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and § = | S,. Now S'is a neighborhood of 0 in E, and it is easily shown that each S,

is complet:, in the Hausdorff space E, and so each S, is closed in E. But each S, is
balanced and convex, yet not absorbing, and so is rare in E. Therefore Eis not a Baire
space. Also E is a barrelled space and the union of an increasing sequence (nS,)
of balanced convex complete sets, thus, by a theorem of Valdivia ([3], Th. 1), E is
complete. Moreover, S contains no ray from 0, and so the countable family {(1/x)S?}
of neighborhoods of 0 intersects in the singleton {0}.

There are incomplete normed spaces which are Baire spaces ([1], p. 95), and so
a normed Baire space need not be pseudo-complete. The question of the existence
of a pseudo-complete linear topological space which is not complete seems to be
open.

The author gratefully acknowledges the encouragement and helpful suggestions
of his teacher S. A. Saxon. .
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Totally-disconnected compact metric groups
by .

Joseph M. Rosenblatt (Vancouver) -

Abstract. Any totally-disconnected compact group has a basis at the identity {N;} consisting of
closed and open mormal subgroups of finite index. If the group contains a fintely-generated
dense subgroup then the topology is a metric topology and the basis at the identity can be taken
to be countable. We say that a group is r-separable if there is a dense subgroup with r generators. Let
Fbea class of finite groups. For certain F, there is a largest r-separable totally-disconnected com-
pact group Go such that all the factor groups G,/N; are in F. Examples include for the class F the
class of all finite groups, the class of all finite p-groups for a prime number p, and the class of all
finite nilpotent groups. The largest r-separable totally-disconnected compact group with factors
finite nilpotent is the Cartesian product over all primes p of the largest r-separable totally-discon-
nected compact groups with finite p-group factors. Totally-disconnected compact groups in some
ways have a more complex algebraic structure than connected compact groups. There are r-separ-
able totally-disconnected compact solvable and nilpotent groups with derived and central series
of any given length.' The question of which r-separable totally-disconnected compact groups satisfy
non-trivial algebraic laws is a difficult problem concerning the residual properties of free groups.
It is shown that if a compact group contains a non-abelian free group then it contains a free group
on a continoum of free generators.

Introduction. The class of totally-disconnected compact metric groups which
contain a finitely-generated dense subgroup can be classified by the residual proper-
ties of finite rank free groups. Some of these groups satisfy non-trivial algebraic
laws and others contain subgroups which are free groups with a continuum of
generators. If a compact group contains a subgroup with two free generators, then
it contains a subgroup on a continuum of free generators.

Section 1. A Cantor group is any topological group which has the Cantor dis-
continuum as its underlying topological space. Montgomery-Zippin [7] show
that any totally-disconnected compact topological group G has a basis {N;} at the
identity e consisting of open and closed normal subgroups. It follows that G/N; is
a finite group for all i, If G has a metric topology then the basis at e can be assumed
to be a sequence with N;> N, for all i>1 and G is a Cantor group.Let P be the

@

Cartesian product [] G/A; with the product topology and let ¢: G—P be defined
i=1 -

by ¢(g)(i) = gN;. Then ¢ is an isomorphism of G onto a closed subgroup of

©

’ HJG/Ni. Let S, be the symmetric group on n symbols and let P; be the Cartesian
i= .
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o0
product T] S, with the product topology. Then Po is a Cantor group and P is a closed
n=1

subgroup of P, because each group G/N; is a subgroup of some S, where n depends
on i. Thus, the Cantor groups are exactly the closed subgroups of Po.

A group G is residually finite if given g # e in G there is a subgroup H of G
with the index [G: H] of H in G finite such that g ¢ H. M. Hall [3] describes a topo-
logy in certain residually finite groups via normal subgroups of finite index. Suppose
G is residually finite and {G} is a decreasing sequence of normal subgroups of

finite index in G with () G; = (). One defines a topology denoted 7(G) in G by
i=1

letting {G;} be a basis at e. The open sets then have {gG;} as a basis. This is the
same topology in G as the relative topology in G when it is embedded in the product

ﬁG/Gi with the product topology by mapping g—<gG.>. The completion of
i(=G1, ©(G)) by Cauchy sequences is denoted C(G; G;) and can be identified with
the closure of G when embedded in ﬁ G/G, as above. This identifies C(G; G) with
the inverse linﬁt I_I G/G, consisting lr:flall {g;Gy where g;,G; = ¢,G; for all iz1.

Also, C(G; G,) is uniquely determined by its containing (G, 7(G;)) as a dense sub-
topological group.

Any Cantor group can be represented as above. Let H be a dense subgroup
of 2 Cantor group G and let {N;} be a decreasing sequence of closed normal sub-
groups of finite index in G which is a basis at e in G. Let H; = H n N;. With {H3}
as a basis at e in H, H has the relative topology in G. Hence, C(H; H;) is isomorphic
to G. This representation is of interest in the case that H is finitely-generated or
at least countable. Since any Cantor group G is separable, G will always have
a representation as C(H; H;) for some countable subgroup H.

DEFINITION. We say G is an r-separable Cantor group if G is a Cantor group
with a dense subgroup generated by r elements.

Remark. The definition is slightly redundant. If G is a compact totally-dis-
connected topological group and contains a dense subgroup H generated by a finite
number of elements then G has a metric topology. The proof of this is based on
the fact that if H is finitely-generated then H contains only finitely many subgroups
of a given index; see M. Hall [3] for a proof. In fact, if {i;}is any collection of
closed and open normal subgroups in G then {N; n H} is countable. Since the
closure of N; n H in G is N;, {N;} is also countable.

We see that any r-separable Cantor group is of the form C(H; H;) where H is
generated by r elements and {H;} is a decreasing sequence of normal subgroups

of finite index in H with () H; = (¢). If we represent H as a factor group of the
i=1

free group F, on r gencrators by a normal subgroup N then N must be the inter-
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section of a sequence of finite index normal subgroups. The classification of all
r-separable Cantor groups in this way depends on the residual properties of the
free group F.. In M. Hall [3), the main concern is the question for which

decreasing sequences {N;} of finite index normal subgroups of F, does ?] N; = (&)?
i=1

In any _su.ch case one has a Cantor group G = C(F,; N,) with a basis {N}ate
where N is the closure of N; in G with respect to the topology determined by z(N,).

1.1. ProposiTioN (Takahasi [9]). If {Ni} is a properly decreasing sequence
of subgroups of F, such that each Ny, is characteristic in N, foriz1, then F) N; = (e).
i=1
Proof. See [6] for the details. m

:I‘his proposition gives some important examples of r-separable Cantor groups.
For instance, let p be a prime number. Let Ny = F, and let Ny, be the intersection
of all normal subgroups N in N, with [N;:N] = p.Then N;.;SN; and Ny, is

characteristic in N;. By 1.1, N\ N; = (&). Also, each N; is index a power of p in F,
i=1 g

and we have a Can.tor group C(F,; N;) which we will denote henceforth as C(F,; ).
Another example is to take M to be the intersection of all normal subgroups N

in F, with [F,:N]<i. Again, M, = () and we denote C(F,; M;) by C(F,; tot).
i=1

Any r-separable Cantor groui) G is a continuous homomorphic image of
C(F,; tot). To prove this we use the following lemma.

DEFINITION. A resolution in a group G is a decreasing sequence {N;} of finite

‘index normal subgroups of G with ()N, = (e).
i=1

1.2. PROPOSITION. Let p: G1—G, be an onto homomorphism and let {G1())} and
{G2(D)} be resoluiions of G, and G, respectively. Assume that for all j=1, P HGA(D))
2 G(k) for k sufficiently. large depending on j. Then there is a continuous onto homo-
morphism p: C(Gy; Gy()))— C(Gy; Gy())) such that b restricted to G, is p.

Proof. Choose a subsequence {G(k)} with () Gy(k) = () and Gy(k;
— . . . . j=1

<p Y (Gy())) for all j=1. We can identify C(Gy; Gi(N) as []G,/Gy(k;) and

. . - = - 7
€(Ga; GoU)) as [] Go/Ga(j). Define B by 5<g,G1(k)p = <p(gpGy(i)>. Tt is casy
7

to verify the properties of . W

Remark. Another description of 5 is to take any g € C(G,; G4(j)) and some

sequence g;—g with g;€ Gy for all j. Then {p(g,)} is 7(G,(j)) — Cauchy and has
a unique limit point j(g) in C(G,; G5())).

1.3. Proposition. If C(F,; N} and C(F,; M) are given with each N; contain-
ing some M; where j depends on i then there is a continuous homomorphism p of
C(F,; M) onto C(F,; Ny) which is the identity when restricted fo F,.

2 — Fundamenta Mathematicae t. XCIV
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1.4. PROPOSITION. C(F,, tot) has every r-separable Cantor group as a continu-
ous homomorphic image. If G, is an r-separable Contor group with this property
then G, is isomorphic to C(F,; tot). | -

Proof. The first part comes from Proposition 1.2 and the definition of
C(F,; tot). Suppose G, has the property.above. Then, in particular, there is a con-
tinuous onto homomorphism p: Gg— C(F,; tot). Let H be an r-generator sub-
group which is dense in G,. In F, we have the resolution {N;} where N; is an inter-
section of a family {N: N is normal in F, and [F,: N]1<i}. By construction, if {N;}
is the sequence of closures in C(F,; tot), then {N,} is a basis at ¢ of closed normal
subgroups and C(F,; tot)/N; is isomorphic to F/N; for all i>1. This gives us
a sequence {H;} defined by H; = Hnp~'(N). Since N; is closed and open,
p~ (N, is closed and open and G,/p~*(N,) is H/H; by the density of H.

‘We claim that H is isomorphic to F, and each H;=N; up fo this isomorphism.
To show this let # be an onto homomorphism from F, to H. Then {n™'(H)} is
a decreasing sequence of normal subgroups of finite index. But the lattice of sub-
groups {N: Non~*(H) and N is normal in F} is in 1-1 correspondence with the
{N: N>H; and N is normal in H}. Also, this correspondence preserves the index.
Since H/H, is F,/N, through the isomorphism of Go/p~*(N}) with C(F,, tot)/N;,
we also have {N: N> H; and N is normal in H} in 11 index-preserving correspon-
dence with {N: N> N,and N is normal in F,}. The definition of N;must then imply
{N: Noz"(H;) and N is normal in F,} contains as many distinct normal sub-

- groups N with [F,: N]<i as there are in {N: NoN; and N is normal in F,}. Since
there are only a finite number of such subgroups and the same number in both
cases, 77 {(H)<=N; for all iz1. Thus, 7 is an isomorphism because the kernel of

7 is contained in ﬂ " Y H) < ﬂ N; = (e).
i=1 i=1

The conclusion of the argument is that if 7 is the topology of G, then 7 re-
stricted to H is at least as fine as t(H)>7(N)). Since G, is a Cantor group, the
topology T when restricted to H is no finer than (H,tot). Hence, (H t|H) is
isomorphic to (F,, tot) and G, is isomorphic to C(F,,tot). B

By Schreier’s index formula, if F is a subgroup of F, with index r then F is
afree group on r(s—1)+1 generators. From this one can see that C(Fy; tot) contains
C(Fy; tot) as a normal closed subgroup of index r if ¢ = r(s—1)+1. Also, any
closed subgroup H of C(F; tot) with index r is just C(F,; tot). Another property

of C(F,; tot) is that it does not contain a dense subgroup with fewer then r gene-
rators.
In the sense of Proposition 1.4, C(F,; tot) is the largest r-separable Cantor
group. The group C(F;; p) for a fixed prime p is in the same sense the largest of
" the Cantor groups C(H; H;) where H is generated by r elements and H/H, is
a p-group for all i>1. Similarly, there i§ an r-separable Cantor group C(F,; N))
with F,/N; nilpotent for all i>1 which is the largest r-separable Cantor group
among all Cantor groups of the form C(G; G,) where G has r generators and G/G,
is nilpotent for 7>1. This group is denoted C(F,; nil).

icm
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1.5. PROPOSITION. The group C(F,; nil) is isomorphic to the Cartesian product
of the groups C(F,; p) where p runs through all the primes.

Proof. Let {p;} be an enumeration of the prime numbers. Let {N;(p)} be
a basis at ¢ as in the definition of C(F,; p)). Let A} = Ny(p,) N ... 0 N{p;). Then
C(F.; A7) is well-defined and is isomorphic to C(F,; nil). Also, FJA"; is
isomorphic to the direct sum F/N(p)® .. ® F,/N(p) because ,the primes
{pys.,p;} are distinct and [F.:N(p)] is a power of p, for all i, s>1.

Hence, C(F,; nil) is just H [FIN{(p)® ... ®F,/N{py)]. This in turn is
[T (TI E/Ny(p))- Since, [T F/Nipy) is C(

i 3 iz
to [] C(F.,p).- &

Remark. Let G be a topological group. Let C, be the closure of the subgroup
generated by {ghg™'h™': g, h e G}. Let C, be the closure of the subgroup gener-
ated by {ghg~'h"': g € G and ke C,}. Continue this inductively to get a decreasing
sequence of closed normal subgroups {C;} with G/C; nilpotent for all i. If G is any
totally-disconnected compact group with a basis {N} of closed and open normal

F,; p), we have C(F,; nil) isomorphic

subgroups having mlpotcnt factors G/N; then ﬂ C; = (¢). In particular, G is an

inverse limit of a sequence of totally—dlsconnected compact nilpotent groups.
Similarly, if each G/N; is solvable then G is an inverse limit of a sequence of com-
pact solvable groups.

Section 2. Let W(Xj, ..., X,) be a word in n free variables. A group G satisfies
a law W(Xy, ..., X,) when the equation W(g,, ..., g,) = e holds for all gy, ..., g,
€ G. Balcerzyk and Mycielski [1] have shown that a connected compact group is
either abelian or contains a free group on a continuum of generators.. It follows
that if a connected compact group satisfies a non-trivial law W(X7, ..., X,) then
the group is abelian. '

In general, if a compact group G satisfies a law W(X 15 s X,) Which is non-
trivial -then we also have the law W(e, ..., X, ..., ¢) in the group. Hence, either
the group satisfies a law X" where n1 or the sum of the exponents on each X;
in W(Xj, ..., X;) is 0. The latter occurs if and only if WX, ..., X,) is a product
of commutators. Also, if a compact gtoup satisfies a law X™ or if the compact group

has only elements of finite order then the group is totally disconnected. To sum

this up, if a compact group satisfies a law W(X4, ..., X,) then the group is totally-
disconnected and satisfies a law X" or W(Xy, ..., X,) is a product of commutators
and the identity component of the group is abelian.

The case of a totally-disconnected compact group which satisfies a law X"
has special algebraic significance. The Restricted Burnside Conjecture is that an
r-separable Cantor group satisfying a law X is finite. Kostrikin [5] has shown
this is true for primes #. P. Hall and Higman [4] have shown that it follows from
this for other special integers like products of two distinct primes.

2
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Also, unlike in the connected case, there are non-abelian Cantor groups satisfy-
ing commutator identities. Let W(X, ..., X,) be either ((...((Xl, X, X3), ), Xn)
v (- (X X, (X, X)), s (et X,)) where (Z,Y)=ZYZ'Y™'. Let
N(W) be the normal subgroup of F, generated by (W(gy, ..., g,): g1» «-v» s € G}
Then in either case, F,/N(W) is residually finite and, in fact, is residually a finite
p-group for any prime p. A reference for this is Gruenberg [2]. If {N;} is a resol-
ution of F,JN(W) then C(F,/N(W); N;) is an r-separable Cantor group satisfy-
ing W. In general, these groups are solvable in the sense that there is a sequence
(e) = §;= ... =8, = G of closed normal subgroups with each S;./S; an abelian
Cantor group. Depending on which of the two examples given for W above that
one uses, the group C(F,/N(W); N;) will have derived or central series of any given
length. )

‘We would like to have simple conditions under which a compact group satisfies
no non-trivial laws and to show that in this case the group contains large free groups.
At least, any group of the form C(F,; N;) with r>2 will satisfy no law. Also, any
such group contains a free group on a countable number of free generators be-
cause F, does. We will show in the remainder of this section that any group of this
form contains a free group on a continuum of generators. It will follow that any
compact group which contains a free group on two generators must contain a free
group on a continuum of generators.

Let {N;} be a resolution of F,. Assume x and y are free generators of F,.
Let O, = {y’xy™: j=1}. For each i>1, O, modN; is a finite set containing M;
elements. Each M, divides M;,, and M, increases to o as i—o0. If {M;} were
bounded then there would be a K1 with y*xy™*N; = xN; for all i=1. Since

«©
N N; = (&), this would mean y*xy~¥ = x which is impossible. We assume without
=1 :

loss of generality for what follows that M., >M, for all i>1 and M >2. Let
M, =1.

‘We want to define a sequence (r;} of homomorphisms of a free group on
a continuum of generators into F,. It is enough to define {r;} on the generators
of such a group. Let F,, be a free group with free generators {x,: 1[0, 1)}. Par-
tition [0, 1) into M, intervals X7, ..., X;f,L of the same length and of the form [-,).
Do this so that A;<4; if A;€ X7 and X;€ X} with i<j. Define r, by the formula
r(x) = 7 ix "’“ 1f A eX‘

Suppose now i>1 and r; has been defined in the following manner. There is
a partition {X7,... Xw} of - [0, 1) by intervals of the same length and of the
form [,"). i le X} then r(x;) = x9 1y~ Let d = M, ,/M;. Divide each Xj
into d intervals X'(l), vy X (d) of the same length and of the form [-,-). We assume
A<d, if A eX(s) and 4, EX‘(t with s<t. We enumerate the (i+1)-partition
{xi }(k) j= 1 s Myand k=1,..,4d} lexwographlcally That is, the (1—{—1) -par-
tmon s {XiTL LX) whele X i) = Xi(k) for j=1,..,M; and
k=1,..,4d Deﬁne Fisr BY Frp(y) = y’ IxyTi*tif Je Xt
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The fundamental property of {r} is that for all w € Fo, r(W)N; = r; 4 (W) N,
for all i>1. Hence, r,+1(N,+1)r:r (N;) because ripiw) e Niyy lmphes rip (WN;

= N; and, therefore, ry(w) e N;. Tt will not be necessarily true that ﬂ ra YN, = ()

. . . n=1
but if we suitably restrict the generators of F,, then this will be true.

Any word w(x,y) in the free varlables x and y has a unique expression in
the form x"p/t .. xmpim where 43 J1s eors Iy Jiy are integers Whlch are all non-zero
except possibly 7; and j,. The length of w, denoted |[w]|, is Z lil+1jsl- Let D, be
the largest whole number such that all words w(x,y) # e such that llwl|< D, are

not in N,. The sequence {D,} increases to oo as n—co because ﬂ N, = (e).
n=1

Choose a sequence {R;} of positive integers with the following properties:
Ry =1 and R;+1<Ryy, for all i>0; also, MR,+1/DRH,<1/2'+1 for all iz0.
This is posmble because D,—o0 as n—ow. Any Ae[0, 1) has a umque expression

of the form Z GlM; it 0<e<MyM; ; and c¢; 5 My/M;_ ,—1 frequently.

Let /I(n) be deﬁned by the equation r,(x;) = y*®xy~*®_ It is easy to see that A(x)

= Z ¢;Mj-;. We define 4, to be all 1€ [0,1) having ¢,(4) = 0 unless { = R;+1
i=1 -

for some j>0 and ¢4 € {0, 1} for all iz1. The property of Ae A, we will use is
that for all i>0,
Risy Ri+1

A(Risy) = ZICjM}—1< (MM —1) M.
j= i=1
< Mp,+1% Dp,,, 270,
Hence, A(R;4;)/Dg,+1—0 as i—co. Let F, be the free group with generators
{x,: Aedp).
2.1. PROPOSITION. F, is a free group on a continuum of generators and there
is a sequence of homomorphisms p;: Fy—F, such that if we F, and w # e then

iAW) & N; for i sufficiently large. Also, if w e F,, then p{w)N; = Pi+1(WN; for all
izl '

Proof. Take p; to be r; restricted to F,. If weF, and w # ¢ then
W= V(X ..., x;,) Where ¥ is freely reduced and not the identity and 1, ..., 4,
are distinct elements of A,. For any.n>1, we have

(W) = V(yH@Oxy=h, | yhnldyg,mdntdy
Since Ay, ..., 4, are distinct, eventually 7,(x,,), ..., ralx;,) are distinct and r,(w) # e.

The length
I NV {1 +2MAX (4, oo, A(m))) -

Since each ;e Ay, we have
17RO IV (142Dg,/25) .
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Hence, ||rr (#")l|/Dr—0 as K—co. This says rge(w) € Ng, for K sufficiently large.
That is, p;w) ¢ N; for i sufficiently large.
To finish the proof we need only prove that 4o is of the same cardinality as
@

i=1

0 .

T1{0,1}. But 4, isin1-1 correspondence with [T {0, I)\D where D is countable.
, =1 ‘

Hence, A, has the same cardinality as the continuum. #

2.2. COROLLARY. C(F,; N;) contains a subgroup isomorphic 10 a free group
on a continuum of generators. .

Proof. Let ¢: Fo—>HFz/Ni be defined by ¢(w)(i) = p{w)N;. Then ¢ is an

isomorphism of the free group Fy into C(F,; N). &

We should remark here that with a little more effort we can get a free group
on a continuum of generators as a dense subgroup of C(Fy; N)). Let F be the free
group with free generators {x;: A€0, 1]}. Define a sequence of homomuorphisms
{s,} by letting 5,(x7) = rdxy) if <1 and s,(x;) =y forall n>1. Define an equiv-
alence relation on Ag by Ay~4, if and only if {A,(m)—A,(m)} is bounded in absolute
value. Let A* be a set of representatives of the equivalence classes of this equivalence
relation. Let F* be the free group generated by {x;: =1 or le A%},

2.3. PROPOSITION. F* is q free group on a continuum of generators and there
is*an isomorphism of F* with a dense subgroup of C(Fs; N).
Proof. We use the fact that if j = Ry, ;41 and ¢;(4) 5 ¢;(4,), then we have
j-1
111(.]')'—12(]‘)]?Mj_zllcs(ll)—csu'l‘)‘Ms—-]
Fe
: Ry+1
=>M;— ZI(MS/M =DMy
$=
> Mj—Mg,o1+1
>3Mg,+1 -

It follows that Ay~2, if and only if ¢(d;) = ef4y) for i sufficiently large. Also,
if A, is not equivalent to A, then [4(r)— A,(n)l—o0.
One immediate consequence of these facts is that A* has the cardinality of

0
the continuum. This is because A, has the same cardinality as [] {0, 1} while each
i1

A€ 4, has a countable equivalence class. Hence, the representatives 4* have car-
dinality the same as Ag. ‘

We let g,: F*—F, be the map s, restricted to F*. An argument similar to the
- .
one in the proof of 2.1 will show that () g, *(V,) = (¢). One needs to use the fact
n=1

that if Ay, A, € 4* and A; # A, then [A,(n) —Ay(m)|—c0 as n—co. This gives us an
isomorphism ¢: F*—»I:[FZ/Ni by e (W) (@) = g;(w)N;. The image @(F*) is dense

i
in C(Fy; N;) because g,(F*) = F, for all i>1. We know this because g/x;) =y

icm°®
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for all i1 and if A~0 e A, then g(x;) = y“xy~F for some constant K when i is
sufficiently large. Hence, g,(F*) = F, for large i and, therefore, for all i. B

2.4. THEOREM. If a compact group contains a free group on two free generators
then it contains a free group on a continuum of generators.

Proof. Suppose G is compact and F, is a subgroup. Let H be the closure of F,.
Then H is compact and F, is dense in H. Let H, be the identity component of H.
If Hy n F, # (€) then it is a non-trivial normal subgroup of F, and, hence, is a free
group with at least two generators. Balcerzyk and Mycielski [1] showed that in this
case H, contains a free group on a continuum of generators. If Hy n F, = (¢)
then H/H, contains a dense subgroup on two free generators. Since H/H, is totally-
disconnected H/H, is isomorphic to C(F,; N;) for some resolution {N}. Now
Corollary 2.2 implies H/H, contains a free group on a continuum of generators.

. Therefore, in any case G contains a free group on a continuum of generators. B

The above theorem can be extended to locally compact groups G with identity
component G, such that G/G, is compact using [1] and 2.4. It is not true for all
locally compact groups. If a compact group G does contain a non-abelian free
group F then the index of F in G is necessarily the cardinality of the continuum.
Also, the technique we use here is easily adapted for showing that a locally compact
group with an element x for which the subgroup generated by x.is not discrete in
the relative topology must contain a free abelian group on a continuum of gener-

ators.

Tt was suggested by Jan Mycielski that the main theorem of [8] would give
a categorical proof of Theorem 2.4. One wants to show that if a compact group
contains a free subgroyp on two generators, then it contains a free group on a con-
tinuum of generators. As in the proof of Theorem 2.4, we need only show this for
compact totally-disconnected groups. By taking a subgroup, we may assume we
have a totally-disconnected compact group G and a dense subgroup on a countable
infinity of free gemerators {x;: i =1,2,3...}. Using the theorem in [8], we can
conclude that G contains a continuum of free generators if we can show that for
each non-trivial word W(zy, .., z,) in free variables zy,..,z, the set Ry
={(g1s s Gm): W(G1seos G = e} is nowhere dense in Gx ... xG. Since the set
is closed, we need only show that it has no interior. If it had interior then there
would be open-closed normal subgroups Ny, ..., Ny in G and elements 7y, ..., fin
in the subgroup generated by {x;: i = 1,2, 3, ...} such that Whnys oo, Bplly) = €
for all (my, e #y) in Nyx ... XN,. Choose distinct free generators X, ..., %,
in {x;} which are not involved in the free reduced forms of any of Ay, - Ay For
some large integer K, xg is in N; for all j=1,.., m. Hence, Wy xp, ..
«s BuxX) = e. But this is impossible by the choice of {x,tj=1,"., m}. Hence,
Ry is nowhere dense. This shows that the theorem of Mycielski [8] is really more
general than Theorem 2.4. However, the proof of Corollary 2.2 is quite explicit
in the case of a totally-disconnected compact group; moreover, it gives us Prop-
osition 2.3 which is not obvious from the categorical method.
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Semilattice theory with applications
to point-set topology

by

Eric John Braude (Erie, Pa.)

Abstract. By means of semilattice theory, it is shown that if an intersection-preserving
epimorphism  exists between a pair of closed subbases containing the singletons, and 6~ R ()]
= {@}, then the generated topologies are homeomorphic. The necessity of including the smgletons
in this context is studied, and a similar theorem is proved for subbases which do not necessarily
contain the singletons, but which generate compact 7, topologies. These results generalize theorems
of Birkhoff concerning bases or entire families of closed .sets and set maps which are lattice
isomorphisms.

1. Introduction. Theorems expressing conditions under whlch the isomorphism
of the lattices of closed sets of a pair of topological spaces implies the topological
equivalence of the spaces are an established part of the lattice theory literature.
(See, for example, [1], [3], and [4])

By means of general semilattice theorems, it is shown here that, for T spaces,
consideration of these questions can be profitably extended to semilattices of closed
sets which are subbases for the topologies involved —instead of totalities of closed
sets or of bases, — and to intersection- or union-epimorphisms — instead of
lattice isomorphisms (e.g. for an intersection morphism, F(4 n B) = f(4) n f(B)
for all 4, B). Several counterexamples are presented to delineate the extent to which.
some of the hypotheses can be weakened.

In Section 3 we study meet epimorphisms between semilattices (Theorem. 3.6).
The results obtained are applied to show that if an intersection morphism exists
from a closed subbasis containing singletons onto a second, then the generated
topologies are homeomorphic (Corollary 3.15). This generalizes a theorem of
Birkhoff. A counterexample shows the necessity of including the singletons, set
theoretic investigations yield Corollary 3.12 which essentially concerns cardi-
nalities, and further topological considerations are discussed which stem naturally
from the study of intersection morphisms (Corollaries 3.19 and 3.32).

Section 4 has as its main result (Theorem 4.5) a generalization of another
theorem of Birkhoff. It is proved that if an intersection morphism exists from one
closed subbasis onto another, and if the topologies which .they generate are com=
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