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Pseudo-completeness in linear metrizable spaces
by
Aaron R. Todd (Brooklyn, N. Y.)

Abstract. J. C. Oxtoby has shown that the standard Baire category theorems follow from his
definition of pseudo-complete spaces. Although a pseudo-complete metrizable space need not be
topologically complete, pseudo-completeness implies completeness for a linear topology whose
completion is stronger than a metrizable topology. Pseudo-completeness and completeness are
equivalent for a linear metrizable topology. A complete linear topology stronger than a metrizable
topology need not be pseudo-complete.

In a portion of his paper [2], Oxtoby nicely identifies by his pseudo-complete
spaces, those common elements of several standard Baire category theorems which
make them corollaries of his Proposition (5.1), Any pseudo-complete space is a Baire
space, and his Theorem 6, The Cartesian product of any family of pseudo-complete
spaces is pseudo-complete.

The object of this paper is to establish that, for a large class of linear topological
spaces, pseudo-completeness implies completeness; indeed, for linear metrizable
spaces these concepts are equivalent.

A topological space X is guasi-regular if and only if each non-empty open set
contains the closure of a non-empty open set. A family # of non-empty open sets
is a pseudo-base for X if and only if each non-empty open set contains an element
of #. A quasi-regular topological space X is pseudo-complete if and only if there is
a sequence (4,) of pseudo-bases for X such that if U, e B, and U,oU,,, then
ﬂ U, is non-empty.

It is easily seen that a pseudo-metrizable space X, which is complete in some

’ pseudo-metric d, is pseudo-complete by considering the bases 4, of non-empty open

sets of d-diameter less than 1/n. That the converse is false may be seen by considering
a subspace of the plane, X = Rx (0, ) U Qx {0}, the union of the upper half plane
and its set of boundary points with rational first coordinates: For each %, use open
disks of the plane which are contained in X and which have centers with rational
first coordinates and radii less then 1/n. If X is complete in some metric which induces
its topology then Xis a G, subset of the plane ([1], p. 96). This is not possible since Q is
not a G; subset of R.

The following proposition characterizes a property 1equ1red in the main
theorem.
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PROPOSITION. If J is a linear topology, then the following are equivalent:

(2) S is finer than some linear metrizable topology.

(b) £ is finer than some metrizable topology.

(c) £ contains a countable subfamily which intersects in a singleton.

Proof. Clearly (2) implies (b), and (b) implies (c). Suppose (U,) is a sequence
in # such that () U, is a singleton. We may suppose the singleton is {0}. Using the

n
neigborhoods {U,} of 0, we may easily obtain a countable family of balanced neigh-
borhoods {¥,} of 0 with V.14 V,41<V, n U, which satisfies the metrization
theorem ([1], p. 48) and so forms a local base for a linear metrizable topology weaker
than #. That is, the linear topology with local base {V,} is induced by some trans-
lation invariant metric defined on E.

The main theorem now follows.

THEOREM. If the topology of the completion of a linear topological space E contains
a countable subfamily which intersects in a singleton, then E is complete if it is pseudo-
complete.

Proof. From the above proposition, there is a translation invariant metric d
on the completion F of E which induces on F a topology coarser than the topology
of F. Suppose that (#,) is a sequence of pseudo-bases for E as in the definition of

_pseudo-completeness. We shall show that E equals F, and so E is complete,

By the earlier cited result of Oxtoby, the pseudo-complete space E is a Baire
space. The Baire space E is a dense subset of F, and so Falso is a Baire space. Thére-
fore the intersection of a countable family of dense open subsets of F is a non-meager
Borel subset of F. With the aid of this fact and the following claim we shall obtain
a non-meager Borel subset 4 of F(*). By the difference theorem ([1], p. 92), 4— 4 is
a neighborhood of 0 in F. Finally, we show that E contains 4, thus E contains
Un(d—4) = F, and so E = F, which will complete the proof of the theorem.

CLAM. There is a sequence (%,) of families of disjoint open subsets of F such
that, for k>0, .

0) U, = u %, is dense in F,
for each Ce @y,

(1) d-diam(C)<1j(k+1),

(2 CnEe By, and

(3) there is D e %, with C~<D.

Proof. Start with %, = {F}, whose union is certainly dense in F. For mz —1,
suppose that %y, €, ..., %, satisfy condition (0) for all k such that 0<k<m+1
and the remaining conditions for all k such that 0<<k<m. Let n = m+1. (We shall
say that a family of sets is a disjoint family if no two different elements meet.) Let % be
the collection of all open subsets C of F which satisfy the following: (a) d-diam (C)

(*) The choice of 4 uses suggestions for which the author is deeply indebted to Professor
Jack Brown of Auburn University, Auburn, Alabama.

e ©

icm

Pseudo-completeness in linear metrizable spaces 95

<lj(n+1),(b) C Ee B, 4, and (c) for some D € ¢,, C~ = D. Let %, ., be maximal
among the subfamilies of % each of which is a disjoint family.

Now U,y = U @n.., is dense in F. For suppose not, then let U be a non-empty
open subset of F\U, ., with d-diameter less than 1/(n+1). Since U, is dense, some
D e €, meets U. Let W be a non-empty open subset of F such that W~ cDn U
Because 4, is a pseudo-base of E, and E is dense in its completion F and inherits
its topology from F, there is an open subset C of F such that C n E€ 4,.,., and
Cn E is contained in W n E. But C is open and E is dense, so

CT=CnE)yc(WnE cW eDnUcAU%,.-

Thus d-diam(C)<1/(n+1) and C" =D €%, so that %,,, U {C} is a disjoint sub-
family of 4. But %,., v {C} properly contains %,., which is a contradiction.
Condition (0) is now satisfied for 0<k<n+1 = m+2, and the remaining con-
ditions are satisfied for 0<k<n = m-+1. The claim is now established by induc-
tion.
Now we let 4 = (| U,. Each U, is-a dense open subset of the Baire space F.

n
Thus 4 is a non-meager Borel subset of F, and so A— 4 is a neighborhood of 0 in F.
‘We now show that 4 is a subset of E, which completes the proof of the main theorem.
For x € A, there are C, € %, with xe C,. Fixn>1. From the above, there is De &,
with C; 4 contained in D. However x is in both C, and C,, , and so C, and D meet.
But %, is a disjoint family, whence C, and D are the same set. Thus for all
nzl, Cr<C,.

Since C, n E is in ‘%, and C,.; is open in F and E is dense in F, we have
(Cori NEYy NnE=CpiyNnEThusC,n E>Cy N E = (Cpyy 0 E)” 0 E. Now
(N (C, N E) is a non-empty subset of E by the choice of (4,). Also the d-diameter

n

of C, is less than 1/m, so that () (C, n E) is a singleton and necessarily {x}. &

In the corollary we specialize this result to the case of linear metrizable spaces.

COROLLARY. If E is a linear metrizable space, then the following are equivalent:
(a) E is pseudo-complete.

(b) E is complete.

(c) E is complete in some metric which induces its topology.

Proof. Clearly (b) implies (c); the converse is well known ([1], p. 96). The
theorem and proposition shows (a) implies (b), and any complete metric space is
pseudo-complete, so (c) implies (a). B

Of course completeness does not imply that a linear topological space is a Baire
space, and so completeness does not imply pseudo-completeness. The example of
Saxon [3] used here has a topology finer than a metric topology by the first prop-
osition. Let E be the union of the increasing sequence of the Banach spaces (/) and
provide E with the strongest locally convex topology  for which each injection
i (o |l 1) S (B, ) is continuous. Let S, be the closed unit ball of (Z,, || II,)
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and § = | S,. Now S'is a neighborhood of 0 in E, and it is easily shown that each S,

is complet:, in the Hausdorff space E, and so each S, is closed in E. But each S, is
balanced and convex, yet not absorbing, and so is rare in E. Therefore Eis not a Baire
space. Also E is a barrelled space and the union of an increasing sequence (nS,)
of balanced convex complete sets, thus, by a theorem of Valdivia ([3], Th. 1), E is
complete. Moreover, S contains no ray from 0, and so the countable family {(1/x)S?}
of neighborhoods of 0 intersects in the singleton {0}.

There are incomplete normed spaces which are Baire spaces ([1], p. 95), and so
a normed Baire space need not be pseudo-complete. The question of the existence
of a pseudo-complete linear topological space which is not complete seems to be
open.

The author gratefully acknowledges the encouragement and helpful suggestions
of his teacher S. A. Saxon. .
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Totally-disconnected compact metric groups
by .

Joseph M. Rosenblatt (Vancouver) -

Abstract. Any totally-disconnected compact group has a basis at the identity {N;} consisting of
closed and open mormal subgroups of finite index. If the group contains a fintely-generated
dense subgroup then the topology is a metric topology and the basis at the identity can be taken
to be countable. We say that a group is r-separable if there is a dense subgroup with r generators. Let
Fbea class of finite groups. For certain F, there is a largest r-separable totally-disconnected com-
pact group Go such that all the factor groups G,/N; are in F. Examples include for the class F the
class of all finite groups, the class of all finite p-groups for a prime number p, and the class of all
finite nilpotent groups. The largest r-separable totally-disconnected compact group with factors
finite nilpotent is the Cartesian product over all primes p of the largest r-separable totally-discon-
nected compact groups with finite p-group factors. Totally-disconnected compact groups in some
ways have a more complex algebraic structure than connected compact groups. There are r-separ-
able totally-disconnected compact solvable and nilpotent groups with derived and central series
of any given length.' The question of which r-separable totally-disconnected compact groups satisfy
non-trivial algebraic laws is a difficult problem concerning the residual properties of free groups.
It is shown that if a compact group contains a non-abelian free group then it contains a free group
on a continoum of free generators.

Introduction. The class of totally-disconnected compact metric groups which
contain a finitely-generated dense subgroup can be classified by the residual proper-
ties of finite rank free groups. Some of these groups satisfy non-trivial algebraic
laws and others contain subgroups which are free groups with a continuum of
generators. If a compact group contains a subgroup with two free generators, then
it contains a subgroup on a continuum of free generators.

Section 1. A Cantor group is any topological group which has the Cantor dis-
continuum as its underlying topological space. Montgomery-Zippin [7] show
that any totally-disconnected compact topological group G has a basis {N;} at the
identity e consisting of open and closed normal subgroups. It follows that G/N; is
a finite group for all i, If G has a metric topology then the basis at e can be assumed
to be a sequence with N;> N, for all i>1 and G is a Cantor group.Let P be the

@

Cartesian product [] G/A; with the product topology and let ¢: G—P be defined
i=1 -

by ¢(g)(i) = gN;. Then ¢ is an isomorphism of G onto a closed subgroup of

©

’ HJG/Ni. Let S, be the symmetric group on n symbols and let P; be the Cartesian
i= .
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