practical or specific problems, related both to software
and hardware, that the main effort of computer scientists has been concentrated
on those problems and on particular branches inspired by them, and not on a general
theory of computers. Moreover, the constant development of computer technology
makes it difficult to grasp the essential features of a computer and to describe them
formally. .

[101]
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Nevertheless, the rapid progress in different fields of Computer Science creates
a need for a common basis—both linguistic and theoretical—which would enable
us to speak of all the problems related to computers within a single coherent theory.
It seems natural that such a theory should have among its basic notions those of
a computer and of a program and that an exact understanding of these notions
and of their relationship should be the initial point for the whole field. Mathematics
offers both the flexibility of language and the precision of notions needed to develop
such a theory.

The idea of introducing and investigating a mathematical definition of a computer
is not a very new one. It appeared in the sixties in papers by Elgot and Robinson,
Kalmar, Wagner and a few others, Also in recent years new definitions of com-
puters have been introduced by various authors (for example, by Amoroso and
Bloom). However, none of them has served as yet as a basis for some wider
investigations. N

In the present paper we give a mathematical description of a computer on two
levels: a very general model and a more structured one, which is closer to von

. Neumann type computers. Both models are, due to Pawlak ([19], [21]). The more
general model, called an iterative system, is dealt with in Chapter I. The set of computa-~
tions of an iterative system is characterized and the effect of boolean operations
on sets of computations is examined. Homomorphisms are introduced and their
relation to the problem of simulation is investigated. Congruences in iterative systems
(and their lattices) are described and used to decompose systems into a subdirect
product: of simpler systems, on the basis of an analogue of Birkhoff’s Theorem,
A more specific approach to simulation is presented, where simulation preserves
some distinguished properties.

In Chapter II we introduce a special type of iterative systems, in which the set
of states and the transition function are described in much more detail, thus making
of this model a better counterpart of a real computer. The notion of a program
is also introduced and investigated. Using these notions, we consider such problems
as the reduction of an instruction list of a computer, decomposition of programs
and their simplification and the classification of programs according to their algebraic
or computational complexity.

All the theorems, lemmas and corollaries are doubly numbered : by the section
number and the consecutive number within the section, and references within the
same chapter are made through these numbers. References to another chapter
are made by adding the chapter number, e.g., Theorem 1.3.2 means the second
theorem in Section 3 of Chapter I.

The results contained in this paper are based on the proceedings of a seminar
on the theory of computing systems, which was held at the Stefan Banach Inter-
national Mathematical Center in Warsaw during the Semester on Mathematical
Foundations of Computer Science, February-June 1974. However, some results
have been revised and some are new.
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BASIC NOTATION

For any relation ¢ < X'x Y Izt D(g) be the domain of ¢ and R(p) the counter-domain
of g. In particular, for any partial function f: X — ¥, D(f) will be the domain and
R(f) the range of f. When D(f) = X, we shall call /" a function (or a total function).
The set of all partial functions from X into ¥ will be denoted by Y*I, while Y~
denotes as usual the subset of all total functions.

If A < X, we shall denote by f]4 the restriction of f to the set 4, i.e. fl4 = fn
N4 x Y. However, if fis a sequence over X and 4 < X, then f]4 is the subsequence
of f congisting of all elements of f which are in 4.

The number of arguments of a (partial) function f will be denoted by ar(f).

Let f: X — Y be a partial function. Then f© is a total identity function in X;
forn = 0, (x) will be defined iff /" (x) is defined and f"(x) € D(f): if x e D(f"+?),
then f"*1(x) = £(/"()). *

" The image of 4 = X under f will be denoted by f(A) and the inverse image
of B <Y by f~1(B) for any partial function f: X — Y, We shall often identify
one-element sets with their elements, thus, e.g., f~(b) will be ‘the inverse image
of {b}.

{I}he set of all non-negative integers will always be denoted by N and the set
of all integers by Z. For any set X, card (X) is the cardinal number of X. If
{X;}ieris a family of sets, we shall denote its product by :ErXi (or X, x ... xX,,

when I = {1, ...,n}).

The set of all non-empty finite sequences over X will be denoted by X+, the
set of all finite sequences over X will be denoted by X*, while X will be the set
of all non-empty sequences—finite or infinite—over X. If d € X*, we shall denote
its length by /(d) and we shall write I(d) = w when d is an infinite sequence.

If R is an equivalence relation in X, we shall denote by [x]z the equivalence
class of x (and we shall write [x] when the relation is understood).

An ordering relation is a relation which is reflexive, antisymmetric and trans-
itive.

We assume that all the sets considered here are subsets of a certain universe.
Thus the class of all sets satisfying some condition is again a set.

The end of a proof or an example will be marked by m.

1. ITERATIVE SYSTEMS

In the present chapter we shall consider a very general mathematical model of a com-
puter, The model being a simple partial algebra, most of its properties may be
described algebraically, e.g., through homomorphisms or congruences. It is also
possible to speak of simulation of such systems and this can be done in more than
one way, depending on what is expected from the simulation. Properties of these
algebras may be used to describe more structured models, which will be treated
in the next chapter.
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Considering any real digital computer, it may be most generally visualized
‘as an object with a memory and a control acting upon the former. In fact, memory
would mean here everything that determines the state of a computer at some given
moment, i.e. not only the “true” memory where information is stored, but also
the state of input/output devices, some internal states of the computer and so on.
In this way a computer may be described by two elements: a set X, corresponding
to the set of memory states in a computer and a function = (partial, in general),
acting on memory states and corresponding to the computer control. Any such
pair will be called a functional iterative system (or simply, an iferative system). Thus,
an iterative system <X, @) is a partial unary algebra with one operation = in the
set X. We shall call X the set of states of the system and o will be called the transi-
tion function. .

Such a general model of a computer is certain to have its faults and merits.
The latter seem to be: its ability to describe those properties of computers which
are universal, i.e. do not depend on any particular physical realizations of computing
machines; the possibility that it offers of considering on a uniform basis different
objects which may be described as iterative systems, e.g. computers, but also auto-
mata, grammars or programs; finally, last but not least, its being easily manage-
able, since it is a rather simple mathematical object.

As often happens, what is a merit in one approach may turn out to be a fault
in others: the simplicity of iterative systems makes it difficult or even impossible
to speak of those properties of computing systems which are strongly related to
their internal structure. However, this difficulty may be overcome by admitting
additional structures within an iterative system, either on the set of states or on
the transition function—or on both. A large part of the present paper treats of such
a system, called a stored program computer,

1. Computations of iterative systems

Let M = (X, 7> be an iterative system. An infinite sequence (co, ¢y, ...) of states
of M will be called a computation of M iff ¢, € D(s) and for all n €N, ¢y = m(c,).
Such a computation will be called cyclic when for some #,j & N such that 0 < § < J
we have ¢; = ¢;. Obviously, we also have ¢;,,, = ¢+m for all m € N, A finite sequence
(¢os .- cx) of states of M is a computation of M iff ¢, € D(m), ¢ ¢ D() and for
all0 < i <k, ¢4 = m(cy).

We shall call the first element of any computation (or sequence, in general)
its initial state, and when the sequence is finite its last element will be called the
final state. It may be observed that no state can be both initial and final. Thus any
computation is an at least two-element sequence.

We shall often denote a computation with an initial state ¢y by ¢y, i.e.

Co = (CO: ”(Co)’ nz(co)’ )
If ¢ = (¢o, €1, ...) is any finite or infinite sequence,

-

then for any i e N (when

the sequence is infinite) or for i = 0,1, ..., [(c)—2 (when it is finite) we shall -
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denote by ¢ the sequence (¢, ¢iy1, ...). If ¢ is a computation, then this sequence is.
again a computation with the initial state ¢; and we shall call it a segment of c.

Let Cy be the set of all computations of the iterative system M. Observe that
if we know the set C)y, it is possible to deduce all the information on M ‘which.
concerns the active states of M, i.e. states in the set D(m)UR(x). Clearly, the re-
maining states—Ilet us call them isolated states—are of little interest when we use:
iterative systems to describe computing devices, thus we may often use the set Cypy
instead of M to speak of some properties of the system.

Let D be a set of at least two-element (maybe infinite) sequences. We shall
call D a set of computations iff D = Cy, for some iterative system M. The following:
theorem fully characterizes sets of computations.

TeEOREM 1.1. Let D < X® be a set of at least two-element sequences. Themr
there exists an iterative system M such that D = Cy if and only if the following con-
ditions are satisfied:

@) if (o, cy,...) and (do, dy, ...) are in D and ¢; = d; (*) for some i,jeN,
then Cipy = diys,

(i) for all ce D and all 0 < i < I(c)—2, ¢V € D.

Proof. When D is a set of computations of some iterative system M = (X, >,
then conditions (i) and (ji) easily follow from the fact that = is a (partial) function
and from the definition of a segment of a computation.

Suppose D is a set of at least two-element sequences over X and let con-
ditions, (i) and (ii) be satisfied. We shall define an iterative system M = (X, ) as.
follows: let

D(m) = {x e X: x is an initial state of some d, € D}.

Observe that by (i) the assignment x ++ d; is a one-to-one correspondence.
Let 7 be defined as follows: for any x € D(x), 7(x) is the successor of x in the se~
quence d, (which by assumption has at least two elements). It follows from (i)
that o is a well-defined function in X. We shall prove that D = Cy,.

From the definition of M and using (ii) we infer that D = Cy, Suppose ¢,
is a computation in M. Since ¢, € D(m), it is an initial state of some sequence d, € D..
It easily follows from (i), (i) and the definition of s that ¢, = d,,, thus ¢, € D..
Hence D = Cy. m

COROLLARY 1.1. Any subset of a set of computations satisfies (i). m

COROLLARY 1.2, dny subset of a set of computations is itself a set of compu-
tations if and only if it satisfies (ii). m
It also follows from Theorem 1.1 that any set of computations defines a unique—
up to isolated states—iterative system whigh generates it.
() Here (and in the sequel) equality means that either both sides are defined and equal or
they are both undefined."
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TueoreM 1.2. Let D be any set of computations. If D = Cy, and D = Cy,,
where My = (X, Moy and My = {Xy,n.), then my = my, i.e. D(mo) = D(m,),
R(mo) = R(my) and for all x € D(t,), 7o(x) = 7y (x).

Proof. Suppose that for some systems M, and M, we have D = Cy, = Cy,
and m, # @y, ie. for some xeD(E)UD(m,), 7o(x) # 7wy (x). If xeD(m)—
—D(n;_y) (i = 0, 1), then % € Cy,, while no computation in M, starts with x,
hence Cy, # Cy, _, contrary to our assumptions. On the other hand, if x belongs
both to D(m) and to D(m,), then (x, 7o(%), ... ) € Cyr, and (x,m,(x), ...) € Cy .
Assuming Cy, = Cy,, We obtain a contradiction with condition (f) of Theorem
1.1. Hence follows 7ty = 7. ®

It is a simple consequence of Theorem 1.2 that the synthesis problem for itera-
tive systems, i.e. finding for any set of computations a system which generates it,
has a least solution: for any set of computations D there exists an iterative system
M = (X, #) such that D = Cy, and for any other system M; = (X, ®;> such
that D = Cy, the following holds: @ = m; and X < X,. This least system is
{D(m)UR(7), 7y where x is the partial function defined (uniquely, by Theorem 1.2)
in the proof of Theorem 1.1.

We shall now consider the effect of Boolean operations performed on. sets
of computations.

THEOREM 1.3. For any sets of computations Dy dnd D,, DynD; is a set of com~
putations. .

Proof. Let d € D;nD,. Since d is both in D, and in D,, so are all its segments.
Thus condition (i) of Theorem 1.1 is fulfilled, which by Corollary 1.2 (since D,nD,
< Dy) suffices to prove the theorem. m

The sum of two sets of computations is not necessarily itself such a set. The
following simple example illustrates the point.

Let x; # x;; then the sets {(x, x,)} and {(x,x,)} are two sets of compu-
tations, each with one two-element computation. Clearly, the set {(x, x,), (x, ¥;)}
does not satisfy condition (i) of Theorem 1.1 and thus is not a set of computations.
However, in some cases the sum of sets of computations is again a set of compu-
tations.

Let My = {X,,my) and My = (Xy, 7,y be arbitrary iterative systems. We
shall call the systems M, and M, consistent iff D(mi_i) (R(m)—D(mw)) = &
for i = 0,1 and for all x € D(m)ND(y), mo(x) = =,(x). Thus two systems are
«consistent if their transition functions coincide in their common domain and neither
of the systems extends computations of the other.

Levma 1.1. Two systems My = {Xy, moy and M; = {X,,m,)> are consistent
if and only if for all x € (D(re)UR (o)) (D(m)UR(Y)), 7o (x) = 74 ().

‘Proof. Let 4 = (D(mo)UR(m)) (D () R(my)). Suppose M, and M, are
consistent and let x € 4. It is easy to prove by the definition of consistency that
x € D(mo) if and only if x € D(w,;). Thus either x € D(me)nD(n,) or x ¢ D(me)u
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uD(y). In the former case, both 7o(x) and =, (x) are defined and equal (by the
consistency of M, and M), while in the latter they are both undefined. Hence,
for all x € A, mo(x) = 7 (x).

On the other hand, assume that this condition holds. Clearly, if x € D7)
AD(m;), then also x € 4 and @ (x) = 7, (x). Suppose now that D(r;.)n (R(m)—
~D(m)) # @ fori=0ori=1,andlet x be any element of this set. Thus x € 4;
moreover, 7;_;(x) is defined, while m(x) is not; hence m;_i(x) # m(x), contrary
to our assumptions. Thus M, and M, must be consistent. m

TrroreM 1.4. Let Do and D, be sets of computations and let My = {Xo, mo)>
and M, = (X, m,) be iterative systems generating Do and Dy, respectively. Then
DouUD; is a set of computations if and only if My and M, are consistent.

Proof. Assume that DoUD, is a set of computations. Again let 4 = (D(vro)u
UR(m)) (D(m)UR(w,)) and suppose x € 4. Thus there exist computations
d° = (d3,d?,...) in M, and d* = (d5,di, ...) in M, such that x = dP = dj for
some i, ] & N. Since d°, d* € DoyuD;, we have, by Theorem 1.1, 7,(x) = dfy i =dhey
= m,(x), which proves by Lemma 1.2 that M, and M, are consistent.

Assume now that the systems M, and M, are consistent. Condition (ii) of
Theorem 1.1 is obviously satisfied for DyuUDy, and so it remains to prove condition
(@). Let ¢ = (co, ¢y, »..) and d = (do, di, ...) be two computations from the set
DouD, and suppose ¢; = d; for some i,jeN. If ¢, d e Dy for k=0ork=1,
then obviously ¢;,.1 = djsy, Dy being a set of computations. If ceD, and de D,
(a similar argument holds for ce Dy and deD,), then ¢ & D(mo)uR(m) and
dy € D(w,)UR(m,). Hence ¢, € 4 and, M, and M; being consistent, 7wo(c;) = 77,(d)).
Thus ¢4y = dy41. Hence DoLDy is a set of computations. =

THEOREM 1.5. For any two sets of computations Do and Dy, Do—D; is a set
of computations if and only if for all ¢,de Dy, if ¢ €DonDy and ¢ = d®, then
deDynD,.

Proof. Suppose Do—D; is a set of computations and let c e DonDy, ¢ = dP
and d ¢ DynD;. Hence d € Do —D;, while d does not belong to Do ~D,, contrary
to the assumption of Dy— D, being a set of computations.

On the other hand, suppose that the condition of the theorem holds for all
¢,deDy. Since Dy—D; = Dy, we need to verify condition (ii) of Theorem 1.1.
Suppose that for some ¢eDo—D; and 20, ¢P ¢ Dy—D;. We may assume
that i is the least integer for which this holds; clearly i > 0 and c1 is defined.
Let us denote this segment by d, ie. d = ¢~ and d® = ¢?. By assumption,
d e Dy—D, and d© € DynD, . Thus we must have d & Don.Dy , which gives a contra-
diction. m

It is easy to see that if D is a set of computations and D < XX for some non-
empty set X, then the complement of D in XX* is not a set of computations: if
x € X, then, for any set of computations D, (x, x) ¢ D. Therefore (x, x) e XX°—-D,
which thereby cannot be a set of computations.
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2. Simulation and homomorphisms

Let M = (X, m) be an iterative system. We shall define a partial function fy;: X — X
as follows: for all x,y € X, fiy(x) = y iff there exists a finite computation ¥ with
a final state y. Thus, when f3,(x) is defined, we may interpret it as the result of a com-
putation with the initial state x. For this reason we shall call fy the result function
of the system M. Observe that R(fy) is the set of all final states of finite compu-
tations of M.

Let us state here an obvious property of this function:

LemMA 2.1. R(fy) = R(m)—D(n). m

Consider now the well-known problem of simulation: given two objects (usually
able to perform some action), we are interested in interpreting one of them (or
part of it) within the other and to deduce some properties of the object which is
being simulated from the properties of the simulating object. If we assume that
both objects can be described by iterative systems—and this assumption does not
involve a great loss of generality for objects acting in discrete time—this problem
turns into finding appropriate functions mapping one of the systems into the other.

In such a case, it seems that such a function should have the following property:
if, starting a computation at some state x, we obtain a result y in one of the systems,
then, interpreting the state x in the other system and starting a computation, we
should obtain a result which corresponds to y. In other words, if M = <X, > and
M, =X, 7} are two iterative systems, then a simulation function s from M
into M, should have the following property:

M s(fu(x)) = fir, (s(x))
for all x € D(fy). .

However, in most cases our interest lies also in the course of computations
and not only in their results. Thus, in the most general case, we would expect with

regard to s that the following hold: for every x e D(s) and n > 1 there exists some
m 2 1 such that

® $(r ) = a1 (563).

This condition ensures the preservation of succession of states by the function s.

Let us consider particular cases of (2). Suppose that for some x e D(m) such
‘that x # z(x) and n € N condition (2) holds with n > m. We may assume for simpli-
city that n = 2 and m = 1, i.e.

s(2(x)) = m, (s(x)?.

This means that (the succession of states being preserved) either -5 (m(x)) = 's(x)
or s(m(x)) = s(72(x)), i.e. the state m(x) is undistinguishable in M, from one of
the states 5(x), s(#(x)). Hence we can omit 7i(x) in M and still have the image
of M in M, unchanged, the state s(x) being irrelevant for simulation. In conclusion,
we may assume that for all x € D(z), condition (2) holds with 7 < m. This in turn
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is easily reduced to the following condition: for every x e D(n) there exists an
m = 1 such that
3) s(@(x) = % (s(x)).

The above considerations lead to the following definitions: let M = (X, =)
and M, = (X, n;) be iterative systems and let s: X — X, be a rhapping. We shall
call s a simulation iff conditions (1) and (3) hold for s, A simulation s will be called
a homomorphism iff condition (3) holds with m = 1 for all x e D(s). Observe here
that condition (1) may be replaced in the definition of simulation by the following
one!

S(R(fM)) < R(fu,)-

Clearly, any theory of simulations includes that of homomorphisms, which
are a particular case of the former. However, we shall proceed to demonstrate
that any simulation may’be replaced by a suitable homomorphism.

Suppose s is a simulation of a system M = (X, ) into a system M, = {X;, m;>.
We shall extend the system M to a system M = (X, %> as follows:

Let x e D(m) and suppose s(m(x)) = a7 (s(x)) for m > 0. We add m—1 new
states x', x%, ..., x™"! (not belonging to X and different for all x e D(r)) and we
define the function % on them so that #'(x) = x' for i = 1, ..., m~1 and @"(x)
= m(x). Let X be the set X togethei' with all states added for any x & D(7). V\{f also
assume that for any x €X, x e D(@) iff xeD(n); thus D(@) = D(m)u(X—X).
Tt is easily verified that 7 is well defined in X. Moreover, for any x € X, fyr(x) = f51(x)
(see footnote on page 105). Thus, D(fy) = D(fi) and R(fu) < R(fi). Besides,
if x e R(f3), then by the construction of M there exists a state x; € X such that

Ji(x1) = x = fu(xy); hence,
@ R(fu) = R(fi)-
Next, let 5 be an extension of s over the set X defined as below:
for all x € X, 5(x) = s(x);
“if aeX—X and a = x' for some (exactly one) x € D(%) and i > O, then let
$(@) = m} (s(x)).

¥ is a homomorphism of M into M, because: from (4) we obtain that
S(RUD) = s(RUw)<R(fn,)
since §|X = s and s is a simulation; also
5(7) = 71 (5(x))

easily follows for all x € D(%) from the construction of # and §. m

The above construction shows that any simulation may be replaced by a suitable
Liomomorphism, i.e. homomorphisms can “simulate” simulations. Moreover, the
system M carries some additional information on how the original simulation
has been performed. ‘ i o C
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3. Some properties of homomorphisms

Let M = (X, 7) and M, = {X;,m;) be two iterative systems and suppose /1 is

a homomorphism of M into M . It easily follows from the definition of homomorph-

isms that A preserves the character of computations in M, i.e.

\) is a (finite, infinite, cyclic) computation, then
\) is a (respectively: finite, infinite, cyclic)

THEOREM 3.1/ If T = (Co, €15 -
the sequence h(co) = (h(co)s h(cl),.
computation in M.

Proof. From (3) (with m = 1 for all x € D(%)) we infer that ¢, & D(7) implies-
h(co) € D(;). Moreover, for all 0 < i< I(Z0)—2, since m(e)) = ¢4, We obtain
W1(h(ci)) = h(m(e)) = hlciva)-

If ¢, ¢ D(z) for some n > 1, then ¢, € R(fy) and consequently h(c,) € R(fir,).
ie. it is a final state in the sequence l1(c°) Clearly, if ci = ¢; for some 0 < i </,
then also A(e)) = h(c). ®

A system M,y = (X,, mop will be called a subsystem of M = (X, n) iff Xo ¢ X
and s, = 7|X,. This implies in particular that the identity function id: Xo » X
is a homomorphism of M, into M. If {(Xo, mo) is a subsystem of (X, =), then we
shall write (X, =) instead of (Xp, mop, often identifying this subsystem with the
set Xp. Thus X, is a subsystem of X iff 7(X,) < Xo.

Observe that if M = (X, @) is an iterative system, then every subset 4 = X
generates a subsystem <{X,,wy of M such that X, = {xeX: HaeAEk>
() = x)} A will be called a generating set for X,; X, will be called the closure
of 4 and will often be denoted by 4.

Let o be a relation in the set of states X of the system M = (X, m) such that
for any x,ye X

xoy iff there exist i, > O such that ='(x) = =/(y), where both sides are defined.

This relation is an equivalence in X and its equivalence classes are subsystems
of the system M. They will be called maximal connected subsystems (m.c.-subsystems,
for short) and the system M = <X, =) will be called connected when ¢ = X2,

We shall prove that any homomorphism of a system M into M, may be de-
composed into homomorphisms between m.c.-subsystems of M and M, and vice
versa.

LemmA 3.1. Let h be a homomorphism of a system M =<{X,n) into
M, = {X,, m,). For any m.c.-subsystem S < X there exists an m.c.-subsystem S, < X
such that h(S) = Sy.

Proof. If #'(x) = a/(y) for some x, y € § and i, j > 0, then @} (h(x)) = h(n'(x))
= h(n/(y)) = =i (h(»)), which is sufficient to prove the lemma. m

The next lemma is quite obvious:

LeMMA 3.2. If h is a homomorphism of M = (X, n) into M, and X, is a sub-
system of X, then h|X, is a homomorphism of {X,, 7y into M.

icm
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Proof. The lemma follows from the fact that 4|X, = k- id, where id: X, —+ X
is the identity function, the composition of homomorphisms being again a homo-~
morphism [22], m

LeMMA 3.3. Let M =X, =) and My = {Xy, n,> be arbitrary systems. There
exists a homomorphism of M into M, if and only if for any m.c.-subsystem S in M
there exists a homomorphism of (S, n) into M.

Proof, If h is a homomorphism of M into M;, then, by Lemma 3.2, A[S is.
a homomorphism of (S, 7> into M, for any m.c.-subsystem § = X. On the other
hand, suppose hg is a homomorphism of an m.c.-subsystem {S,n) into M, for
any S « X. Then the mapping 4 such that 2 = | A5 is a well-defined homomor-
phism of M into M, . m

From Lemmas 3.1 and 3.3 we immediately obtain the following

TueOREM 3.2. Let M =<{X,n) and M, = {X;,7=,) be arbitrary iterative
systems. There exiggg a homomorphism h of M into My if and only if for any m.c.-
subsystem S of M there is an m.c.-subsystem S of M 1 Such that there exists a homo-
morphism of (S, #) into {(Sy, @) m

It is a classical result in universal algebra that given a homomorphism between
two algebras, the image of a subalgebra of the first is a subalgebra of the second.
This need not be true for iterative systems. An easy example is the case of an isolated
state of the first system (this is a subsystem) being mapped onto a state which lies
in the domain of the transition function of the second system, However, the follow-
ing may be proved:

TurEOREM 3.3. If h is a homomorphism of a system M = (X,n) into
M, = (X, ®m,)> such that for any x e X, x € D(m) iff h(x) € D(n,), then for any
subsystem X' of X its image h(X') is a subsystem of X;.

The easy proof is omitted. m

A 1-1 homomorphism % of X onto X; will be called an isomorphism of M
= (X, n) onto M, = (X, n,) iff for all x eX, x e D(xn) iff h(x) € D(r,). From
Theorem 3.3 we obtain the following )

COROLLARY 3.1. Let k be an isomorphism of M = {X, m) onto M, = {(X;, 7).
If X' is a subsystem of M, then h(X') is a subsystem of My. m

No additional assumptions on homomorphisms are needed to prove that
counter-images of subsystems are subsystems again. We shall use a topological
argument,

Let M = (X, n) be an a.rblttary system. It may be easily verlﬁed that the
family & of all subsystems of M is a topology in X, i.e. the empty set & and X’
are subsystems, and this family is closed under arbitrary joins and arbitrary (not
necessarily finite) meets.

THEOREM 3.4. Any homomorphism of a system M = (X, @) into M, = (X, m>
is a continuous mapping of the space (X, %) into (X1, ¥y )-
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Proof. Suppose h: X — X is a homomorphism and let Int be the interior oper-
ation in (X;, #y,). We shall prove that for any set B < X;, h“* (In#(B)) is an open
set in (X, Pu)-

Assume x & ™ (Int(B) ) and x € D(x). Thus h(x) € Int(B) and 7 (h(x)) & Int(B),
since Jnt(B)is a subsystem of M, which is an open set. Hence /((x)) € Int(B) which
in turn implies w(x) € A= (In?(B)). In consequence, h~*(Int(B)) is a subsystem
of M, i.e., it is an open set. m

COROLLARY 3.2. Let h: X — X{ be a homomorphism of M = (X, m) into M,
= (X,,m,>. For any subsystem B of My, h™*(B) is a subsystem of M. w

4. Congruences

An iterative system being a partial algebra, various definitions of congruence may
be used. Our definition will be that of a strong congruence (see e.g. [10]). Let M
= (X, n) be an iterative system. An equivalence relation g 2 is a congrience
in M iff whenever (x, ) € ¢ and x € D(n), then also y € D(w) and (n(x), %(y)) € 0.
‘Thus if two elements are congruént, then either both lie in the domain of the tran-
sition fundétion or for both this function is undefined.

Let Ky be the family of all congruences in a system M = <X 7). Set-theoretic
inclusion orders this family and the identity congruence is the least element in the
ordered set (K, ). :

LEMMA 4.1. There exists a greatest element gy in (Ky, <). .

Proof. Observe that for any congruence ¢ in M and any states x e D(7) and
yeX—D(m), (x,y)¢o. Thus, when @ # D(n) # X, X* is not a congruence in M.

Let us introduce a function Hy (or simply H) on the set D(fy)UR(fy) and
Tanging over the set N so that
O Hx) =k

. Define the relation g, as follows:
(x,) €00 iff [x,yeD(fh) & H(x) = HO)VIx,y e D@)~D(fi)l v
v [x, y e X—D(x)].

‘This relation is an equivalence relation in M (observe that X = D(fy)U (D(n)-—
~D(fy))u (X—D(w))) and also a congruence: if x,y € D(fy) and H(x) = H()
then obviously H(n(x)) = H(n(»)); also, if x,y e D(@)~D(fy) then z(x), n(y)
€ D(7)— D(fy).

Let ¢ be any congruence in M and assume (x, ) € . If x, y ¢ D(), then also
{x, ) € go. Suppole now x, y € D(m): if x and y are in the set D(z)—D(f}), then
again (x, ») € go; if %, ¥ € D(fy,), then we must have (z%® (x), 2%()) € o since o
is a congruence. Therefore, n"®)(y) ¢ D(n) and H(y) < H(x). Similarly, H(x)
< H(y), which gives H(x) = H(y) and consequently (x,») € g,. This proves that
Qo s indeed the greatest congruence in M. m

THEOREM 4.1. (Ky, <) is a complete lattice.

it (%) e R(fu)-
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Proof. Since there exists a greatest element in K, it suffices to prove that for
any non-empty family (g;)ey of congruences in M there exists a greatest lower

bound in Ky for that family. It is easily verified that the relation (1) g; is the required
Il

congruence in M.

Let U and N be the lattice operations of join and meet, respectively, in the
lattice (Ku, <). From the above theorem it follows that (Ky, U, n) is a complete
lattice for any system M. More can be said about this lattice if we consider the
systems which have only finite computations and no isolated states.

THEOREM 4.2. For any iterative system M = {(D(fi,)UR(fi), 7). the lattice
(Ku, U, ) is distributive if and only if, for every n e N, card (H(n)) < 2.

Proof. Suppose that for some n e N there exist three different states x;, x,, X3
e H™'(n). Let g4, 02, 03 be the least congruences such that (xy, x,) € o5, (X2, Xs)
€02, (X3, %1) € 0s. Such congruences exist, Ky being a complete lattice, (x,, x3)
¢0, and (x3,x) ¢o(. Then (x;,xa) ¢ (01n03)U(g2n0s), Wwhile' by transitivity
(%1, X3) € 0102 and thus (x4, x3) € (0;Ug2)Nes. Hence

(01902)N0s # (21n02)V(02M03).

On the other hand, assume card (H~*(n)) < 2 for every neN and consider
any three congruenc®s gi, 02, 03. Suppose (x,¥) € (0;Ug2)Nps and x 5 y. Since
x, ¥ € D(fu)VR(fy), we must have H(x) = H(y). Moreover, x and y are the only
states in the set H~*(H(x)). This implies that either (x,) €, or (x,)) €g,. In
consequence, since (x, ) € 05, also (¥, ) €01ngs or (x, ) €0.Nes, i.e., (X,¥)
€ (01M03)U(02n03). The inverse inclusion is quite obvious. Thus,

(019020 = (1nga)V(e2ngs). m ,

THEOREM 4.3. Let M = {(D(fy)UR(fy), ®) and suppose that (Ky, L, N), is
a distributive lattice. Then (Ky, U, N) is a Boolean algebra if and only if for any
neN, card (H-*(nnR(m)) < 1. .

Proof. Suppose there exists an n € N such that card (H-*(WnR(n)) is equal
to 2 (by Theorem 4.2, it cannot be greater than 2). Suppose that x, X, € H™*(n)
NR(m) (x5 # x,) and let x; e w~1(x;) and x, e x~!(x,). Let o be the least con-
gruence such that (x,, x,) € ¢. Hence (x,, x;) ¢ 0. Suppose g; is a congruence in
M such that gup, is the greatest congruence in K. Thus (xy, x,) € ¢; and, ¢y
being ‘a congruence, (xs, x4) € gy. This implies that ¢ = ¢y and pngy is not the
identity congruence in M. Therefore ¢ has no complement in K, which thereby
is not a Boolean algebra.

To prove the sufficiency of the condition assume that ¢ is an arbitrary congru~
ence in M. Let {E;}i; be all the two-element equivalence classes of ¢ and let No
= N— U H(E;). We shall define a relation g in M so that

(x,ep ff x=yv(HE =HO)AHx) eN,).

@ is an equivalence relation. Suppose (x, ») € g. Then either x, y ¢ D(n) (when
H(x) = 0) or x,yeD(n) (when H(x) > 0). If the latter holds, then by assump-

8 Banach t. XI
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tion we must have 7(x) = m(¥), since w(x), 7(y) are both in the set “(H (m(x) )] 1)
NR(w). Thus (n(x), 7(y)) e g, which proves that 0 is a congruence in M. It is
easy to verify that g is a complement for ¢ in’ the lattice (Ku, Y, n). This suffices
to prove that (Ky, U,n)isa Boolean algebra. m

Let o be a congruence in an iterative system M = (X, n). We can define a quo-
tient system M/o = <{X/o, 7*> as follows: X/g is the set of all equivalence classes
of g and D(n*) = {a e X/g: a = D(m)} with #*([x]) = [7(x)]. As usual, the natural
mapping &, X — X/o is a homomorphism of M into M/p. Observe, however, that
this statement remains true even for a differently defined transition function z*
in the quotient system, e.g., if x e X— (D(@)UR(m)), which means that x is an
isolated state; then [x] may belong to D(x*) and a* may be defined anyhow on
[x]. Thus the requirement that the natural mapping ¢, be a homomorphism does
not determine uniquely the transition function in the quotient system.

Let M, = <X;,n), il, be a family of iterative systems. We shall define
a system M = (X, 7}, called the product of the family {M;};E,, 80 that

X = 1F;- X;, D) =1P1 D) and  w((xdier) = (WX )ier-

It should be remarked that projections p;: X — X; need not be homomorphisms.

As a simple counterexample consider two systems, M; = ({a, b}, n,> and M,

= ({c}, ), such that m,(a@) = b ¢ D(m;) and m,(c) = c. Then (b, ¢) is a final

state in the product system M = ({(a, ¢), (b, ¢)}, @) while p,(b, c) = ¢ is not

a final state in M, . Therefore, given a family M; = {X;, m;), i € I, of systems, we

shall say that a subsystem A4 of the product system PI M, = (iPIX,, 7y is a subdirect
ie. €.

product iff all the projections p; for i € I are onto mappings.
" TuporEM 4.4. Let {0i}ier be an arbitrary family of congruences in a system
. M=(X,n) and ¢ = () oi. Then MJp is isomorphic to a subdirect product of the
systems Mfo;, iel . ¢
Proof. Let Mo = (X/o, 7*>, M{o; = {X]o;, m;p and let iI:IM/Qi = (IIZ’X/@, Ty
be the product of the systems Mg, i€l Take h([x],) = ([x],)ier- It is easily
verified that 4 is 1-1.

Observe that if [x], ¢ D(n*), then x ¢ D(n) and consequently [x],, ¢ D(m)
for all i €1, i.e. ([x],)ier ¢ D(,). Suppose [x], € D(w*). Then

(2) h(n*([x]n)) = h([n(x)]q) = ([n(x)]g,)lel = (“i([x]g,))iel = Ty (h([x]a))

Moreover, if [x], € R(fiy,), then, by Lemma 2.1, [x], € R(n*)—D(#*), which
by the definition of a quotient system is equivalent to x € R(%)—D(7). Hence, for
every i € I, [x],, € R(m)— D(m;), and thus A([x],) = ([x]))ier € R(,) — D(7y), Which
proves that

3) h(R(fu) <= R( {:", Mie)-
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By (2) and (3), & is a homomorphism and, by Theorem 3.3, 2(X/p) is a sub-
system of P M/p, isomorphic to X/p. It is clear that, for all Z e, p; (A(X/0)) = X/o:. m
lel
A congruénce ¢ in M is said to be meet-irreducible iff for any family of con-
gruences {g;}ier, () 0s = o implies o = ¢; for some i € I. A system M is subdirectly
tel
irreducible iff the identity congruence is meet-irreducible in M.

LEMMA 4.2, Let o be a cc;ngruence in a system M = (X, ). Then M/p is sub-
directly irreducible if and only if ¢ is meet-irreducible.

Proof. Assume that ¢ = () ¢; and ¢ & g for all i e 1. Define a family of re-
ey »

lations {o;}ier in M/o as follows:

(xlp, DD eor iff (x,3) ee

Each o; is a non-identity congruence in M/p. Moreover, (") o; is the identity
iel

congruence, which implies that M/p is not subdirectly irreducible.
Conversely, assume that M/p is not subdirectly irreducible, i.e., for some family
{0,}ie1 of non-identity congruences in M/o the meet (") o, is the identity congruence.
el .

Define g;, i € I, so that

(x’ y) € Qi lﬁ. ([x]ea [y]q) € 0;.

Thus (3;, Y e o iff ([xl,, D) €M o1, be. (x,) € () @: iff (x,¥) € o. Therefore
iel el iel
@ = () @i, where ¢ & g; (since o; are not identities), which implies that g is not meet-
el

irreducible. m
Now we can prove Birkhoff’s theorem for iterative systems.

THEOREM 4.5. Every iterative system M = (X, m) is isomorphic to a subdirect
product of subdirectly irreducible systems.

Proof. Tterative systems being partial algebras, the classic proof of Birkhoff’s
theorem (see e.g. [7]) is not affected. Thus, let {¢;}ir be the family of all meet ir-
reducible congruences in M. Clearly, this family is nom-empty, since it contains
the greatest element in the lattice Ky . We claim that Q o, is the identity congruence.

€.

Take x, y € X and assume x % y. The joih of any chain of congruences being
again a congruence, we infer by the Kuratowski-Zorn lemma that there exists
a maximal congruence g, such that (x, y) ¢ go. Being maximal, g, is clearly meet-
irreducible, i.e. it belongs to the family {oi};. Therefore (x,y)¢ @ o; and O o

{:

is the identity congruence. By Theorem 4.4, the system M (which is isomorphic
to M/ o)) is isomorphic to a subdirect product of the systems M/g; which by
Lemma 4.2 are subdirectly irreducible. m

8"
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5. Another approach to simulation

We shall consider here a more general idea of simulation than thal presented in
Section 2. Defining a simulation, we meant a mapping which preserves the property
of being a final state and also preserves the succession of states. However, it is often
necessary in a simulation process to preserve some intrinsic properties of states,
which cannot be described by the transition functlon of an iterative system. In
this section we shall define and investigate some notions which will make it possible
to speak of such cases also.

Let X, X, be arbitrary sets. We shall call any relation v = Xx Xy a property
and any family ¥ = {;}er of such relations a set of properties (in X XX, .

Let M = (X, m) and M, = {Xy, m;) be iterative systems. A basis of simula-
tion of M in M, is any ordered pair B = (v, V'), where V is a set of properties in
XxX, and v e V (v is the initial property of the basis B). The properties in ¥ will
often be called simply properties in the basis B.

Let B = (v, V) be a basis of simulation of M in M, where V' = {vi}ier. We
shall say that M is B-simulated by M, (and we shall write M <y M,)iff there exists
a partial function f € X;*J such that:

O () =) DE)NDRE),

(i) for any i e I and x € D(f), if x & D(v,), then (x, f(x)) € v;,

(iif) for any computation €, in M such that ¢, & D(®),f(2o|D(f))is a subsequence
of some computation in M.

The relation < g will be called B-simulation. We shall sometimes write M <p,p M;
to stress that f is the function required by the definition of B-simulation. Thus f
associates with every state in M endowed with a certain property some state in M
which has the same property. Moreover, if a computation starts in M with a state
which has the initial property, then f, reduced to this computation, behaves partly
as a simulation as defined in Section 2, i.e. within its domain it preserves the suc-
cession of states (though not necessarily the property of being a final state).

Let us consider two examples of such simulation.

EXAMPLE 1. Functions computable by iterative systems.

Let M = (X, n) and M; = {X,, 7> be two iterative systems. Suppose I, O
are finite sets (called inpi# and output alphabets, respectively). Let i: I* — X and
iy: I* -+ X; be 1-1 functions (called coding functions), while 0: X — O* and o,:
X; — O* are functions called decoding functions.

We shall distinguish two properties in X'x X;: v is a property of equal codes,
ie. (x,%y) ev iff i~1(x) = i7(xy) and v, is a similar property concerning the de-
coding functions reduced to the final states, i.e. (x, x() € v, iff (x, xy) € R(fu) X
X R(fy,) and o(x) = 0,(x,).

Let us consider a basis of simulation defined as follows:

B = (v, {v,9}).
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Then, if M <z M, and D(v) = R(i), we have for x e D(0 " fu" i),

© S 0) (x) = (01 frr, " 1)().

Thus with a given basis of simulation a function computable in M (for some fixed
coding and decoding functions) is also computable in M;. m

EXAMPLE 2. Simulation of memory contents.

Let A and B be non-empty sets, called the set of addresses and the alphabet
respectively. Let us consider two iterative systems, M = (X, n) and M; = (X, @),
such that X < B4 and X; < B4 The elements of the sets X and X are called memory
states of M and M,. For any ¢ € X (or ¢ € X,) the set c(4) is the set of memory
contents in the state c.

~ Suppose f: A — A is a 1-1 function. For any ¢ € X let ¢; be a function from
R(p) into B such that for any a € R(f),

cp(a) = c(B~'(a)).

We define a property v < X xX; as follows: for any ¢ € X and ¢, € X},
¢1|R(B) = ¢p.

Thus when M < M, with B = (v, V), s € Vand D(v) = X, the function f associ-
ates with ¢ € X a certain state f(c) € X; so that all the memory contents of ¢ are
preserved in f(c) and c(a) = f(c) (B(@)) for any ac 4. m

We have proved in Section 1 that for any set of computations D there exists
a least iterative system M such that D = Cy (Theorem 1.2). Moreover, if D and
D, are two sets of computations and D = Cy and D; = Cy, (M and M, being the
least such systems), then there exists a (least) system with a set of computations
DD, (Theorem 1.3). This system will be denoted by M A M. Observe that M A M,
may be considered to be a subsystem of both M and M, .

Similarly, if M and M, are consistent, then there exists a least system with
a set of computations DuUD, (Theorem 1.4): we shall denote this system by Mv M, .

The following lemma is an easy consequence of the definition of B-simulation,

LEMMA 5.1. Let B be a basis of simulation of a system M in another system My
such that M <z M,. Then for any subsystem M' of M, M’ <pM,. m

Using this lemma we immediately obtain

THEOREM 5.1. If M <y My, then, for any iterative system Mo, MAMy <M.
THEOREM 5.2. If M <y M’ and M, <z M} and for any computation %, in M'
such that x, € R(v), where v is the initial property in B, we also have X, € CMr1 , then

(¢, er)evy  iff

MAM, <gM'AM;.

Proof. From the previous theorem we have MA My <p M’ for some partial
function f. It is now easy to check that under the assumptions of the theorem we also
have MAM, <g M'AM|. m
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THEOREM 5.3. If M <z M’ and My <z M', M and M, as well as M’ and M
are consistent systems, then

MvM, <;M' VM.

Proof. If M <g;M' and M, < M|, then MV M, <prop M VM. m

We shall now consider conditions which make the relation of simulation tran-
sitive.

If B= (v,V) and B, = (vy, V) are simulation bases, then B B, denotes
their composition, i.e. a simulation basis of the form B+ B, = (v- v, K- V}), where
VeVy={v''0":v' eV and v" eV,}.

THEOREM 5.4. Let M, M, and M, be iterative systems and assume that B = (v, V)
and B, = (vy, Vy) aré bases of simulation of M in M, and of M, in M, respectively,
such that, for any ' eV and v" €Vy, if R@)NDE@") # &, then R(v") < D@").
Then M <M, and My <g M, imply M <p.p M,.

Proéf. The theorem holds when R(@)nD(vy) = @, since v+ v, = & and there-
fore D(v-v,) = Q.

Suppose thus that R(@)nD(v,) # @ and let f and f; be partial functions such
that

m M <p M,
and ’ .
2) M, <p,1,M,.
Let ¥ = g D' v))nD(v - v), where the closure of D(v-v,) is taken
el

in M. We shall prove that M <p.5, s, M,, where f, = f; - f]¥. Observe that D(f;)
= Y, since for any v’ €V and all 9" € V;, D(v'-v"") = D(v') we have ¥ < D(f).
Moreover, R(f1Y) < D(fy). - '

Consider an arbitrary computation X, = (xo, Xy, -..) in M with xo € D(v* v).
Let x; be a state of the computation X,. If x; € D(v") for v’ € B+ B,, then for some
?Y € B and vy € B, we have '

3) v = of vy,
Thus x; € D(vY), and by (1)
() (xuf(xi)) evy.

Since x; € D(v"'), we have R(¥{)nD(v3) # @. Thus, using the assumptions
of the theorem, we obtain f(x;) € D(v7). Hence we infer from (2) that

® , (f00). £ (=) e 5.

Thus, by (3), (4) and (5), (xi, (fi- F)(x)) ev”, which proves that condition (if)
of the definition of simulation is satisfied.
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It is also easy to verify that, by (1) and (2) and condition (jii) in the definition
of simulation, f>(X,|Y) is a subsequence of some computation in M, . In consequence,
M <3.B"f2M;. L}

THEOREM 5.5. Let M, M, and M, be iterative systems with a common set of
states X and suppose B = (v, V) is a basis of simulation such that all properties

_in V are equivalences in X. Then M <z M, and M, <,;Mz-imply M <gM,.

Proof. Suppose M < ;M; and My <p s M,. Let Y = () D(v)nD(z), where
veV -

the closure of D(v) is in M. We shall prove that M <p ; M,, where f, = f; " f|Y.
Observe that again D(f;) = Y.

Assume that X, = (xo, Xy, ...) is a computation in M with x, € D(v). If x;
is an arbitrary state of the computation X, and x; € D(?') for some ¢’ € ¥, then
(x:,f(x))ev'; v being an equivalence; also (f(x:), x;}ev’. Thus f(x) € D(¥')
and (f(x), /1 (f(x))) e @'. By the transitivity of o’ we have then (x;, (fy ' f)(x)) e 2",
It is easy to observe that the sequence f,(%,|Y) is a subsequence of some compu-~
tation in M,. Thus M <pr M,. m

Given a basis of simulation B of one iterative system. in another, it may some-
times be useful to find another basis By, in some sense simpler than the given one,
and such that properties in B may be obtained from those in B.

THEOREM 5.6, Let M = (X, ) and My = (X, ®,) be iterative systems and sup-
pose that B = (v, V), where V = {9, }1e1, is a basis of simulation of M in My such
that for any property v, eV and arbitrary x € X and x, € Xy, if (x,x;) €v;, then

6 {iel: xeD@)} = {iel: x; e R®)}

and for all v; % v, i€ I, D(w)ND() = . Then there exists a basis of simulation
B' = (', V') such that: .

() if M <pM,, then M <gM,;

(ii) the properties in B' are disjoint, i.e. for any vy, v, in V', if vy # 05, then
D(@)nD(;) = B;

(iii) for every property v; & V there exists a subset V{ < V' such thatv; = |} v".
e

Proof. For any T < I let vy be a property in X'x X, such that for all xe X
and x; € X,

G, %) evp iff  ((x,x) ew ifand onlyif ieT).

Let V' be the set of all non-empty properties vy for all T < I, i.e.
V'= {o;: T < I}—{D}.

L]

Properties in V' are disjoint. Indeed, suppose T # T’ and x & D(vr)nD(vy:).
There exist some Xy, X, € X; such that (x,x,) evr and (x,x,) €vp. T’ being
non-empty, there exists some property v; with i € T such that (x, x,) € ;. Moreover,
if iy e T—T' (analogously for i, eT"—T) then (x,x;)evy, and (x,x3) ¢y,
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s

Hence i, € {iel: xeD(v)} and iy ¢ {iel: x, e R(v)}, which contradicts (6).
This proves (ii).

By the definition of ¥, for every property v; €V, v; = vp. Assume

D(u,)LcJDw,)
(x,%) ey and let T= {jel: (x, x() ev;}; then clearly (x,x,)evy and D(vy)

< D(v;). Hence v; < vr. The second inclusion is obvious.
: D(p)SD(v)

Since D(v;)nD(v) = @ for all v; # v, the property v belongs to V': if v = v

for some i, € I, then v = vy,. Let the basis B’ be defined as follows:
B = (v,V).

‘We shall prove that B’ is a basis satisfying (i) (by the above argument it satisfies
(ii) and (iii)). Suppose- M < M, and let X, = (%o, x;, ...) be a computation
in M with x, € D(%). Consider an arbitrary state x; of this computation such that
x; € D(vy) for some T < I Sincé for all ze T, x; € D(v;), we have (xi, f(x)) e,
for t e T. By (6), also (x:,f(x)) e vr.
) ‘We also infer that f(X,|Y) is a subsequence of some computation in M, , where
Y= UV D(@)nD(@) and the closure of D(p) is taken in M. This completes the

v'eV”

proof of the fact that M <p ,M;. m )

Given two iterative systems M and M, such that M <z M, for some simu-
lation basis B, it may be important to find a simulation basis induced by B which
would ensure the simulation between quotient systems obtained by some congruences
in M and M. This may be the case when we look for simulations preserving some
congruences. We shall proceed to construct such a basis.

Let M = (X, n) and M, = (X, 7, be iterative systems and , ¢, congruences
in M and M, respectively. Suppose B = (v, V) is a simulation basis of M in M.
For any property v’ € ¥ we define a property o’ in X/o x X; fo;, called an adjoint
Dproperty with respect to v', such that, for any a € X/o and feX,/o,, (a,f) €¥
iff there exist x € @ and y € f such that (x,y) €v'.

. A basis of simulation B = (7, V), where  is the property adjoint to v and ¥
is the set of all properties adjoint to properties in ¥, will be called the simulation
basis adjoint to B.

THEOREM 5.7. Let ¢ and g, be congruences in iterative systems M = (X, n)
and M, = {X;, ny), respectively, and suppose B is a simulation basis of M in M.
Assume that for any property v in B and, for any x,y € X and x,, »eX,

(1) Ef (xsy) EQ’ (x1:y1) E@l and (xs xl) €U, then (.ysy1> €7,

(11) lf (x's y) €g, (xs xl) €v and (y: yl) €9, then (x!.s yl) €0y.

Then M <y M, implies Mfo <5M,/o,.

Proof. Supposg M < ;M. Let fbe a partial function from X/o into X,/e,
such that )

(2) if o € X/p, then a € D(¥) iff there exists an x € o such that x € D(f);

£b) if @ € X/o, then f(&) = [f()],, for an arbitrary element x e a~D( ).

S is a well-defined function. Indeed, suppose x,y anD(f). Then (x,y) ep

icm®

THEORY OF COMPUTING SYSTEMS 121

and x € D(v) for some property v in B, since x € D(f). Hence, by the definition
of B-simulation, (x,f(x)) € v. We now have (x, ») € g, (f(x), f{x)) € o, and (x, f(x) )
ev. Therefore, by (i), also (,f(x))ewv, which proves that y € D(z). Therefore
(r.f()) ev. Applying (i), we infer that (f(x),f(»)) € o,. This shows that f()
does not depend on the choice of elements from the set anD(f). It may now be
easily verified that M/o <37M /o,. ®

II. STORED PROGRAM COMPUTERS

The considerations in this chapter concern properties of stored program computers.
(SPC) as defined in [21]. The model discussed here seems to be an adequate de-:
scription of existing digital computers, being at the same time a relatively simple
one as compared with other formal notions of a computer (see e.g. [1], [8], [9].
[11], [33]). The notion of a program is introduced here as an object related to some
computer. In fact, a program may be considered as a description of some part of
potential computational capabilities of a computer. Hence investigations of program
properties turn out to be investigations of computer properties as well.

In the present chapter only some properties of SPCs are presented. Other
results (e.g. regarding properties of translators) may be found elsewhere (see biblio-
graphy in [16]). ‘

In the first section the definitions of a SPC and a program are introduced,.
as well as some other basic notions related to them. In Section 2 it is proved that
an instruction list of an SPC may in some cases be reduced without diminishing:
the computational power of thé computer. Section 3 describes a method of compar-
ing programs through iterative systems which they generate. In Section 4 decompo-
sition of programs into subprograms is used for program simplification. In the last
three sections a classification of programs is given. This classification is based on
the length of computations of a given program, the memory occupied by these:
computations and the structure of programs.

1. Stored program computers and programs

In Chapter I we considered iterative systems as a very general model of digital
computers. However, for many specific problems concerning computers this model _
is not’ rich enough. In this section we shall introduce iterative systems with
additional structure imposed on the set of states and the transition function.
Such systems seem to be a much closer description of existing computers of the
von Neumann type and they will be called von Neumann computers or stored
program computers (SPC). A stored program computer M = (C, %) is an iterative
system specified as follows.

Let 4 be an arbitrary at most countable non-empty set (the set of addresses
of M) and let A = B (B is the alphabet of M). Then C is some subset of the set
B™1 of all partial functions from 4 to B. C will be called the memory of M and its.
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.elements will be called memory states. If ¢ € C and a € D(c), then ¢(a), if defined,
is the contents of the address @ in the memory state c.

In the set 4 we distinguish one addréss I, called the instruction counter, assum-
ing /€ D(c) and c¢(/) e 4 for all ce C.

To define the transition function = of the system M, suppose there is a certain
finite set of elementary operations {fi, ...,fy} (i.e. fi is a partial operation in B
with arity ar(f})) associated with M. Then we define an alphabet & = {f,, ..., f,,
o, (,),>}, where fy, ..., f, are names for elementary operations in M. For every
such name set ar(f;) = ar(f;). The set of terms over o is the least set T’ such that

@ AcT,

(ii) if te T, then a(t) € T,

(iii) if fi e o and ar(fi) = m, t,, ..., tn € T, then fi(t,, ..., tn) € T.

The set # = {t > 1': ¢, € T} will be the set of instructions over T and some
subset R of this set will be assigned to the stored program computer M. R will be
-called the instruction list of M. )

Terms and instructions being defined as syntactic entities, we define a partial
valuation function v,: T — B for every c € C as follows:

@) forallae 4,v.(a) = a,
(ii) if 7 € T, then v, (a(t)) = ¢(2.(2)), ]
(i) if fie o, ar(f) =m and t;, ...,t, € T, then
Ve (filta, s ) = Fi(wetD), vovs va(t))-

Suppose » € R and r = ¢t — t'. The realization of r is a partial function g,:

«C — C which assigns to a memory state ¢ € C a new state g,(c) (if defined) such

‘that
(1) if a= v,
@r(c)(a) = A(C(I)) if a= ls a# vc(t’)’ »
c(a) if asl, a#o/(),

where A: 4 - A4 is a given function which changes the contents of the instruction
-counter /. '

Let R be the instruction list of the SPC M. Defining a partial function » from
Bonto R, we obtain a coding of instructioris in M so that »~1(r) is the set of codes
of r. % will be called the coding function of M. Let

o = x(c(c(l))) .

¥ is an instruction uniquely defined for each state c.
Now let 7 be defined as follows:

7(c) = or,(c)

for every ¢ e C. Hence ¢ € D(n) iff c() e D(c) and c(c()) e D(x) and ¢ e D(g,).

Thus a stored program computer M = (C, =) is fully described by a sixtuple
M =-(F,?, R, 0,%, 4,1y, where o associates with every r € R its realization or; the
remaining components have been described above.
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Let us now consider an instruction r € R. We shall define the data and result
regions of r in a state ¢. Assume ¢ & T. Then the data region D.(t) of the term t in

a state ¢ is defined as follows: '
@ D.(t)y=9 if ted,
(i) () = De(t)U {oc(t)} if 1= a(t),
(i) D(t) = D (t )0 ... UD(tw) if £ =fi(ty, -o.s tw).

Then the data region of an instruction r = ¢ — ¢’ in a state ¢ € C is the following
set D(r): :
Dy(r) = D(t)uD.(t').
The result region of r in a state ¢ is simply the set

Re.(r) = {v.(t)},

which is empty when v.(¢) is not defined.

Let M = <(C, R, ¢, %, A,1> be an SPC and C = B, A program in-M is any
partial function ¢: 4— {I} - R with a finite domain. Thus a program ¢ associates
with every address a € D(¢) some instruction from the instruction list of the SPC.
An element (a, r) € A— {I} X R will be called a labelled instruction. Hence a program
@ may be identified with a finite set of labelled instructions such that if (@, ree
and (a, ry) € @ then r = r;. We shall often consider programs as such sets (which
are graphs of the corresponding partial functions).

We shall say that a program ¢ is stoted in a state ¢ € C (or ¢ has the program ¢
stored) iff %(c(a)) = @(a) for each address a & D(g). Thus g is stored in ¢ when
for any labelled instruction (a, r) € g, a code of r constitutes the contents of the
address a in the state ¢. We shall denote by C? the subset of C consisting of all states
which have the program ¢ stored, i.e.

ceC? iff ¢isstoredin c.

Let the realization of a program ¢ in M be a function g,: C — C such that
o = f M lC'P:

where fy is the result function in M. Then, for any ¢ € C?, fi(c) may be interpreted
as the result of the program ¢ applied to ¢ (which may be undefined wheg ¢ ¢ D(fu))-

Let us now define some properties of programs. We shall-say that a program ¢
is open iff there exists a state ¢ € C® and k > 0 such that 7*(c) () ¢ D(¢). Therefore
a program @ is open if during some computation starting with a state which has ¢
stored the instruction counter points to some a({dress which is not a label in ¢.
A program is closed when it is not open.

We shall say thatea program ¢ is self-modifying if during its computations
it erases or changes some of its instructions. Strictly speaking, ¢ is self-modifying
iff, for some ¢ € C? and k > 0, *(c) ¢ C*. A program which is not self-modifying
will be called fixed.

Let ¢ be a program in M and assume a € D(g). Then the pair (g, a) will be
called an kprogram in M. If p = (g, @) is an l-program, then CP will denote the
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set of all states ¢ € C which have the l-program p stored, i.e.
, Cr={ceC? c(l) =a}.

In other words, an J-program is a program with the first instruction distinguished,

In the following sections we shall consider properties of computers and pro-

grams so defined.

2. Instruction list of SPC

We shall present here a reduction theorem for the number of instructions. This
theorem states that the number of schemes of instructions in a stored program

computer can often be essentialy reduced without decreasing the computing power

of the computer. :

Let M be a stored program computer with transition function 7, instruction
counter /, memory C, coding function » and a set of instructions R. Let p be an
l-program in M. We shall use the following. notation:

C? = CPuR(CP)UR(CPU ...;
Ar = {aed: )@k (7*(c) () = a)};

PP = U Dc(rc);

ceCP

D? = PPUAP—{I};
I? = {reR: 3¢)c@)or @R[ = ro) A (#*(0) = ¢)]).

The set CP is the closure of C” in M. The set 4 is the set of all addresses with
the following property: their contents (in a certain memory state) will be treated
as an instruction code when the computer M starts a computation with a state
in which the Fprogram p is stored. The set I? is the set of all those instructions which
are performed when the computer M starts a computation with a state in which
the I-program p is stored. The set P? is the sum of data regions of all instructions
in the set I7.

We shall consider only such Jprograms p in M that C? < D(n,).

By Py, we denote the set of all ~programs of the computer M and Fy will
denote the set {¢”: p e Py}. '

We shall limit our considerations to machines fulfilling the following assump-
tions (i)~(iv):

@) Assumptions on memory C:

(2) 4 = B =N, '
(b) Cis the set of all functions ¢ from N into Nesuch that {a: c(a) # 0}
is a finite set;
. () An infinite partition of N is defined, i.e. a family of infinite sets {4},

such that iU Ai =N and 4;nd; = O for i # j. The elements of 4,
=1
will be denoted by af for i > 0.
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(ii) Assumptions on function A: for any i,j e Nif c(l) = al, then A(c(D)) = al,,.
By R° we denote the set of instructions containing the following instructions
(and only these instructions):

) a®) ~ a, oc(u(b)) —a, a@—oab) fora,beN,;
2 b-1 forbeN;
(3) t-1  for such ¢ that there exist x, y, b € N with the following property:

(2) for arbitrary ce C
b if (x) = c(),
o) = { AeD) i e(x) # ).

If x,y,beN and ¢ is a term with property (3a), then the instruction ¢~ / will
be denoted by [x, y, b].
(ili) Assumptions on the instruction set R:
(8) Xf {fi, ..., fx} is the set of names of elementary operations, then
M k=3;
(2) f» is the name of the function fa(n) = n+1 for neN;
(3) f; is the name of the function f3(n) = n=1 for neN;
(4) f1 is the name of the empty function and ar(f;) = 1.
(b) For any b, y, x € N there exists a term ¢ with the property (3a).
(¢) R = R .
@ (@)= b: i=2,3; a, beN} =R
@) fi(a(©)—~IeR.
The instruction f; (¢(0)) — [ is.denoted by STOP.
An ‘atomic instruction is any instruction in the form

Fal@), ..., «@)) b,

where aj, ..., ax, b €N, f is the name of an elementary operation and ar(f) = k.

In the sequel some special kinds of I-programs will be used. An Fprogram
p = {p,a) in a stored program computer M will be called regular if the following
conditions are satisfied:

@) if p(x) = STOP, then x ¢ P§ (where x € D(®));

(i) if ¢ € CD(fy), then rp = p(c'(l)) = STOP, where ¢’ = fu(c).

A self-regenerating J-program (in M) is any Fprogram p = (g, a) such that

CL = D(fy) and [fu(Ch) = Cf.

Self-regenerating and regular l-programs are called simple Fprograms in M.
By ®” (or ®f) we denote the set of all simple F-programs in M.

Let {fi,...,fc} be the set of names of elementary operations of M and let
r=1t—1¢€R. Let a, ay, ..., .3 be distinct even positive integers. The sequence
obtained from r by substituting a; for every fy (i = 1, ..., k), @y for the symbol
(> @iy 2 for), @y 5 for the symbol — and a, for « and 2m+1 for any address min »
will be called the number of r. The mapping, thus defined, from Ry into N + will
be denoted by n and the inverse mapping (with the domain R(#)) by nt,
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Now we are going to define some class of functions computable by a stored
program computer M.
Let g e N*I™1. We shall call g simply M-computable, where M is a stored
program computer, if for every n € N there exists an I-program p € ®} such that
(1) Diy © A2V AyUdnyy;
@ D(fi) > C7;
@) if ceC?, c(@) =m and (c(a}), ..
- Su(e)(ak +z)) g(ﬂ'(‘h)» -
S @@
@ if ceCr, c(df) =m and (c(a}), ...
where k = fu,(c)(a5*%);
(5) I has only a finite number of instructions containing names of elementary
operations and these instructions are atomic.
The last assumption on computers is the following:
(iv) Assumptions on coding functions and simply computable functions:
(a) if M and M’ are stored program computers, then the functions
no sy and %' on~! are simply M’-computable;
(b) the function f'e N+ such that D(f) is a set of sequences of length
1 and f(a}) = af,, for i, > 0, is simply M-computable;
(©) %y is a bijection. )
We can compare the realizations of Iprograms using the relation S defined
in the following way:
Let M, M’ be stored program computers. We define a relation S < F, % Fypr
as follows: for any g € Fy,, o' € Fyyr
0S¢’ iff there exists a one-to-one mapping « of N into N such that for every
memory state ¢ of the computer M there exists a memory state ¢’
_of the computer M’ such that
(@ ¢” > ca, where cx) = c(a*(x)) for xeR(x) and D(c,)
= R(®);
(b) if ¢ e D(g), then g (c”)(aa) = g(c)(a) for a € D(c);
(0) if ¢ ¢ Dg, then ¢ ¢ Dg'.
By S[g] we denote the set {g: o0Sg}.
We say that the semantic of M is expressible in M' (and we denote this fact

. c(”m))e-D(g)a then (fM(C)(ﬂ ”)) e
C(am)) and fi(c)(@i}) = 0, where k =

s c(@h)) ¢ D(g), then fu(e)(@itd) = 1,

by M < M) if for any i (1 < i< k) there exist addresses af,af, ..., aP such
that
aP #£aP for j#Ej 0<j<i, 0<j <i);
ar(f) =n  and  fi(w(@®, ..., « a) - o € Ry,
where {fi, ..., fi} is the set of elementary operations of M.

If P c Py, then we say that P is of M-finite type if the set
U It~ Ry,

peP
is finite and includes only atomic instructions of computer M.
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If P = P,y, then by Fp we denote the set
{ohe: peP}.

The second relation which we define in the family of stored program computers.
is the relation of inclusion.

Let M and M’ be stored program computers. We say that M is included in A",
which is denoted by M < M, iff there exists a set of M-finite type programs P < Py-
such that .

(VO)ru(SlgINFr # 9).

We have the following theorem. '

THEOREM 2.1. Let M, M’ be stored program computers fulfilling assumptions
O~(v). If M < M', then M < M'.

Proof. Let «,: N— N and ak(n) = abf}, for n=0,1,2, ..
by ¢, we denote a function

o {dbt, Lk, L N
such that ¢, (x) = c(oz,;’(x)) for x e R(w). By Z(c, ) we denote the set (see
Fig. 1)

If ¢ e C, then

[e" e NV: ¢"|D(cy) = cay A (¥)y (¢ (d53") = m)}.

)
H n : alﬂ'l alzc-:ll
¢ (n) \ " n o \
Fig. 1
Let {fi, ..., /;} be the set of elementary operations of M and, fori =1, ..., n,
let @, ..., o be distinct addresses such that

File(ay, ..., a(@$D)) — ab are in Ry
Let k be a nonnegative integer such that the addresses mentioned above and Iy-
are in 4;U ... UAy.
It is possible to construct an l—program g which has the following properties:
@) {g} is an M-finite type set of programs in M’;
(i) for an arbitrary /-program p in M and ce C”

ceD(fy) = (V" crnzie,an (¢ € D(far));
(i) if ¢ € C"nD(fy) and ¢’ € C'nZ(c, ), then for ae N
Srr(€e”) (“(a)) = fu(c) (@).


GUEST


x

128 W. BARTOL, Z. RAS, A. SKOWRON

From (ii)~(iii) it follows that if p is an lFprogram in M, then
o? Spt.

Hence (Yo)r,,(¢" € Sle]) and (Yo)r, (Sleln {0} # 9).

From the above considerations we infer that the construction of ¢ with pro-
perties (i)-(iii) ends the proof. m

Now we are going to present the construction of such an /program.

If ce Cand (1) c(dst®) = nforn= 0,1, ..., then by ¢, we denote a function
from N in N which is defined as follows:

c(n) = e(dstt) for n=0,1,..

If ¢ is a program, then by @(a) we denote the program which is obtained from P
by substituting the instruction a — / for any instruction STOP in ¢, i.e.
if x # STOP,
otherwise.

X
s ={>_

First we shall construct an /-program g4 = {g,, d5"1°®> which has the follow-
ing property: for any ¢ € C%, if (1) is satisfied, then fi,(c)(a¥*1°) is the code of the
instruction of the computer M executed in the state ¢,. We define as follows:

h P1

1 = {<ab10°, a(aktl, ) — ak*3),

<ak+100 ak+1 - af'I-S)’

<ast1o0, 1 — af*sy,

<ak+1oo u(a(ak+5)) - a5+4>,

<ak+1oo a(1§+3 k+4 ak+100]>

<a§+100 a(a1+5)_>ak+101>

<dk+100 1> a’é*'"’l),

(akr1oo, 102 l)}U

Ut 102(aE 100U

U{<a§+1oo, a(al;+103) N al{+1o4>’
{ak*t100 1 aﬁ““),
A6, gy 05 Dl

Uy 10s(@i10%0

u{(a’l"{w", a(a}’“os) - al{+5>,
<ak+1oo a§+100 - 1)
<ak+1oo a(a +5) - ak+1o7>
<a1§+100’ 1> a’(§+1°7>,
SAE0, 3y 108 ~ Div

U+ 108(@51°0) U

U{<ak+1oo a(oc(ai‘“”))—»a',‘*“’),
< k1100 STOP)},
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where the function f(a) = ali, (j,7/=0,1,..) is simply M’-computable by
Giri = {Pris Ay and :
Dt & Aoy Odp iUy . (=1,2,..).
By the assumptions of Theorem 2.1 there exists a simple l-program in M’,
= (@, @z such that D% < dry19Udry1, VA2 and the function mo xpt
is snnply M’-computable by g,. Let
= (pu— {<ak8°%, STOPY) U {Cak§19, 1 - g5+19),
<ak+IOD’ a, — IM’>}U(772.
An l-program g5 = {g,, a§**°% in M’ has the following property:
 ifceC%, then ¢ € D(fir) and for (c)(ak+'2) = n(uM(c,e(z))).
It is possible to construct an Mprogram g, = {p,, a;)> with the following pro-

perties:
(a) there exists an a € D(p,) such that if the state ¢ fulfils the following con-
dition:
(2) ceC% and (1) holds and for some n,b,, ..
= n, c(@*?) = by, ..., c(@+*®) = b, and b1, .
the instruction r = t = t’ € Ry,

, b, we have c(ak+1?)
-5 by is the number of

then
’ (31) Sw@D=a=ce D(”M), )
(32) a ¢ Ph, . '
(b) if condition (2) holds and ¢, & D(m:M), then
V(1) = fuu () (@5+12);
; 0,(t") = far(S)(ai**?);
(©) S (OIN— Ay 120{I}) = elN=(diy 120 {I}) if (2) holds. ‘ )
In the same way as in the first step of the proof one can construct a simple
lprogram gs = {ps, asy such that: if ¢ € C% and c(a¥*1?) = n, then fM (c)(a’{*”)
= aitl,, where m is such a number that .
e@iN =n and fir(QIN- ({I}UAC!OHc) = c|N— {4304z {l})
Let
s = ga(a/as)Ups(alt )0 {<ab*, a(ah12) - aldh ), (af*, ak+199 l)}
where
@a(x) if x'# a,
va(afas) () = {a, ~ 1 otherwise.
. It is possible to prove that an [program ‘ L o
q = {psU@s, ak*1o0) Voo e e
has mentioned properties (I)~(if).() m IR

L Tl e

(®) One can construct /-programs @s, ¢a, @s with pairwise disjoint domains:

9 Banach t. 1I
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3. Algebraic complexity of programs

In this section we associate with each program in an SPC a pair of iterative systems
which represent the computations of the program and the schemes of these computa-
tions. Thus programs may be compared through their iterative systems.

Let M = {C,m) be an SPC and ¢ a program in M. As usual, C” denotes the
closure of the set C? in M, i.e.

C? = Cj 7(C7).
i=0

Thus ¢ e C? iff ¢ can be reached through some iteration of = from a state which
has the program ¢ stored.
Let M(p) = (C?,n)>. This subsystem of M will be called the system of the
program @. Tts computations are all computations in M induced by the program ¢.
Every computation ¢, = (Co, €1, ---) in M determines a unique sequence of
labelled instructions of the following form:

8@o) = ((eo®» 3G, (e, D), --.),

where ! is the instruction counter of M. The sequence S(¢,) will be called the scheme
of the computation T,. The scheme S(Co) is the sequence of all labelled instructions
performed during the computation ¢;.
Suppose M(¢p) = {CP, m) is the system of a program . We define a relation
% in the set CPn (D(@)UR(w)) of all active states of M(g) as follows:

1) (c, 1) € RY iff [c, ¢; € D(@) & () = S(E)]v
V[e, e ¢ D) & @c', ¢1) (ml(e) = ¢ & afer) = ¢ & S(E) = SED)].

Thus two states are in the relation R}.‘} iff they are initial (or final) states of
computations with equal schemes. It is easily verified that R} is a congruence in
the: subsystem C®M (D(m)UR(m)) of the system M(g). Therefore we may consider
the quotient system M*(¢) = {C?n (D(n)uR(n))/R}':,, a*> which will be called the
schematic system of @, since there is a 1-1 correspondence between the states of
M*(@) which lie in the domain of w* and the schemes of computations in M(gp).

Thus any program ¢ in M may be described through two iterative systems
associated with it: the system M(g), which represents all the computations induced
by @, and the schematic system M* (), which represents all the schemes of computa-~
tions in M(p). We shall prove that these descriptions cover the whole class of non-
empty at most countable iterative systems, i.e. each such system with a given con-
gruence describes some program in a certain SPC.

THEOREM 3.1. For any nom-empty iterative system N = (X, m) and any con-
gruence g in N such that X|p is at most countable, there exists a stored program computer
M ={C, n) and a program ¢ in M such that there is an isomorphism h of N onto
M(p) which satisfies the following: for any x, x, € D(m), (x, %) € ¢ iff (h(x), h(x,))
€ RY. .
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Proof. Given an iterative system N = (X, #> and a congruence g in N, define
an SPC M = {C, m,) as follows:
" A =X[pu{0,1},
B = X[/puXu{0,1} and {0, 1}n(X/ouX) = @,
C = {ceB4 c(1) eX & c(0) = [c(1)], & (Va e X/g) (2 € D(m*) = c(a) = 1
& a ¢ D(w*) = c(a) = 0)},
where o* is the transition function in the quotient system N/g.
Observe that memory states in C are total functions and for any c, ¢ €C,

® olXle = o;/X/e. o

Associate with M one unary operationn. Let o = {f, «, (,), *} be an alphabet
over which the terms are built. Take an instruction list R consisting of two instruc-
tions only:

= {fl®) - 1,n),

where r, is any instruction (e.g. r, = a(1) — 1, an instruction which changes at
most the instruction counter) and f is 2 name for z. Let 4, the function which changes
the instruction counter, be any function from A4 into A such that

MX/o = m*. .

The address 0 is the instruction counter of M.

Finally, let »: B — R be a partial function such that D(») = XU {1} and
. x(l) =r,
#(x) =ry forall xelX.

Now for any x € X let ¢, be a state in C such that ¢;(0) = [x], and ¢,(1) = x
(by (2) this defines ¢, uniquely). It follows from the definition of C that the map-
ping

h(x) = ¢

is a mapping of X onto C. Assume x € D(n). Then [x] e D(n*) and c,(cx(0))
= ¢,;([x]) = 1, which ensures that » is defined on c. (cx(O)). Therefore ¢, € D(;).
Similarly, x ¢ D(x) implies c ¢ D(w,), since x(c,, (c,,(O))) = %(0) is not defined.
Thus
3) x € D() ¢x € D(my).

Suppose ¢ € D(m;). Then r., = r and, by the definition of a realization of an
instruction, g,(c,) is a state such that

if and only if

m(e, (1)) ifa=1,
or(ex) (@) = | 7*(ex(@)) if a=0,
cx(a) if 0 a%# 1.

Thus g.(ce)(0) = m* (c<(0)) = a*([x])) = [#(x)] and e.(c)(1) = 7(cx(1)) = @(x).
Hence

“) 7, (cx) = gr(cx) = Crxy+

o
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1t follows from (3) and (4) that

) ifxe R(fy), then ¢ € R(fy).

Therefore, by (4) and (5) the mapping 4 is a homomorphism of N onto M. Since
it is obviously one-to-one, and by (3), it is an isomorphism. It is an obvious fact
that by the construction of M, if we take ¢ = {(1, ry)}, then M = M(p). Thus h
is an isomorphism of N onto M(p).

To prove that / is the required isomorphism, assume x, x, € D() and (x, x,)
€ 0. BY (3), ¢x, Cx, € D(my). Observe that ¢.(0) = [x] = [x,] = ¢;,(0) and ¢.(cx(0))
= ¢.([x]) = 1 = ¢x,(¢+,(0)). It may be proved by induction that these equalities
hold for any iteration of 74, as long as it is defined (in that case it must be defined
for both ¢, and ¢), ie.

' 7i(ex) (0) = (e, )(0)
and
wb(es) (h(e) ) = mk(cx,) (wh(ey) (0).
This proves that

) S(es) = S(Exl)
and therefore (cx, ¢x,) € R,

Conversely, assume x, x; € D(%) and (e, cx,) € RY. Since ¢x and ¢, belong
to D(m,) by (3), we have S(x) = S(Z;,). In particular, ¢,(0) = ¢, (0), which is
equivalent to [x] = [x,]. Hence (x, x;) € o, which completes the proof. m

Using the above theorem, we may reduce the investigation of some properties
of programs (which can be expressed in terms of iterative systems) to the investiga-
tion of such systems and congruénces in them. In the sequel we shall omit the as-
sumptions of iterative systems being at most countable. All the results hold for such
systems and all the constructions used render at most countable systems if per-
formed on at most countable families of at most countable systems.

Let us consider the following relation « in the class of all iterative systems:

M « M, .iff there exist homomorphisms -of M into M. ; and of M, into M.

This is easily seen to be an equivalence relation (superposition of homomor-
phisms being a homomorphism again). Homomorphisms being mappings which
preserve some general algebraic structure of systems, M «» M, means that two
systems have a similar structure or, in other words, have similar algebraic complexity.
Therefore the equivalence classes of «» will be called complexity classes.

We shall say that programs ¢ in an SPC M and @y in an SPC M, are

~—weakly similar iff M(p) < M,(p,),

~—similar iff moreover M*(g) +» M*4(p,).

Thus two programs are weakly similar when they have “similar” compu-~
tations and they are similar when they also have “similar” schemes of computations.

In the family of all complexity classes we introduce an ordering relation —:

[M] — [M,] iff there exists a homomorphism of M into M, . This relation
clearly does not depend on the choice of systems from the classes [M] and [M,].
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Suppose {Mi}ie is a family of iterative systems, M; = {X;, n;>. The disjoint
sum of this family is a system :

S M =X, n)
el
such that

X = ,LEJI &ix{i)), D@ = g (DG > {i})

(e (x,i) e D(@) iff x e D(m)), and w((x,1)) = (m(x), i) for any (x,i) e D).
In particular, when the sets X; are pairwise disjoint, the system <\J X;, U m)
iel lel

is (up to isomorphism) the disjoint sum of the family of systems {M;}is.
For any i € I, the mapping A;: X; — X such that &y(x) = (x, 1) is 2 homomor-
phism of M; into S M;. Moreover, if {g:}.y is a family of homomorphisms with
iel

g X; > X' for some system M’ = (X', #'), then a mapping g: X — X’ such’ that
g((x, 1)) = gi(x) is a homomorphism of S M; into M. This proves the following
. el

theorem:

THEOREM 3.2. Let {M;}ie; be a family of iterative systems. There exists a least
upper bound (with respect to —) for the family {[M{1}ier of their complexity classes, m

Thus complexity classes with — form a complete upper semilattice.

Observe that each iterative system M is a disjoint sum of three subsystems
(some of them empty, perhaps): the first contains all the states which do not belong
to any infinite computation of M, the second contains all the states which appear
in some infinite non-cyclic computation of M and the third consists of all the states
which appear in some cyclic computation of M. Thus in order to describe in more
detail the complexity classes and their ordering we shall distinguish three kinds
of iterative systems: finite, infinite and cyclic.

Finite systems. A non-empty system M = (X, n) will be called finite iff D(m)
= D(fy), i.e. when every computation in M is finite. Observe that a finite system
need not have a finite set of states. Let # be the class of all finite systems.

Let H,, be the function defined for a system M in Section L4. If M is a finite
system, then H,, is defined on all its active states. The following lemma holds:

LemMA 3.1. If m # n, then Hy*(m)nHi'(n) = O.

Proof. Assume m > n and let x € Hyi'(m)nHy* (). Then by the definition
of Hy, n"(x) € R(fy) and n"""(yr"(x)) is defined and belongs to R(fy), which is
a contradiction (by Lemma 1.2.1, R(fy)nD(7) = @). =

Let M =<{X,n) be an arbitrary iterative system. An infinite sequence
(%o, X1, -..) of elements of X is said to be a computation extended on the left (c.e.l)
of M iff for every i > 0 the sequence (X, ..., Xo) is a computation in M (which
is equivalent to xo & R(fy) and n(x;y;) = x; for all i 0).

THEOREM 3.3. If a system M, = (X,, m,» has a c.e.l., then for any finite system
M = (X, )y there exists a homomorphism of M into M.
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Proof. Let (dy, dy, ..
as follows:

for all x e X—D(m), h(x) = dy,

for x € D(w), h(x) = dy iff x € Hy' (l)

By Lemma 3.1, h is well defined on X. It is easy to prove that it is a homo-
morphism of M into M;. m .

THEOREM 3.4. Let M = (X, ) and M, = {X;,n) be iterative systems, M
e FL. If M has a cel., then there exists a homomorphism of M into M, if and only
if My has a cell.

Proof. The “if” part follows from the previous theorem. On the other hand,
if (dy, dy, ...) is a c.el. in M and 4 is a homomorphism of M into M, then by
Theorem 1.3.1, (h(di), .5 h(dp))is a computation in M, for anyi > 0, whlch proves
that the sequence (A(dy), A(dy), ...) is a c.el. in M.

From the above theorems we infer the followmg characterization of systems
with c.el.:

THEOREM 3.5. 4 system M, has a c.el. if and only if for any system M € F&
there exists a homomorphism of M into M,. m

It follows from Theorems 3.3 and 3.4 that all finite systems with c.e.l. belong
to one equivalence class of «» and there are no other systems in that class. Let
this class be denoted by CEL. The following is a consequence of Theorem 3.5:

CororLLARY 3.1. -CEL is the greatest element in the family of all complexity
classes of finite systems. m

Let us now turn to finite systems without c.e.l. The class of such systems will
be denoted by F&,. Thus F&, = F&-CEL.

LevMA 3.2, Let M = (X, ) €e FF,. Then Xy = X— R(w) is the least generating
set for M.

Proof. Suppose X, is not a generating set for M. Then there exists a state x
€ R(m) such that for any y e X; if #*(y) = x, for some k > 0, then y € R(w). Observe

that since M e F%,, x € D(fy)UR(fy) and Hy(x) is defined. Therefore we can
choose a sequence

Jbeacel in M, and assume M € F&. Define h: X — X,

aB® (x), AFO-1(x), ..., w(X), X, X1, Xz, ..
such that for any i > 1, #'(x;) = x. It is easy to check that this sequence is a c.e.l.
in M, which contradicts M e #,. Thus X, must be a generating set.

Moreover, suppose A X and Xo—4 # @. If xeX,~A4, then x¢R().
Thus x cannot be reached by any iteration of @ from a state in 4, which proves
that 4 is not a generating set for M. Hence X, is the least generating set. m

Assume that M e F¥,, M = (X, n) and M is connected. Define a function
oy which assigns ordinals to states of M in the following way:

(@) for every x e X—R(n), oy (%) = 1,

(ii) for every x eR(n), 0p(x) is the least ordinal greatcr'than any ordinal
in the set {0y (3): @k > 0)(#*(y) = x)}.
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It follows from Lemma 3.2 that o, is well defined on the whole set X.

Since M is connected, there exists exactly one state x, € X such that x, ¢ D(#):
if D(m) # @, then {x,} = R(fy); otherwise {x,} = X. Thus we may define uniquely
the type of M as the ordinal 0, (o). Let 0(M) denote the type of M. It may be proved
that every non-zero (and countable, if we restrict ourselves to countable systems)
ordinal is the type of some connected system in F&q. Also the following lemma
holds (the easy proof is omitted):

LeMMA 3.3. Let M = (X, n) € FF, be a connected system. If « = o(M), then
for any non-zero ordinal B < « there exists a state x € X such that oy(x) = f. m

The next lemma is an immediate consequence of a result by M. Novotny ([17],
[18D:

LEMMA 3.4. If M = (X, ) and M, are connected systems in Fq and h is
a homomorphism of M into My, then for any x € X, 0p(x) < 0p, (h(x)). ]

Now we can prove the necessary and sufficient condition for the existence
of homomorphisms for two connected systems in F&,.

THEOREM 3.6. Let o be any non-zero ordinal. If M' = (X', n') is in FF, and
is a connected system of type o, then for any connected system M = (X, 7y e FL,
there exists a homomorphism of M into M’ if and only if o(M) < «

Proof. The necessity of this condition follows from Lemma 3.4 by the defi-
nition of a homomorphism.

To prove sufficiency, assume « = o(M') = 1 This is equivalent to D(n') =
and if o(M) < «, then also D(n) = Q. Therefore the only mapping A: X —vX !
(X and X"’ are one-element sets) is obviously a homomorphism.

Suppose now o > 1 and assume that the theorem holds for all ordinals y such
that 1 € y < a.

Let @ = f+1 for some 8 > 1 and suppose that M = (X, =) is a connected
system in #, with o(M) = 8 < «. Observe that if Hy'(1) = @, then o(M) = 1,
D(%) = @ and again any mapping h: X — X’ is a homomorphism. Therefore we
can assume Hy'(l) # 9.

For any state x € Hy* (1) define a system M(x) = {U(x), 7,), where

© U(x) = |y eX: @k > 0) (#*0) = x))

and
m, = | (Ux)~ {x}).

Any such system is again connected, belongs to F&, and R(fyw) = {x}. Besides,
o (M(x)) = op(x) < 6.

Similarly,(®) for any z € Hy?(l) define a system M'(z) = (U(2), 7.y, where
U(z) is a subset of X’ defined as in (6) and m; = @'| (U(z) ~ {z}). Such systems are
also connected, belong to F¥, and R(fyw) = {2z}. Moreover, o(M'(2)) = oux(2)
< «. By Lemma 3.3, there exists a state z, e Hjt(1) such that o(M'(20)) = 0w(Zo)
= ﬂ Since for every x € Hy} (1) we have o (M(x)) < & < a, therefore o(M(x)< B

( ) Observe that H;}(1) 5 @, since o(M) = o > 1.
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and by our aséumption for any system M(x) there exists a homomorphism A, of
M(x) into M'(z,), which must satisfy k. (x). = z,. Hence we can define a mapping 5:
X - X’ such:that for any 4 € X,
: h(a) if aeU), xe Hi*(),
o o = @ 22V, w1
b if aeR(fu),

where {b} = R(fy). It may easily be verified that & is well defined (the sets U(x)
for x € Hy'(1) are a partition of X—R(fy)) and a homomorphism of M into M’,

Assume now that « is a fimit ordinal and M = X, 7y e FY, is connected
and o(M) = 6 < «. As before, we may assume Hy*(1) # &, Define the systems
M(x) for x € Hy'(1) and M'(2) for z e Hy! (1) as above. We then have o(M(x))
<8< @, 0(M'(2)) < o and for any ordinal y < « there exists a state z € Hy!(1)
such that y < o (M"(2)) < « by Lemma 3.3. Thus for every x € Hy;*(1) there exists
a z, € High(1) such that o (M(x)) < o(M’(z.)). Therefore, by assumption, there
exists a homomorphism 4, of M(x) into M'(z) With A.(x) = z;. Again define
a mapping 4 as in (7). It is a well-defined homomorphism of M into M. In conse-
quence, the theorem holds for any ordinal o« > 1. m

Every system being a disjoint sum of its m.c.-subsystems, we obtain by Theorem
1.3.2 and the previous theorem the following ‘

COROLLARY 3.2. Let M, My € F%,. There exists a homomorphism of M into M,
if and only if for every m.c.-subsystem S in M there exists an m.c.-subsystem S| in
M, such that o(S) < o(Sy). m

Assume now that M e #,. Suppose there is a greatest ordinal « in the set
O(M) = {o(S): S is an m.c.-subsystem of M }. It follows from Corollary 3.2 that
for.any M; € F&, there exists a homomorphism of M into M, iff for some m.c.-
subsystem Sy in M; o(S;) > . In consequence, M « M, iff « is the greatest or-
dinal in the set O(M,) = {o(Sy): Sy is an m.c.-subsystem of M, }.

Thus for every ordinal « > 1 we may define a class F, of finite systems without
c.e.l. such that .

M e F, iff «is the greatest ordinal in O(M).

On the other hand, assume that there is no greatest ordinal in the set @(M)
fmd let o = sup O(M). Then for any m.c.-subsystem S in M we have o(S) < « and
if y<a then, for some m.c.-subsystem S in M, y < o(S") < «. Therefore there
exists a homomorphism of M, € F¥, into M iff; for every m.c.-subsystem S,
of Jl{l, 0(St) < . On the other hand, there exists a homomorphism of M into
M, iff for every m.c.-subsystem S of M there is an m.c.-subsystem Sy in M, such
that o(S) < o(Sy). Thus M « M, iff o = supO(M,) and « ¢ O(M)). !

Consequently, we may define for every non-zero limit ordinal o a class FY = #F&,
such that . .

’ MeF? iff o= supO(M)anda ¢ 0(M).

Now using Corcﬁi«ry 3.2 and Corollary 3.1, we infer that the ordering — is

defined in the class #& = {[M]: M e F &} by the following properties:
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() for any ordinals a, 8 > 1, F, — Fp iff « < §;

(i) for any limit ordinal a, Fy is the predecessor of the class Fy;

(iti) CEL is the greatest element in #&.

Hence the class F& is well ordered by — and has a greatest element; thus.

it is a complete lattice with respect to ~. The least element in F& is the class F,
of all non-empty systems with an empty transition function.

Infinite systems. A non-empty system M = <X, n) will be called infinite iff"
D(fy) =@ (or, equivalently, R(%) = D(n)) and M has no cyclic computations.
Observe that M may have a finite set of states when the transition function is empty..
Let £& be the class of all infinite systems.

Let M = (X,n) be an arbitrary iterative system. A sequence (..., x_;,
Xg, X1, -..) infinite on both sides is said to be a computation infinite on both sides:
of M iff for any integer 7 € Z, the sequence (X;, Xi4;, -..) is a computation of M.
In other words, for every i € Z, 7(x;) = Xx;4;. We shall write c.i.b. for computations.
infinite on both sides.

THEOREM 3.7. If a system M, = {(X,,n,) has a c.ib., then for dny system
M = (X, n) € S there exists a homomorphism of M into M.

Proof. Let (..., Y-1, Yos V1, -.-) be a cib. in M;. Assume M e £¥ and let S
be a m.c.-subsystem of M. Define a relation gg in S so that (a, ) € g5 iff there exists.
a k > 0 such that #*(a) = #*(b). It may be proved that gg is a congruence in the
subsystem (S, 7). Let x, € S be an arbitrary state. For any state [x],, in the quotient
system S/os there exists an integer m > 0 such that either [z"(x)] = [xo] or [#™ (%)}
= [x].

Define a mapping hg: S/ps — X1 so that

Pk if [2*(xo)] = [x] for k >0,
hs(bD) = {y_k if [#*(x)] = [xo] for k > 0.

hs is a homomorphism of {S/gs, #*) into M; . Thus the mapping gs = hs " &y
where &,: S — S/gs is the natural homomorphism, is a homomorphism of § into:
M;. By Lemma 1.3.3, there exists a homomorphism of M into M;. m

THEOREM 3.8. Let M. = (X, =) and M, = (X, , m,) be infinite iterative systems..
If M has a cib. then there exists a homomorphism of M into My iff My has a c.ib.

Proof. This proof follows exactly the lines of the proof of Theorem 3.4. It
should be remarked that if (..., ¥, Xo, Xy, ...) i3 @ ¢.i.b. in M, then any homo~
morphism of M into M, is 1-1 on the elements of this sequence, since M, has no
cycles. m ) ‘

THEOREM 3.9. 4 system M, € S has a c.ib. if and only if for any system M
€ S there exists a homomorphism of M into M, .

Proof. The proof follows from Theorems 3.7 and 3.8. m

It can be seen that infinite systems with c.i.b. have the same properties in S5
as finite systems with c.e.l. in #&. Thus, denoting by CIB the class of all infinite:
systems with c.i.b., we have -
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COROLLARY 3.3. CIB is the greatest element in the family of all complexity classes
of infinite systems. W

We shall now deal with infinite systems which have no c.i.b. Let the class of
such systems be denoted by £¥,.

By an argument similar to the proof of Lemma 3.2 we prove

LemMA 3.5. Let M = (X, 7) e I&Fo. Then Xy = X—R(w) Is the least generat-
ing set for M. m

Now let M = (X, =) be any (not necessarily connected) infinite system without
<.i.b. For every x € X, let o,(x) be an ordinal such that

(@) if x € X—D(m), then opy(x) = 1,

(ii) if x € D(x), then oy (x) is the least ordinal greater than any ordinal in the
set {oy(»: @k > 0)(a*(») = x)}. In particular, we have oy(x) =0 for all
x € D(z)— R(7).

Since X—R(n) = (X—D(x))w (D(m)—R(m)) (becanse R(m) = D(m)), then,
by Lemma 3.5, oy, is well defined on the whole set X. Observe also that for systems
‘with an empty transition function—which are both finite and infinite—the two
definitions of the function o, coincide. Moreover, if « € oy (D(%)), then for any
0 < B <o, feoy (D). Thus if 0¢0p(X), then D(m) = @ and o0,(X) = {1}.

Using the function oy, we may define a function O, which to every compu-
tation in M assigns a sequence of ordinals

Ou(Zo) = (OM(xo): op(y), ), (x0y %15 +).

Let O(M) be the image of the set Cy of all computations of M. From the defi-
nition of oy we infer that each sequence in O(M) is increasing, .

I'= (I')sey and 4 = (4,),en are sequences of ordinals, set I'<<*+4 iff I',
< 4y for all n e N. This defines an ordering in any family of sequences of ordinals.

If I' = (I)new is any sequence of ordinals, let I'® for i > 0 be the sequence
0%, Iiyy, ...), called a segment (proper, when i > 0) of I'; if § is an ordinal, let
{8, I") be a sequence such that (8, Iy = 6 and (8, W = T’

The following theorem characterizes those sets of increasing sequences of
-ordinals which correspond to some infinite iterative system.

THEOREM 3.10. Let A be any set of increasing sequences of ordinals such that:

@ if e A, then for any ieN, 'V e 4;

(ii) let I'e A4:

@) if I'o = 8+1 for some ordinal 8; then (6, I e A;

(b) if I'o is a non-zero limit ordinal, then there exists a sequence of ordinals (Fede<a
such that lim O = I'o and for every & < a, (&, F) e 4.

where X, =

Then there exists a system M eJ.?’o such timt A = O(M).

Before proving the theorermgbsérve that under the above assumptions the set 4
has the following property:

LemMA 3.6. A sequence I' € A is not a proper segment of any sequence in A if and
onlyif I'h =0. m
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Now return to the proof of the theorem.

Proof. Define M = (A, ), so that D(z) = 4 and a(I") = I'® for any I'€ 4.
By (i), = is indeed an operation in 4. Clearly every computation in M is infinite
and, by the monotonicity of every sequence in A, no computation in M is cyclic.
Thus M € #%. On the other hand, if (..., I, I'°, I, ...) were a c.i.b. in M, then,
because of I = I'-1D for all ie Z and by the monotonicity of all sequences,
{I'}iez would be a set of ordinals without a least element. Thus M e S¥,. We
claim that O(M) = A4.

Observe that for each I' € 4, o, (I") = I';. Indeed, if I" ¢ R(z), then 0y (1) = 0
by the definition of oy . But I" ¢ R(x) is equivalent to I" not being a proper segment
of any sequence in A and thus, by Lemma 3.6, I\, = 0. Therefore oy (') = I';.
On the other hand, assume I" € R() and for every 2 e U(I") (see (6)), & # I, the
condition 0y(2) = Zj holds.

Suppose Iy = 8+1. It is easy to prove using (ii) and the monotonicity of
sequences in 4 that 6+1 is the least ordinal greater than any ordinal in the set
{ou(2): @k > 0)(#*(2) = I’)} {Zo: @k >0) (Z® =1)}.

Similarly, if Iy is a limit ordinal, then by (ii) there exists a sequence (dg)e<a
such that llm 6 = I, and for each £ < &, d¢ = (&, ") € A. Then 4, U(I),

4, # T and oM(Ae) = ;. Thus, by definition of o, op(I") > = I',. Besides,

for any 4 € U(I"), 4 # I, we have oy(4) = 4o < I by monotonicity of A (since
A% = ' for some k > 0). Hence again I', is the least ordinal greater than any
ordinal in the set {0, (Z): (3k > 0)(#*(Z) = T}, and therefore oy(I) = Io-
By Lemma 3.5, this proves that op(I") = I'y holds for any TI'e A.

Suppose y = ([, '™, '™, ..) is a computation in M. Clearly, On(y)
= (on (D), op(T'D), 00 (I'®), ...) = (I'p, I'y, Iz, ...) = I. Thus O(M) = A. Con-
versely, if I'e A, then I" = Op(y) for a computation y defined above. Hence 4
< O(M), and consequently, A = O(M), which proves the theorem. m

It may easily be checked that for any system M € S, the set O(M) is a set
of increasing sequences of ordinals for which conditions (i) and (ii) of Theorem
3.10 hold. Sets which satisfy the assumptions of that theorem will be called
defining sets.

The following two lemmas are non-essential modifications of results by M. No-
votny ([17], [18]).

LemMA 3.7. If h is @ homomorphism of M = (X, m into M, = (Xy, ., M, M,
€ ISPy, then for any x € D(m), 0y(%) < 0, (h(x)). W
LEMMA 3.8. Let M = (X, n) and My = {X,,m,> be two connected systems,

M, M, e I&,. If there exist states X, € D(w) and yo € D(m,) such that for any
2= 0 rthe inequality

hm 0g

Om (ﬂ’"(xu)) < om, (1 (0))

holds, then there exists a homomorphism of M into M. m
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Now let 4 and B be two defining sets. We shall say that 4 precedes B (A < B)
iff for any I & A there exists a A e B such that I' <*. This is a reflexive and tran-
sitive relation.

Using Lemmas 3.7 and 3.8, we shall prove the following theorem.

TueoreM 3.11. Let M = (X, my, M, = Xy, 7y and M, M, € SS,.
exists a homomorphism of M into My if and only if O(M) < O(M,).

Proof. The theorem is trivial when D(n) = @. Assume therefore that D(z)
# @ and let & be a homomorphism of M into M;. Suppose I'e O(M). Thus there
is a computation ¥, = (Xo, X1, ...) in M such that Oy (Xo) = I By Theorem 1.3.1
the sequence k(%) = (h(Xo), A(xy), ...)is a computation of M :let 4 = Oy, (h(x0)).
Then, by Lemma 3.7, I' <*4. I' being an arbitrary element of O(M), this proves
that O(M) < O(M,).

Conversely, let S be an m.c.-subsystem of M. If card(S) = 1 (i.e. S consists
of one isolated state only), let hs be any mapping of § into X;. If card(S) > 1,
then assume that X, = (xo, X1, -..) is a2 computation in S and let I = ([7)mey
= Ou(%). By assumption there exists a sequence 4 = (4,)ney € O(M) such that
I'<*A. Let g = (Yo, Y1, ---) be any computation with Oy (Jo) = 4. Then from
Lemma 3.8 it follows that there exists a homomorphism hg of S into M|, since
for every n e N,

There

o (2"(x0)) =T, < 4y = 0y, (Wf@o))

Hence, for any m.c.-subsystem S in M there exists a homomorphism. &g of § into
M, which by Lemma 1.3.3 ensures the existence of a homomorphism of M into M;. m

By Theorem 3.11 we infer that for any M, M, € £&,,
Mo M, iff  O(M) < O(M)) & O(M,) < O(M).

Thus any defining set 4 defines indeed a complexity class of infinite systems without
c.ib. (which will be denoted by |4[) such that

Mel|d| iff OM)<A&A<LOM).
Moreover, ’
4] —|B] iff A4<B
and consequently,
Al = [B| iff A<B&B<A.

Thus [M] = |O(M)).
If {A4;}ier is any family of defining sets, then | 4, is a defining set again and
iel
sup {|4i| }ier—which exists by Theorem 3.2—is the class ’U AJ. Observe also that
iel

19 (& = O(M) for a system M with an empty transition function) is the least el-

ement in the family #% of complexity classes of infinite systems. Therefore F&
is a complete lattice under —, the greatest element being CIB.
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Cyclic systems. Let M = (X, n) be a non-empty system. Let d be a partial
function of X into N such that for x e X'
min{k: 7*(x) = x &k > 1}
undefined

if this is defined,
otherwise.

d(x) = {

A non-empty system M = (X, 7y will be called cyclic iff for every m.c.-sub-
system S of M the set d(S) is non-empty. Let the class of all cyclic systems be de-
noted by 4.

LeMMA 3.9. Let M =X, n), My, = (X, m;) and M, M, e 4F. Then there
exists a homomorphism of M into My if and only if for any m e d(X) there exists
an m, € d(X,) such that m, divides m.

Proof. Assume that % is a homomorphism of M into M, and let m e d(X).
Thus there is a state x € X with d(x) = m, i.e. #™(x) = x. Then

h(x) = h(@"(x)) = a¥ (~(x)).

Hence m > d(h(x)). It is easily proved that d(h(x)) must divide m.

Conversely, assume that S is an m.c.-subsystem of M and let d(S) = {m} (observe
that the function d is a partial constant function on each m.c.-subsystem). Suppose
S, is an m.c.-subsystem of M, such that d(S;) = {m,} and m, divides m. Take any
state x5 € S with d(xs) = m and a state ys, € Sy with d(ys,) = m, and define a map-
ping hs: § - Sy as follows:

hs(x) = a7 *x(ps,),
where k, is an integer such that k. = k (mod m), 0 < ky < m and (%) = xg
(K is uniquely determined for each x & S). It may be verified that A is a well-defined
homomorphism of, S into M, . By Lemma 1.3.3, there exists a homomorphism of
M into M. m

For any subset 4 of the set N* of all positive integers we shall denote by 4mia
the set of all minimal elements in 4 with the divisibility ordering (m precedes n
iff m divides n) in N*. Clearly, dpm;y # & when 4 # @. 4 is an antichain when
A = Apin-

THEOREM 3.12. For any cyclic systems M = (X, my and My = (X1, m;>, M & My
Ifand only ifd(X)mln = d(Xl)mln- ’

Proof. It is easily proved that if d(X)min = @(X1)min, then for any m € d(X)
there exists an m; e d(X;) such that m, divides m and conversely: for any m, € d(X1)
there exists an m e d(X) which divides »,. Thus there exist homomorphisms of M
into My and of M, into M, by Lemma 3.9.

On the other hand, assume that there exists a homomorphism of M into M 1
and let m € d(X)pi, < d(X). By Lemma 3.9, there exists an m, € d(Xy) which divides
m. Because of the properties of the divisibility ordering in N* we may assume that
my is minimal in d(X,), i.e. m; € d(X1)min- Moreover, if there exists a homomorphlsm
of M, into M, then there exists an element m, € d(X) which divides m,. Hence
m, divides m which, by the minimality of », implies m, = m = m,. Thus m € d(X)min
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and d(X)min € d(X1)min- Similarly we prove d(X)min = d(X)min and in consequence
these two sets are equal. m

Theorem 3.12 implies that every complexity class of cyclic systems is uniquely
determined by an antichain in N+ with the divisibility ordering. The class determined
by an antichain A will be denoted by |A4| and the antichain which defines the class
[M] for a cyclic system M will be denoted by Apy. Observe that for every antichain
A there exists a cyclic system M = (X, ) such that 4 = d(X)m,. Thus complexity
classes of cyclic systems are in a 1-1 correspondence with antichains in N+,

It should be remarked that the family ¥ of all complexity classes of cyclic
systems is not a complete lattice: take the family of one-element antichains {p,},qy,
where p, is the nth prime number; then there is no lower bound for the family of
complexity classes |{p,}|, since there is no natural number which could be divided
by all prime numbers. However, — is a lattice ordering in .

THEOREM 3.13. The relation —~ is a lattice ordering in €5 and

Apryving = (A[M]UA[Mll)mlm
Avaiamg = {Le.m.(m, my): me Apg, m, EA[M'A]}mlm

where v, A are the lattice operations and 1.c.m. (m, m,) is the least common multiple
of mand m,.

Proof. Clearly the class |(4pY 4, Dminl is an upper bound for {[M], [M,]}.
If Cis an antichain such that |C| is also an upper bound for that set, then for any
m €AY A, (and in particular for all m € (AU A, Dmin) there exists an
my € C which divides m. This means exactly (by Lemma 3.9) that |(4ranV4gaDmial
= |C[, which proves that the former class is the least upper bound for {[M], [M,]}.

Now let D(M,M;) = {lem.(m, my): meApy, my E:‘i[M,]}mln- It m,
€ D(M, M), then there exist an me Ay and an my € Apgy such that m,
= Lem.(m, m,). Therefore m and m, divide m,, which proves that D(M, M,)
is a lower bound for {[M], [M,]}. If Bis an antichain and |B| is also a lower bound,
then for any b & B there exist an 7 € Apy; and an m; € Apy,y which divide b. There-
fore also Le.m.(m, m,) divides b, which implies |B| - |D(M, M,)| and D(M, M)
is the antichain of the complexity class [M]A [M,]. m ‘

By Theorem 3.2, ¥ is also a complete upper semilattice. The greatest element

in € is the class |{1}], i.e. the complexity class of all cyclic systems which have
one-element cycles. ’

Now let M = (X, ) be an arbitrary non-empty system. Let X be the subset
of all states of finite computations in M (i.e. X = D(fy,)UR(fy)), X»—the subset
of g]l states of 1.nﬁnite and non-cyclic computations, and X®—the subset of all states
which appear in cyclic computations of M. Clearly, if i # j, then XPAXV = @
and XMUXDUX® = D(m)UR(). ‘

Fori=1,2,3 let M® be the subsystem of M with the set of states X, i.e.
MO = (X“’, 7). '
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TeroreM 3.14. Let M = (X, %) and M, = (Xy, m,>, where Xy # &, be arbitrary
systems such that X® = X{¥ = @. Then there exists a homomorphism of M into
M, if and only if there exist homomorphisms of M into M, and of M @ into M, .

Proof. The necessity of the condition follows from Lemma I1.3.2. To prove
sufficiency, assume that A; is a homomorphism of M® into M; and A, is a homo-
morphism of M® into M. Let g be any mapping of X— (D(m)UR(m)) into Xy
(which always exists, since X; # @). Then h = hyUhyUg is a well-defined homo-
morphism of M into M. m

TuroreM 3.15. Let M = (X, n) and M, = (X1, > be systems such that
X o @, Then a homomorphism of M into M, exists if and only if there exist homo-
morphisms of MY into M, and of M® into M.

If X® # @ and X® = O, then there is no homomorphism of M into M.

Proof. Assume X # @. Then the necessity of the condition follows again
from Lemma 1.3.2. On the other hand, assume that there exist homomorphisms.
hy of M® into M, and hs of M® into M. We claim that there exists also a homo-
morphism #, of M® into M;.

If X® = @, then the empty mapping is a homomorphism of M® into My;
assume therefore that X # . Since X{® # @, there exists a state x; € Xy such
that x; € D(d) and d(x,) = m for some m > 0.

Let S be any m.c.-subsystem of M (by the definition of M®, S c D))
and x, an arbitrary state in S. Define a mapping hs of S into X; as follows:

(@) let As(xo) = X3

(ii) if for some x € S we have already defined (x) = 7% (x,), then let hs(7(x) )
= ak*1(x;) and hs(x) = @71 (xy) if m(x) = x.

hg is a well-defined mapping on S and it is also a homomorphism. Therefore:
by Lemma I:3.3 there exists 2 homomorphism h, of M @) into M;. Then if g is
any mapping of X — (D(n)uR(ﬂ)) into X, the function & = h;Uh,Uhks g is a homo-
morphism of M into M.

Assume now X # @, Thus there exists a cyclic computation in M which by
Theorem I.3.1 is transformed by any homomorphism into a cyclic computation
of M,. Thus, if such a homomorphism exists, then X’ IRE SN |

Let Emp denote the class of all non-empty systems with an empty transition
function (this is the class F if we regard such systems as finite and it is the class.
|G| if we regard them as infinite systems). For any system M, and M € Emp
there exists a homomorphism of M into M;. Thus Emp is the least element in the
family of all complexity classes.

Assume that M is a non-empty system and M ¢ Emp. By Theorems 3.14 and
3.15, the complexity class of M may be univocally determined by a pair (4, BY
such that

MD] i XD # @,
{g if X = @,
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and
[M®]  if X3 2 &,
B=1{[MP if X®=g#X®,
] fX® =@ =X®,

where at least one element of the pair is not . Then, if we take & — [M] for any
system M and & — O, the ordering — is, again by Theorems 3.14 and 3.15, defined
.on the components, i.e.

(4, B) -

Observe here that by Theorem 3.15 every complexity class of infinite systems
precedes any complexity class of cyclic systems. Thus we obtain an ordered classi-
fication of systems which by Theorem 3.2 is a complete upper semilattice—the
greatest element being the class (CEL, |{1}[)—with a least element, which is the
class Emp. Thus it is a complete lattice.

Returning to programs in SPC, observe that the relations of weak similarity
and sinﬁlarity are equivalences. For any program ¢ in an SPC M the class of programs
weakly similar to ¢.is sufficiently described by [M(¢)], while the class of programs
similar to @ is determined by a pair [M(g)], [M*(p)].

(C,Dy if A-Cand B~ D.

4. Simplification of programs in SPC

‘One of thé methods of program optimization consists in decomposing programs

into subprograms and performing minimization based on such a decomposition.
This occurs e.g. when large open subprograms are replaced by closed subprograms.
Such a situation will be considered here. We shall describe an optimizing procedure
and prove its correctness. The considerations presented here are simplification
of notions as well as a generalization of results given in [32].

By M we shall denote a stored program computer fixed for our considerations.
If p = {p, @) is an lprogram, then the set

{eecr: @Am)y(m(c) (O ¢ D))

will be denoted by B”. If X is a set of L-programs, then the address of X is the set
of all addresses of p, where p e X(*). The basic notion for further considerations
is the notion of an F-program.
An F-program is any Iprogram p = {gp, a) such that
0 (VOerpo(V1)y (t < e+ 1 = 7(c) € ¢*), where n, =

@) (YA (Yx{t < (up) (@ (D ¢ D) = 7(e) € 7).

The meaning of an F-program is described by a partial function which is called
a reduced realization of an F-program.

(uk) (7(c) & D())3(%)

(%) ie. nc is the smalest number & such that 7*(c) ¢ D(m).
(*) the address of p = <p, @) is a.
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A reduced realization of an F-prégram P = {@, a), denoted by &°, is a partial
function such that

() D(&) = C*nD(f);
@) if ¢ € D(8"), then
JSu(o)
2" (c)

if for k g
otherwise,
where m = up (@*(c)(!) ¢ D()).

A subprogram of an F-program p = {g,d) is any F-program p’ = (i, b)
such that

@) D(w) < D(g); '

(i) if 'x € D(y)— {b}, then there is no ¢ € C? such tha.t for some KeN

@D e D@)=D@), () () = x

< e, 74() (1) € D(yp),
() =

and

() e C?, ..., () eCP.

If p = {p, a) is an F-program, we shall call a partition.of p an arbitrary. se

@1, a1), ... {@u, >} of subprograms of p such that
k
U Dig) = D(g);
D(p)nD(p) =@ foris#j (i, j=1,..,k). ‘
Let P = {po, ..., s} be a partition of an Fprogram p = (g, @). A partial

function @ such that
“if (c e CBYA (87(c) (T) = address(p) A (i # k),

@P(p i €) = otherwise,

{ undefined

will be called the mahrosuccessor function in the partition P of p.

We shall compare F-programs using the g-equivalence relation. Let p = (¢, a)
q = {y, b> be Fprograms and ¢ =« Cx C (where C is the memory of the SPC
under consideration) an equivalence relation. The g-equivalence relation, denoted
by o is defined as follows: :

Py iff (VC)cv(VC’)cu[(cgc = 5"(0)95“(6’))/\(5”(0)(1) € D(g) = 6“(6’)(1) €
€ D)) AD((CPx CHng) = CPAR((CPx CHng) = CL
We say that an F-program g is g-regular iff for any ¢, ¢’ € C? such that ¢ ~ ¢
we have 0(c)(!) = 67(c"Y(D).
Let (@, a), {y, b) be F-programs and P, P' their partitions and let - be the

g-equlmlence relation of F-programs. A relation ,u < PxP isa g-comorphism
in Px P’ if for any {p,q> e Px P’ :

() pug=p 3 g
(i) pug = (Vc)a(Vc’)c«[cec = OF(p, )ud¥ (g, ')],
(iii) D(u) =

10 Banach t. 11

i
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N

If there exists a g-comorphism 4 in Px P’ we shall write P 5 P'.

LevMa 4.1, Let P, P’ be partitions of F-programs g, a) and (w, b, respecttvely,
and let o be the g-equivalence relation of F-programs. Let

() po = {p, @ ePxP:p 7y q};

(i) = s {@, O eP X P (VO (Ve )es[cac’ << P*(p, ), D¥(q, ¢))

€ -} for iz 1;

(i) o = () -

Then (2) @R)w(tte = s
. (b) po fulfils conditions (i) and (ii) of the definition of a @~comorph1sm,
(€) if py does not fulfil condition (iii) of the definition of g-camorphrvm,

then there is no g-comorphism in Px P'.

Proof. Since the set Px P’ is finite, condition (2) holds. From the definition
of u, we have: u, < uo. Hence yuy has property (i) from the definition of g-co-
morphism. Let p,g, ceCP ¢ €C? and coc’. We have puq for i=1,2,
and hence by the definition of ;

D (p, ;P (g, ¢) for

'

j=0,1,..
This means that .
OF(p, ) D7 (g, ).

It is easy to prove that if u is a g-comorphism, then 4 < p,. Suppose that
there exists a g-comorphism # < Px P’ and Dy, # P. Then we have, for some
pePand ge P,

p,dep and (P, ¢ pa,

and so {p,q) € u—p,, which contradicts the conditio;l " C
that if Du,, # P, then a g-comorphism in P x P’ does not exist. m

In [32] the following problem is considered:

An equivalence relation ¢ < Cx C is given. We have to determine a procedure
which transforms an F-program {,a) and its partition P into an F-program
{w, by and its partition Q, such that

o r % Qo .

(ID) card(Qy) < card(Q) for any Q such that Q is a partition of an F-program

(v, b>and P ¥ Q.

The following procedure transforming an F-program {¢, a) and its partition P
into a minimal p-comorphic F-program and its partition is proposed in [32]:

(i) Find p,. (We assume here that (g, @) = (y, b in the definition of u..)
(i) Find P/u.

(iii) Let (g, .., q¢) be a sequence of elements from distinct equivalence classes
of u, such that k = card(P/u,,) and a € address[q,]. Find g-regular F-programs
with pairwise disjoint domains

P =4¢1,a, ...

This means

s P = <(pk: @

icm®
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,k): pi > i and for any teCn ceCuif coc, then

(a) if 8%(c)() ¢ D(p), then 87(c) () ¢ Lk) D(gy);
(b) if 6"'(0)(1) € address [¢;}uw» then 6"'(c) (1) = address(p;).

THEOREM 4.1. The F-program { U @i, a1y and its partition

Qo = {{p1,ar), vors {Prs @D}
defined as the result of the transformation of an F-program {¢, ay and its partition
P by means of the procedure defined as above, have properties () and (ID).
Proof. All the symbols used here have the same meaning as in the above pro-

k
cedure. Let us consider F-programs p = {g, @), ¢ = { | @i, 4,> and their parti-
i=1 .

tions P and Q,, respectively. We have P & Qo. Indeed, let 4 « PxQ, be the re-
lation defined as follows:
k

= L_) {2, p>: Putwds & p'€P}.

From the description of the procedure we conclude that u is a g-comorphism in
PxQ,.

From the definition of Q, we have card(Q,) = card(P/tx). Suppose that there
exists an F-program ¢’ = </, b') and its partition Q such that P % Q and card(Q)
< card(Q). Then there exists a p-comorphism x'’ in P x Q. Since card(Q) < card(Qo)
and Dy’ = P, there exist p/, p’’ € P and ¢’ € Q such that

¢)] ~ P'leoDs
(2) pllu/!lq /\P”/‘”q’
From (1) it follows that for some i

3) o, 0" ¢ i,

where y; is defined as in the Lemma 1.
By (2), we obtain p’ >~ d and p”’ ¥ q'. Hence p’ o p"', and so {p', p'"> € o.
Let c'oc’” and ¢’ € C¥, ¢ € C*. By the definition of o it follows that there
exist &' € C? and ¢ € C* such that

Y

co'c

N

and c¢"pc”.

Hence ¢'0¢". By the definition of a g-comorphism we have

@ B, ) BRAg,E) and B DR ).

Since ¢’ is a g-regular F-program and &'p¢" as well as ¢’ € C¥, ¢ ¢" e C7, we have
O] Dy, &) = DUg, ),

ie., P2q’, &') is defined iff P2(g’, &) is defined, and if both P%(g’, &) and Dy, &N
are defined, then equality (5) holds. If @2(q’, &') is undefined, then also @F(p", ¢"')

10%
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and @'(p, ¢’) are undefined, and so {p',p"") € ye. This contradicts (1). Hence
D9(g’, ¢') is defined.
From (4) we obtain
@P(pl, C,) ? @Q(ql’ E:)
By (5), we have

cand  DF(p", ") v DU, .

', ) DP(p", "),
so{p',p"> ey, .
In an analogous way we obtain {p’,p") € ya, ..., {p", p''> € w;, which contra-
dicts (1). It means that condition (II) holds. m
ExampLE. Let M = {C, R, ¢, %, 1,1) be a stored program machine, where the
set of addresses is the set N, [ = 0, B = Nu{*} (+ ¢ N) and the memory C is the
set of all partial functions from A4 to B with finite domain and such that:
c()eD() forceC,
100 < (1) < 199,
200 < e(2) < 299,
300 < ¢(3) < 499,
¢(500) = .
Let A(c(D) = e(D+1 for ce C. The. alphabet of the language of instructions
is the following:

oA = {STOPs +, —'—,sg,s_g, ',fl,(,),d,—’},

where STOP, +, =, sg, §g, -, f; are names of operations defined as follows:
(1) ar(+) = ar(-) = ar(+) = 2,
@) ar(sg) = arG = ar(f;) = ar(STOP) = 1,
(3) D(STOP) = @,
. bfb if b,b €N,
4 ") =
@ J6.5) {* otherwise,

where fe {+, ~, -} and Fis the addition, substraction, and multiplication oper-
ation in N, respectively,

o (b)_{o =0 1 if5=0
580 =11 otherwise , SB(b) = 0  otherwise,
' 1 ifb=x
© 50 = (0 otherwise .

We assume that the following instructions are in the set R:
@ a—-b,
i) + (2@, 1)~ a,
(iif) o(o(@)) - a(b),
(iv) a(@) — «(b),

icm
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()] +( . (a, sg(—'-(oc(oz(j)), a(ex(i))))),

. .(b,é'g(*(+(a(oc(i)), 1), a(oc(j)))))) -1,

(vi) +('(a,f1(m(oc(i)))), (6. 52l }qa(a(i))))) -1,

(vii) +( (@, 5B (), (8 sg(oc(i)))) -1,

(viii) STOP («(0)) - 1,
where a, b, i,j€N.

In the sequel instructions of the form (v)-(vi) are denoted by o(x(i))
< a‘c(oc(j))[a, bl, o) = *[a,b], «(i) =O[a,b], respectively, and instead of
STOP ((0)) — I we write STOP.

Let X = (Xo, cvos Xme1)s ¥ = (Yo, ..0» Vue1), Where 0 <m,n < 100 and
xi,yieNand x; < X344 for i =0,1,...,m—=2, yy <y y for i=0,1, .., n-1
We construct an /-program which transforms X and Y into a sequence Z = (zo, ...
vees Zmen—y) Such that @) z; < ziy fori=0,...,m+n—-2, (b) z is a member of
XorYfori=0,..,m+n—2.

Element x; of X is stored at the address i+ 100, element y; of ¥ is stored at
the address j+200, element z; of Z is stored at the address k& +300. The end of e ach
sequence X, ¥, Z is marked by *. The l-program and its partition are given in Fig. 2.
It is easy to observe that this ~program is an F-program. 1 is the address of this
Foprogram. '

We shall consider the following equivalence relation: coc¢’ iff ¢|D = ¢|D,
where D = {1,2,3,100, ...,499}. It is easy to observe that

D2 :’Pu
Ps 7 Po
Ps 7}74 ?PG ¥ P15 Pro ’;’Pu ";sz v Pra-

We have uo = {{p,p): p € P}UKUK', where

K = {{p2,p120,{ps, Do),
<P, Pa){P3,P6)5<P3: P70+ {P3; P10 {P3> P11)» .
{P3s P13 {P3s P1ar,
$Par P6)» {Pa> P10 s Pa> P10) 3 {Pas P11) > {Pa> P13) » Pas P14 » -
{Ps» P71+ {P6: P10Ys{P6>P11) s {Ps> P13) > {P6s P14)>
(P71, P10) 5 {P1> P11)5 P15 P13) s {P7: P14)
{P105P11) s {P10s P137{P10> P14) >
P11, P13Y s P11y Prad P13, P1ad}s

K' = {<p,q>: {q,p) €K},

P = {po, ..., P14} is a partition given in Fig. 2.


GUEST


150 W. BARTOL, Z. RAS, A. SKOWRON
1, 100 - 51 |
Po| 2, 200 > 52
3, 300 ~ 53 \
4, a(a(SD) < w(x(52) [5,20]
il s 054 20, 1 - 54
6, a(a(51)) — «(53) i 21, a(o(52)) = «(53)
7, +(2(5D), 1) = 51 22, +((52), 1) - 52 .
CP g 4 (x(59),1) > 53 23, +(x(53), 1) > 53
9, a(x(sD)) = #[11,10] 24, o(a(52)) = #[26, 25]
ps3 10, «(54) = 0[4, 27] [ ’ 25, a(54) = 0[12, 4] Pro
e | 11, a(54) = 0112, 18] \ ] %, o549 = 0018,271 o
12, a(x(52)) — «(53) 27, a(x(51)) — a(53)
p 13, +((52), 1) =+ 52.- 28, +(x(51),1) - 51 P
114, (53),1) > 53 29, +(a(53), 1) » 53
15, (x(x(52) = #[17, 16] 30, a(e(51)) = +[32, 31]
ps | 16, a(54) = 0112, 4] ‘ l 31, «(54) = O[4, 27] J Pis
pr | 17, a(s4 = oD18, 27 } ] 12, a(54) = 0112, 18] —] i

Ds

18, «(500) — «(53)
19, STOP

Fig. 2

"One can verify that
= {{p,p>: pe PYUK VK],
where
Ky = {{P2, P12), {P3, P12)5 {Par P1ad
{Pss P10 <P7, P117,{Ps, PV}
K= {@a: ek}

Mo = fhyg.

icm
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Hence we have u,, = uy. The set P/u, has the following elements:
{Po} > {Pl}: {Pz:Pu}, {Ps,Pns}, {Pu Pu},

{psspo}s  {PesPro}s  {Pr,pu},  {ps}.

The F-program and its partition Qo = {Po, ..., Pg} constructed on the basis
of the last step of our procedure is given in Fig. 3. 1 is the address of this F-program.

1, 100 — 51
Po | 2, 20052
3, 300 - 53
N 4, a(a(51)) < x(u(52))[5, 14]

Pt 5054 14,1 - 54

6, a(x(51)) - «(53)
o |7 (s, 1) - S1

‘ 15, a(«(52)) — «(53)
8, +(x(53), 1) - 53 ‘

16, +(x(52), 1) > 51 -
17, +(a(53), 1) » 53

9, a(x(51)) = »[11, 10] 18, «(x(52)) = *[20, 19]

19, a(54) = O[15, 4]

b3
B

10, «(54) = 014, 6] {

»
3

11, «(54) = O[15, 12] I 20, a(54) = O[12, 6]

12, «(500) — «(53)
13, STOP

A

Ds

Fig. 3

5. Decomposibility of programs

In this section programs are treated as elements of partial algebras. The composi-
tion operation of programs is introduced. Composition determines in a.natural
way the notion of an indecomposable element. Necessary and sufficient conditions
for the indecomposibility of a program and also a unique decomposibility of a pro-
gram on indecomppsable ones are given.

Let M = {C, R, g, %, A,I) be any SPC and let ¢ € C be a memory state of M.

If ¢ = {<a, %(c(@))>: a e D(c)}n(AxR) is a finite set, then it will be called
the program of the state c. Thus the program of a state c is a maximal set of labelled
instructions connected in a natural way with the state ¢. Of course the program
of any state ¢ is a program. On the other hand, for any program ¢ there exists a state ¢
such that ¢ = ¢°. .

We assume in this and in the next sections that SPC satisfies the following
conditions: . .

(i) €= B™, (i) (Yo)c(o® = ¢").
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The adjoining of these conditions to be satisfied by SPC will prove very con-
venient in Section 6 of this Chapter. Now, we shall define a binary relation on 4 x R
which is a kind of relation of a potential successor. For any u,, #, € 4 x R we adopt

wPu, iff Qep, e2)e(VDKa(), re) = i & ale,) = ¢5).

" The relation M is a generalization of the usual relation of a successor, gex'llclrated
by a computation. More intuitively, it is a generalization of a step of the action
of a machine. An advantage of this relation is its independence of machine compu-
tations and the fact that it is defined on the whole set 4 x R.

The transitive closure of : in ¢ we denote by D,,.
Thus, for any u;,u, € AXR

uDyuy i @A), = (VDA <

Let ¢ be an arbitrary program A set ¢' < @ will be said to be a set of generators
of @ provided that:

i< n=)[uNu+ &uy = u' & uy = .

(Vu),,(Elu’)w; [w'D,u).

An arbltrary program {u,}l 1 I8 a cycle if there exists a permutation ¢ of the
sequence (1,2, n) such that

Vil <

<n-1) [uu(l)mua(i+ nét u‘(n)mun'(l)]

A program with a minimal set. of generators whdse number is equal to p will A

be called a program of type p.

Now we shall introduce the notion of a composmon of programs, to be denoted
by “O”.

For any programs ¢, ¢, we assume that @10, is determined. iff

O pinp. = G 4

(ii) @V, is a program;

(iii) if ¢ = g,Up, and @ is a cydle, the,n @ S @LOor @ C @,

(1v) there exists a minimal set tp; of generators of (pz such that ¢f « {u:
(aul)w, [ulmu]}

If o5 Otpz is determined, then

9109, = P1YPa.

- Let {gi}rex be the family of all programs and o = {p: ¢ < ox) kek.
We observe that instead of condition (i) of the last definition we can put the
followmg condition:

) @R)x(p1 € # & @3 € ). .

The sets of programs «#;, keKk, wxll play an important part in the composition
of compiitations to be comsidered in Section II.6.

A program ¢ WIll be called decomposable if there exists programs @, ¢, such
that ¢ = @, Op,.

icm°®
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In the opposite case we call a program ¢ an atom.

THEOREM 5.1. Let ¢ be an arbitrary program of type 1. Then the following con-
ditions are equivalent:

(i) @ is an atom, : :

(ii) D, is an equivalence relation on @ or card(p) = 1.

Proof. Assume that ¢ is not an atom and that D, is an equivalence relation
on @. Hence there exist @, @, such that ¢ = tp1 Og,. By the definition of oper-~
ation “©” we obtain the existence of u € ¢, u’ € g, such that «9w. Since D, is
a_symmetric relation, we have w'D,u. Assume that {u}}., < <p is a set defined,
by the formula

Vi)l <ig<n—-DuRu,, &v = u, &u= u,,].

Clearly @o = {w}{=, is a cycle. But gong, # @ and g,Np, # &, which
contradicts the equality ¢ = ;Op,.

Assume now that card(g) > 1 and @ is an atom. Let u € ¢. Since @ is a program
of type 1, there exists a u’ e @ such that uD,u' or u'Dyu. Suppose that uD,u’ and
non(#'D,u). Hence ¢ = (p— {w' PO {w'}, which contradicts the fact that ¢ is an
atom. If 4'D,u and non(uD,u’), then we draw a similar conclusion. Thus uD,u.
Let u, u' be arbitrary elements of ¢ such that uD,u’ and non(w'Dyu). In that case:
@ = (p— {#'})O {u'}, which contradicts the fact that ¢ is an atom. Hence D, is.
a symmetric relation. By the definition of D, we infer that D, is a transmve relatlon
on ¢. Thus D, is an equivalence relation on ¢. m - i

THEOREM 5.2. If ¢ is a program, then @ can be decomposed into atoms.

Proof. Let @ be an arbitrary program and ¢° its minimal set of generators.
Let ¢, = {uep: Qu' € p®) (W' Dyu & uD,u')}ugC. Clearly, g, is an atom. If ¢,
# @ then ¢ = 9, O(p—@y). Let u, e p—¢, fulfil the following condition:
(3w, [Nu,). We assume that @, = {u € p: u, D,u & uDyu,}U {u,}. By Theorem.
5.1, we infer that g, is an atom. Clearly ¢ = ((<p1®¢z)® (p— ((p1u<p2))). In asimilar

manner we construct a sequence gj, ¢4, ..., ¢, such that

@ = (~-~((‘7’1@¢Pz)®¢3)® @tp,.)
where ¢; are atoms. m

THEOREM 5.3. The pair (), ©), k € K, is a partial algebra. The least set of
its generators is equal to the set of all atoms of fy.

Proof. Let ¢ € of,. By Theorem 5.2, we can present the program ¢ as a com-
position of some atoms. Suppose now that there exists a set of generators 2 of
(%, ©) which is a proper subset of a set of all atoms of «. Hence, there exists.
an atom ¢, which does not belong to Z. But ¢, is an indecomposable program.
Hence ¢, cannot be generated by %. m

THEOREM 5.4. Every SPC determines uniquely a class {(s#y, O)hex of partial
algebras.

The proof follows from the construction of (&, @), ke K. m

THEOREM 5.5. Let ¢ be an arbitrary program. Then the followmg condttions
are equivalent: ) '


GUEST


icm

154 W. BARTOL, Z. RAS, A. SKOWRON

(i) the program ¢ can be uniquely decomposed into atoms of type 1,
(i) D, is a connective relation on ¢.

Proof. Let us observe that the power of a minimal 'set of generators of the
program ¢ is equal to 1. To prove this fact assume that u;, 4, € @,, where @, is
:a minimal set of gemerators of ¢. Hence ~ (u; Dyu,) and ~ (u, D,u;) which contra-
dicts (ii). On the other hand, for any ¢, ¢, such that ¢ = @, O¢,, @, is a program
of type > 2, which contradicts (i).

Suppose now that D, is not connective on ¢. Hence there exist u, u, € ¢,
such that ~ (u; Dyu,) and ~ (u, Dyuy). Let o = {ue'p: u; D, u} and @, = g—gp,.
We shall show that ¢ = @, Og,. Evidently ¢;ng; = & and ¢,up, is a program.

Let g, = ¢,Ugp, be a cycle such that gong, # & and pone, # . Hence
there exist u3 € ;N@q, 4y € P20@o such that us Dy, and uDyu,. By the defi-
nition of the program ¢, we infer that u, € ¢, , which contradicts the fact that u, e, .
‘Thus, for any cycle o = @U@z, Po < @y O @ = @,. Since ¢ is a program of
type 1, we infer that condition (iv) of the definition of operation “©®” is satisfied.

Suppose now that ¢3 = {u € ¢: u, Dyu} and ¢, = p—g@;. In a similar manner
‘we can show that ¢ = @,Og;. Thus the program ¢ cannot be uniquely decomposed,
which contradicts the assumption. )

Let ¢ be an arbitrary program and D, a connective relation on ¢: Let {u,}
be a minimal set of generators of . Let us assume that ¢, = {u: uo D,u & uD,uy}u
L {u}. Obviously the program g, is an atom and ¢ = ¢, O (p—g@,). Let u; € p—g,
be an element satisfying the formula (Ju),, WMy,). We assume that

@2 = {u: u; Dyu & uDyu; }u {u}.

Obviously the program ¢, is an atom and

9 = ((@1092)0 (p— (p19p2)))-

In a similar manner we construct the sequence @s, @s, ..., ¢, such that

S P= (- (@:00)0 ... Op-)Ogp,,

‘where @; are atoms,
Evidently the decomposition mentioned above is unique. w

6. Decomposibility of computations.

In Section IL.5 the operation of a composition of programs was introduced, We
found that every program can be decomposed into atoms. Necessary and sufficient
«<onditions for the decomposability of a program into atoms of the type 1 were
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formulated. In a natural way the question arises whether it is possible to introduce
in an analogous manner an operation of a composition of computations in SPC
and whether it is possible to find a connection between a decomposition of a computa-
tion and a decomposition of a program assigned to that computation in a suitable
way. In order to solve the question in what way to associate a program with a compu-
tation we return to the conditions adjoined to the class SPC in Section IL5. Consider
an arbitrary computation of SPC and two arbitrary states ¢, ¢,. The first con-
dition ensures that ¢ = @°2. Thusaprogram of an arbitrary state of a computation
can be interpreted as a program of that computation.

Let ¢, = (¢o, Cy» ---) be any computation of M and l(c;) = m. We say that
¢o i a computation over an algebra (&, ©) if:

() ¢ e,
@ TJ (0= D(=)r D) = ©.

EXAMPLE 6.1. Let M be an SPC such that 4 is a set of natural numbers, B is
a set of integers and »: B—A - R is a function. We assume that

o = [, %(;i)>: ie{4,5,6,10}}.

Let us assume in the sequel that ¢, = (cq, ¢, ¢3) is a computation defined
as follows:

{ 1 2 3 ! 5 (3 7 8 9 10
ol 4 2 1 5
ol 5 2 4 5 2
el 6 2 ! 5 2 I

We observe that the computation ¢, is a computation over (A, O).
‘Now we are going to introduce the:notion of an s-composition’ of any two
computations. )
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Let us take two arbitrary computations
=, el ), d=(2a,.), IhHh=m
over an algebra (&7;, ©). We assume that ¢l ¢} is determined iff

0) ¢*ingi = @;
(i) a3} (D(eNnD(ed)) = 3| (D{e)nD(eD);

5 m
@iy (D(e)~D())n HD(C?) =a.
If ¢} - ¢2 is determined then we put

et = (c1, €2, o)
where ,
c! if j=1&1

<
D) el Dl i 1yen ={ . =
0 alD(el -1y 1) Gapy if j=2&izn

(i) el (D(eH—D(c)) = ci|(D(c)—D(cD) for iz n+l;
(i) al (D(c)-D(D) = 3| (D(H-D(c)) for 1<ign

D(ehu(D()-D(cd)) if i<n,
D(ctn )0 (D(ch)—-D(cD)) if i>n.

‘ EXAMPLE 6.2. Let M be an SPC and let ¢, be a computation as considered
in Example 6.1. We assume that ¢, = (c4, ¢s, ¢s) is the following computation:

@iv) D(¢c) = {

’ 1 2 3 4 5 6 7 8 9 10

ol 6 4 ’ -0 1| -10
s 10 2 -6 1| ~10
| 2 ~6 1] 10

Clearly ¢, is a computation over an algebra (s, ©) where g, = {<i, %(~):
ie{4,5,6,10}}.
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We observe that ¢, - ¢, is determined. Therefore ¢y - ¢, = (¢, ¢s, €0, C10> €11)
where

[ 1 2 3 4 5 6 7 8 §) 10

A 4 | 2 |~4|-5]-6 1] —10
| 5 4 | a | —a|-5]-6] 2| 1|10

.
¢l 6 ' 4 2 —4 -5 -6 2 1 1 -10
4o 10 2 | 2 [|—4]|-s]-6| 2 | 1|1 |-10
eyf 4 2 2 | —4j-5]-61] 2 1 1 ] -10

This example shows that the s-composition of two computations is not always
a computation. The second condition assumed additionally for the class SPC in
Section T1.5 ensures that the sequence of states obtained as a result of the s-composi-
tion of two computations is either a computation or the beginning of a compu-
tation. '

Now we are going to introduce the notion of a composition of any two com-
putations. )

For any two computations ¢, ¢, we assume that:

%,0%, is determined iff ¢, ¢, is determined and ¢,0¢, is a computation.

1f 6, OF, is determined then we put 2,0%, = Ty * Ca.
THEOREM 6.1. For any computations €%, ¢3, ¢4 over an algebra (sfy, Q) the
Sfollowing two properties hold:

(i) FLOELOFL) is determined if and only if (€O CHOTS is determined,
(i) if 2OEOEL) is determined then T1OEIOE) = E1OEHOT-
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Proof. Let Ei = (0%9 C%, wers €1)s Z‘% = (CL C%, veey c’ln)! Eé = (Céa C%’ ...) where
@) =r '
Let us assume that ¢} ©¢L)O74 is determined where (C1OCHOTS = (ci, ci, ...
P ‘Jl+m—'1 cn+m+s )
s Oy s G A s )
By the definition of a composition of any two computations over an algebra
(o), ©) we obtain

® (DE)-DE)n Q D) = @,
(i) (PR (P ~D(D)) D) n UD(E) = &,
(i) ((eH)=DED)n D) = 2,

° m n
@) (DE)~(DEDY (PE—DED)))~ (JDEVIDED) = 0.
From. condition (ii) we obtain
(D(e5)—D(e3)N UID(C‘s) =0.
From condition (iv) we obtain
(D(eh)—D(E)n HD(C‘Z) =g,
From conditions (iii), (iv) we obtain
((PeHu(DE - Depy)) -Died) n U D) = 2.
From conditions (i), (ii) we obtain ‘
(DD~ (Dedo (O(eh) - D)) (YD) v D)) = 8-
Hence and from the definition of a composition of any two computations
over an algebra (&, ©) we obtain
a3l (D(E)—D(eh)) = it (D(eD)—D(c3))-
Thus the expression ¢ ®(ciOd) is determined. Clearly,
((10E)0T; = 1O 0). »
A computation 7 is said to be decomposable if there exist computations ¢y, ¢»
such that ¢ = ¢;O¢,.
In the opposite case we say that ¢ is an atom.

THEOREM 6.2. An arbitrary computdtion can be decomposed into atoms.

The proof follows from the fact that programs are finite sets. m

Let ¢ be any computation of an SPC. Observe that the statements:

(@) the decomposability of the computation ¢ implies the decomposability of
the program ¢°, '

icm
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(i) the decomposability of the program ¢° implies the decomposability of the:
computation ¢,
are not always true. .

The following question arises: is it possible to indicate a class of compu-
tations of an SPC satisfying (i), (ii)? Before answering this -question we shall
introduce an auxiliary notion. -

For any computation ¢, = (¢4, ¢z, ...), I(6;) = n, let

BE,) = H (Dulre) UReu(ra)ue, ) i}

The set B(E,) is said to be the active field of the computation ¢.

Let €, = (¢4, €2, ...), I(¢1) = n be any computation of SPC. Assume that:

c,eCy if (Vign)(a= c|B(cy).

THEOREM 6.3. The pair (Cy, ©) is a partial semigroup.

The proof follows from Theorem 6.1 and the definition of the operation of
composition. m .

THEOREM 6.4. The pair (CY, ©) is a partial subsemigroup of (Cy, ©). The
least set of its generators is equal to the set of all atoms of Cyy.

Proof. If ¢4, ¢, € C and ¢,0¢, is determined, then ¢, ¢, € Cj;. Hence and
from Theorem 6.1 we obtain the proof of the first part of this theorem. The second
part follows from Theorem 6.2. m

THEOREM 6.5. Let Ty = (cy, €1, --)» U@1) = n be any computation of the ser
CY; satisfying for every i < n the condition:

@) D(g)nDyfre) < {ci([)} )

If g°t = @, Oy, then there exist states c*, ¢* € C such that ¢, = s oy = @
and ¢, = ¢*Oc>.

Proof. Let ¢, be a state of the computation ¢, such that ci(l) e D(¢,) and
c141(D) ¢ D(py). Such a state exists because ¢; € CY. Let ¢; = cl;(D(cl)—D((pz))-
and ¢jy1 = Gy1|(D(cie1)—D(py)). We assume that c' =ci|B(;) and c*
= ¢l411B(@ir ).

We shall show that ¢;.;(7) € D(p,) for j = 1.

Let us assume that, for some k = 1, ¢ii(D) & D(ps) and cppps1() € D(po)-
Since ¢4 k(D) & D(py), we have ¢;i(l) € D(@,). Thus

D), Ferd N Copirr (D), rclm.n)’

which contradicts the fact that ¢, O, is determined. Hence and by (i) we obtain
g = ¢ and g, = ¢~

The equality ¢, = ¢'©c? can be shown in an easy way. m

Thus we have indicated a subclass of a class of computations of an SPC whose
elements satisfy (ii). In order to solve the problem connected with (i) with every
computation ¢ of the stored program computer M we associate a relation !, < ¢°x

X @F.

-


GUEST


160 W. BARTOL, Z. RAS, A. SKOWRON

Let ¢y = (1, €25 -
.assume that

), @) =n and uy = a1, r, ty =@z, r2) € ¢ We

wRu, I @< N)g-() = a &) = a].
THEOREM 6.6. Let ¢, = ¢*O¢? € Cff and N, |o = N|g°, Then ¢t = ¢*' Op,

Proof. The proof follows from the assumption p='ng® = @. Let ¢ < @
be a cycle. Let us assume that there exist {ay, r() € ¢ ng, {az, 1, € ”Ng such
that <a,, r,) M<ay, rd. Hence {as, r2) M, Lay, r;D, which contradicts the fact
thatc*O¢? is determined. =

THEOREM 6.7. Every computation in CM can be uniquely presented as a compo-
sition of atoms in C%y.

Given an arbitrary computation ¢, it can be decomposable into indecomposable
parts. Every indecomposable part will be restricted to its active field. Theorem 6.7
shows a way of dividing the time of performing a computation into, in a sense,
the least time sections. It shows also which part of the machine memory in these
time sections is active.

7. Classification of programs "

In this section a classification of computations of a stored program computer M
-and a classification of programs of M is proposed. In order to compare two arbitrary
programs we should take under consideration their structures, the memory occupied
by the computations of the programs and the lengths of those computations. Thus
the comparison of programs should depend upon three parameters. On the other
hand, taking under consideration three parameters, we should establish their import-
-ance. This may be done by introducing a weight function. It is clear that the choice
-of a method to compare programs using the assumptions mentioned above would
involve ‘us in rather long and ardious discussions. Thus we have chosen another
way. Given a stored program computer M, with évery program the set of its computa-
tions is associated, The comparison of programs is reduced to a comparison of com-
putations.

We observe now that some computations compute the same thing's. So it is

« -quite natural to introduce a strong congruence relation (see [10]) in (C, ®).

A congruence relation 6 = Cx Cfy in (CY, ©) is called strong if whenever
€1 8¢z, ¢30¢4 and ¢;OF; is determined, then ¢, O, is determined.

Let us assume that 4 is a strong congruence relation in (Cf, ®).

We shall define a set of expressions C and the partial operation ©, on C.

Let ¢, ¢z, ..., ¢, be arbitrary computations in Cfy. We assume that:

21058205 ... iff (Vi< )@ eCd)
[{06000 ... O & Cy &8¢

Let us observe that the symbol “®;” can be interpreted as a partial operation
on'Cj.

OJEn € ng'
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: 5 -~ = - -t~ =
If ey, e; € Cy where ey =C10;6204... 056y, €2 = 6106505 ...

e, O; e, is determined iff 2,0,¢; € C;.

©sc;; then:

If e, ©se, is determined then we put
e10s€; = 105,05 ... CsCu05¢1058505 .. gl
Thus we have obtained the partial algebra (CY, Oy). Tt is easy to verify that the
least set of its generators is equal to Cj.
The question arises how to compare the elements of the algebra (C§;, ©y).
Of course we should define some 2-argument relation in C%;. This relation ought
to take into consideration the length of the computations and the structure of pro-
grams which are associated with computations. However, it does not need to take
into consideration the memory occupied by computations, because Cg is the set
of generators of the partial algebra (Ci, @s). The definition of such a relation
is not easy and would involve us in rather long discussions. We have chosen another
way.
Let e, ¢' €.C}. We assume that:
e dC eiff e =¢,056,05 ... Os6n & (Vi n)
[c;—indecomposable & ¢, 667] & € = E{O5c4Os ... OsC-
Let us note that the relation “g” is reflexive and transitive on C3,. Thus (Cf, C;_')

is a quasi-ordered set. We observe that this relation takes into consideration only
the length of the computations.

Now we shall introduce the notion of a charactenstlc of a computation in Cg.
At the very beginning we shall give the definition of a M-cycle.

An arbitrary program ¢ = {}].,, where ¢ = ¢, is said to be an W -cycle
if there exists a permutation o of the sequence (1,2, ... n) such that

VA <i<n—uypR, ue(;ﬂ)&ue(,,)m Upenyl- ]
Let ¢ e CY. From Theorem 6.7 it follows that ¢ = ¢, 02,0 ... ©& where
¢, € Cy and ¢, is an atom for each i e {1,2, ..., k}.
By m; we denote the number of R,-cycles in g
Consider a sequence (fy, Az, ..., hgyy) such that:

@ by = card(U) ),
«f:ﬁlo
< By = by,
(i) (ha, has - Iz,,+1) is a permutation of the sequence (n,, nz, .
The sequence (h h¥, ..., h¥) such that:
) (Vi< )t #0& by = A,
(D) hgyr =
is said to be a characteristic of the computation ¢.
THEOREM 7.1. Every computation ¢ € C3 has exactly one charactertstz’c
The proof follows from the definition of a characteristic. m

@) (VD@2 < :
N nk)f

11 Banach t. XX


GUEST


162 W. BARTOL, Z. RAS, A. SKOWRON

Now, let Hy, denote the set of characteristics of all computations in Cf;. Clearly,
for every stored program computer M, the set H,, is uniquely determined. Let us
assume that H is the set defined as follows:

he H iff there exist a stored program computer M and ¢ € Cf; such that A
is the characteristic of ¢. '

By “<” we denote the ordering relation on H which is defined as follows:

for any hy = (b}, B3, ., B1), ha = (WL, 12, ..., i5) e H, hy < by iff one of
the following conditions is satisfied:

() @) < s < min{m, n})(V)2 < i < A = 1) & (B < h)),

i) (V)R <isn =h)&[@r< m)v(n = m& bt < h))].

TuroreM 7.2. The pair (H, <) is a well-ordered set.

Proof. The empty sequence is the least element in (H, <). From the definition
of the relation “<” we infer that each two elements in H can be compared, Hence
“<” is a connective relation on H. On the other hand, each element in H is isolated.
Thus (H, <) is a well-ordered set. m

TrEOREM 7.3. Let M be any stored program computer. Tl hen (Hy, <) is a well-
ordered set.

The proof follows from Theorem 7.2.

According to the notation adopted in [12] the type of a linearly ordered set
(H, <) will be denoted by H. -

Everyset Oc(h) = {K e H: i < h& I # h} will be called a segment of (H, <).

Now we are going to introduce a two-argument operation on elements of the
set H. !

For any hy = (b}, A, s BD, 12 = (BL, h, s ), hy = (WS, 15, ..., BE) € H
we assume that ks = hyOh, iff the following conditions are satisfied:

(M ks = hi+hi;

(i) the sequence (43, A3, ..., #3) is a permutation of B2, B, . B R R,
o B,

THEOREM 7.4. The pair (H, ©®) is a commutative semigroup. The empty sequence
is its zero element. ’
The proof follows from the definition of the operation “©” on elements of the

set H. m
Let & = (ho, hy, ..., hx) be any element in H. Let s denote the least natural
number which satisfies the inequality kb < 2% where ie {1,2, ..., k}. Adopl the

. k
following notation n, = 3 s
i=1
The empty sequence will be denoted by e..
THEOREM 7.5. Let M be an SPC and h = (ho, by, ..., h) € H. Then hy 2 ny.

Proof. Let h e H. Then there exists a stored program computer M such that
h € Hy, . Obviously, there exists a computation ¢ & C} such that & is its character-
istic. We can assume that ¢ = ¢,02,0 ... OF,, Where ¢; € CY% and ¢, is an atom
for every ie {1,2,...,n}, n2 k.
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From the definition of a characteristic of any computation, we obtain A,

n
= card (iL_j @°) where 7; denotes the number of R, -cycles in ¢er.
20
Since the family {@“};<, constitutes a partition of the program ¢°, we have

card (1L=J1 @) = 1=Z1 card (¢).

n#0 nyaY

The proof follows now from the fact that n; < 25—1, where s; = card (p%)
forie{l,2,...,n},m #0.m

THEOREM 7.6. Let h = (ho, by, ..., by) € H where h % e. Then

O<(h) = ofitahe4 ... fol+ (hyg—n,+1).

The proof is obtain in an easy way.

COROLLARY 7.1. H = «®. m

COROLLARY 7.2." For any stored program computer M, .F_IM S’ m

THEOREM 7.7. Let h, hy, h, be characteristics of computations ¢, ¢y, ¢,, respec-
tively. If ¢ = ¢,Qc, then h = hyOh,.

Proof. Since ¢ = ¢;¢,, we have ¢ = &. Thus h = 1, Oh,.

Let us observe that the relation (; < Cj x Ci; takes into consideration only

the length of the computations. In order to consider the structure of programs
which are connected with computations, we shall define a monotonic transfinite
sequence {By, «}ucp Of subsets of the set Cf, where f < w®

Let M be a stored program computer and let H,, be the set of characteristics
of all computations in M. For every a < Hy let us assume

teBY., iff 0L <,

where / is the characteristic of ¢.

It can be shown that

CJ?{ = U B}?l.au
_ o<Hm

For every a < Hy we define the set By, , on the basis of B, 4, just as the set
Cj; was defined on the basis of CJ.

THEOREM 7.8. For every a < Hy, (B «, Q) is a subdlgebra of (Cl, Oy).

Proof. Let ey, e, € By , and e,0;e, is defined in (CYy, ©;). From the defi-
nition of (Bj,«, ©s) we obtain e;Ose, € Bl .. m

In order to consider the structure of programs which are connected with compu-
tations, a family {g},‘< i, Of binary relations defined on the set CJ;will be introduced.

For any e,, e, € Cj; we assume that e; (_ e, iff the following two conditions

. d,a
are satisfied :

@ ey (ﬂ: €2,
(i) o is the least ordinal number such that e,, e, € Bl ..

1
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TueoreM 7.9. The family {(Ya<iyu of relations constitutes a partition of the
3,0

* relation, i.e., C;_
@ a#ﬂaCnC';=g7
 J C= C

a<Hy &0

The proof follows from the fact that for any o the relation “(C” is defined
ha

synonymously. m
Thus, writing e; (C e, for any elements ¢y, e; € C4;, we compare their lengths.
8

It follows from Theorem 7.9 that there exists an ordinal number « such that e, dC e,
; o

This ordinal number determines the precision degree for the comparison of e, e,
by the relation “(”* with respect to the structure of programs connected with these
3

elements. The smaller is the number o, the more precise is the comparison. The rela-
tion (C compares expressions in a precise way.

80

The question arises how to compare the programs of a stored program com-
puter M.

Before answering this question we adopt the following notation,

Let ¢ = ¢,0%:0 ... OF, where ¢, e Cly are atoms, By e(f) we shall denote
the expression ¢; 0;6205 ... OsCp.

Let ¢ be a program of a stored program computer M. Let Cy, , denote a subset
of a set Cyy which is defined as follows:

teCy, iff ¢°ce&kieCy.

Now, for any programs ¢,, @, of a stored program computer M we assume

that gal < @, iff the following three conditions are satisfied:

(1) (VCL € Cit,0) 302 € Cyy,p,)[C1 022],
(i) (Ve, € Cy,p)@¢1 € Cipp)l0n 8z4],
(iii) (V¢ e CM,%)(VE: € CM.¢,)[(E1 dcy) —» @A < “)(Eldcp @2)].

Thus with every program ¢ the set of computations Cyy,, is associated. The
comparison of programs is reduced to a comparison of computations.
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