. o ©
120 . E.J. Braude lm

Example 4.3 illustrates the same point when & and % both generate compact T,
topologies. (In this example, neither space contains singletons.)

5.10. COROLLARY. If (X, %) and (Y,¥") are spaces having closed subbases
which (i) contain the singletons, (ii) are closed under finite unions, and (i) are union
isomorphic, then (X, %) and (Y, ¥") are homeomorphic.

Proof. Let % and % be the respective closed subbases in (X, %) and (¥, ¥"),
and let @ be an isomorphism of % onto %. By Lemma 5.6, the equation (x)

= {B({x})} defines 2 map of Z to %, and this map is clearly a bijection.

By Theorem 5.8, we have f(K) = '9(K) for every K in #, and the reasoning
of Corollary 3.15 is applicable to showing that # is & homeomorphism.
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On s,-categoricity and the theory of trees
by

James H. Schmerl * (Storrs, Conn.)

Abstract. The principal result is: every ¥,-categorical tree is decidable. This follows from
a general theorem which asserts that every nuclear, ¥,-categorical structure is finitely axiomatizable.
Other facts about trees are also proved. For example, the finitely axiomatizable, ¥,-categorical
trees are characterized.

In this paper we investigate wy-categoricity, in general, and w,-categorical
trees, in particular. The concept of a nuclear structure is introduced in § 1, where
it is shown that each nuclear, %p-categorical structure is finitely axiomatizable.
Any sy-categorical, linearly=ordered set is easily seen to be nuclear, so we get the
result of Rosenstein [4] that every w,-categorical linearly ordered set is finitely
axiomatizable. This result is extended in § 2, using the notion of nuclearity, to show
that every w,-categorical tree is decidable. In addition, those w,-categorical trees
which are also finitely axiomatizable are characterized.

Our method of proof is quite different from Rosenstein’s. His is based on an
analysis of linear orderings similar to ones given by Frdss and Hajnal [2], or by
Liuchli and Leonard [3] in their proof of the decidability of the theory of linearly
ordered sets. It is hoped that-our method can more easily be applied to other the-
ories. More generally, it is hoped that the notion of a nuclear structure will lead
to a classification of those w,-categorical theories which are finitely axiomatizable.

For a first-order theory T’ we denote by o(T) the similarity type of T. We will
consider only T for which ¢(T) is finite. For convenience we assume that ¢(T)
contains only relation symbols (although none of our results depends on this re-
striction). A theory iIs w,-categorical iff all of its countable (and here we include
the possibility of finite) models are isomorphic, so that an s,-categorical theory
is automatically complete. If T is a theory then an n-fype (of T) is a maximal set
of n-ary formulas (i.e. those formulas all of whose free variables are among
Vg5 o> Uy—y) Which is consistent with T. We denote the set of n-types of T by S,(T).
We will often attribute to a structure 2 a property that Th() has (e.g. Ng-cat-
egoricity, decidability).

* Many of the results contained herein were annouced in [6]. The intended proof of The-
orem 1 in [6] was erroneous; however, this has no effect on the contents of this paper.
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An indispensable tool in the study of %,-categoricity is the following theorem
of Ryll-Nardzewski [5].

RYLL-NARDZEWSKL'S THEOREM. A complete theory T is wo-categorical iff S,(T)
is finite for each n<ao. ’

Tt is of course natural to have to construct isomorphisms in studying w,-cat-
egoricity. We will often use the back-and-fqrth technique to do this. We refer the
reader to the expository article [1] for information on this technique.

§ 1. Nuclear structures. In the theorem of this section we will give a sufficient
condition for an w,-categorical structure to be finitely axiomatizable.

If p € S,(T) and ISn, then p|I will denote the set of formulas in p whose free
variables are among {v;: i€I}. Now let % be a structure, and let X< A be finite,
and let @ € 4. We say that a subset YSX is a nucleus of X for a iff the following
property holds: if X = {ay, ., @y} and Y = {4y, ..., @,~1} where n<m; and
p is the (m+1)-type realized by {ag, -, @1, @, then p is the unique (m+1)-type
extending plm U p|(n U {m}). The structure A is n-nuclear iff, for each a € 4, each
finite subset has a nucleus with no more than n elements. If 2 is n-nuclear for
some n<w, thén we will say that U is nuclear. Notice that if T'is s,-categorical
and some model of T is n-nuclear, then each model of T is n-nuclear.

The prototypical nuclear structures are linearly ordered sets. Indeed, it is
immediate that every linearly ordered set is 2-nuclear.

THEOREM 1.1. Every nuclear, so-categorical stucture with finite similarity type
is finitely axiomatizable.

Proof. Let B be a countable, nuclear, w,-categorical structure such that

0(®B) is finite, and let 7 = Th(B). Choose n< w large enough so that B is n-nuclear.

and that there are no r-ary relation symbols for any rzn+2.

From Ryll-Nardzewski’s Theorem it follows that there is a finite sequence
{®,: pe 8,:1(T)> of formulas satisfying the following properties:

(0) ®,ep for each pe S, ((T).

(1) For each p €S, (T) and each (n+1)-ary atomic formula «, either k $,—o
or F@,—~a.

(2) If p, g€ S,41(T) and p 3 g, then F,~ 1 ,.

We now make some definitions concerning formulas in the language of T.
We call a formula ¢ a @-formula if ¢ is a conjunction of formulas of the form
@,(vy,, .- v,). Suppose that ¢ is an m-ary d-formula. We will say that ¢ is com-
Pplete iff whenever iy, ...,7,<m, then there is a unique P ES,+1(T) such that
@,V - v;,) is & conjunct of ¢. Furthermore, we will say that ¢ is consistent if{
TF3vg, oy v—1¢. It m<w and peS,(T), then @, is the m-ary @-formula de-
fined by:

@y = N\ (P05 s v,) €D Tgy e, Ty<m and g Sypy(T)} .

Notice that each ¢, is a complete and consistent @-formula.
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Let o, be the sentence

Yoy, s 5\ {0, p € Spe (D)} .

It is obvious that o, is a consequence of 7. The models of o, are just those
structures 2 for which each m-tuple <{aq, ..., @,_,p of elements of A satisfies
a unique complete (although not necessarily consistent) m-ary @-formula.

Now let 2 be a model of g4, and let X< 4 be finite and let a € 4. We say that
a subset YSX is a @-nucleus of X for a iff the following property holds: if X
= {89, s Uy—y} and ¥ = {ay, ..., a,,} where r<m, and if 8, 0,, 65 are com-
plete @-formulas which are satisfied by <ag, ..., @u-10> {@os > Gp_y,ay and
{dgy <oy Oy, @y TeESpectively, then

WE Vg, ooy 105005 vy i) MO0 wres Oem15 1) —03(25 -ovs 3]

‘We now come to the definition of the sentence ¢ which is an axiomatization
of the theory T. Let ¢ be the conjunction of o, and each of the following sentences:

(3) Vg, .. 05— 1(@,—30,,0,), where g € S5,.4(T) and p = g|2n.

@ Yug, s 00 1(@,— VY0, \/ {02 g€ S,41(T) and p = g|n}), where pe S,.

(5) Every set with <2n elements has a ®-nucleus with <n eclements.

6) Yvg, ., v3,{p—), where ¢ and W .are (2n+1)-ary &-formulas and
T+ o=

It is clear that ¢ is consistent, for indeed T+ ¢. Let U be a countable model
of . We will show that 9 = B. We do this by the back-and-forth technique,
which we apply here by proving the following two conditions:

(B) Suppose that ag, ..., dy,—1 € 4 and by, ..., b, € B are such that {bg, ..., by>
realizes the (m-+1)-type peS,+:(T) and <ay, ..., &,-1> satisfies the complete
m-ary ®-formula @,,. Then there is a,€ 4 such that <{ag, ..., an> satisfies the
formula ¢,.

(F) Suppose that by, ..., b, -, € B and ag, ..., @, € A are such that for some
PESNT), {dgs ., y-yy satisfies the complete m-ary &@-formula ¢, and
{bgs rr by realizes the type p. Then there is b, € B such that (by, ..., 5,>
realizes the (m+1)-type q and {aq, ..., &, satisfies the formula ¢,.

Having verified (B) and (F) we can see, because of property (1), that an iso-
morphism between 2 and B can be constructed.

To verify (B), let us assume that the hypothesis of (B) is satlsﬁed Let X
= {by, v, by} and let Y be a nucleus of X for b, with at most 1 elements, where
Y = {by, s by} Let geS,.1(T) be the type reahzed by Cbigs s By g Bud-
Sentence (3) implies the existence of an a,, € 4 such that {a;,, ..., 4, _,, @,y satisfies
the @-formula ¢,. We now claim that <{da, ..., @, satisfies the formula ¢,. For
suppose that r e S,+1(T) and jg, .., f,~ 1 <m are such that (p,(vjo, s Uj s V) €D
Let 5 € S,,(T) be the type realized by <Byy, «os by, bjgs --s» by, > Thus the sentence

VUO: ey Ugy [‘Px(uos s DZH"I)“A (/7‘1(00; e 1),,...1 * Uln)_')(Pr(vna ey 1)2,,)]

.
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is a consequence of T. But this is a sentence of the type in (6), and hence is one of
the conjuncts of o. Thus {a;,, ..., @;,_,, @,y satisfies the formula o,.

To verify (F), let us suppose that the hypothesis of (F) is satisfied. Let X
= {ag; s @1} We will find a G-nucleus ¥ of X for a,, with at most » elements.
If m<n, then just take ¥ = X, so assume m>n. Let Xy, ..., X; be a list of all sub-
sets of X with # elements. By induction we will get a sequence ¥, ..., ¥} of sub-
sets of X each with 7 elements. Choose Y, = X,. Suppose that we already have ¥,
for some i<k. Then let Y;.; be a @-nucleus of ¥, v X; for a, with n elements.
(The existence of such a ®-nucleus is guaranteed by (5).) We then set ¥ = Y.
and then claim that Y is a #-nucleus of X for a,,. This last claim is easily verified.

Now let Y = {a, ..., a;,_,}, where ig, ..., i,—;<m. Let ¢ be the complete
(n—.i-l)-ary @-formula which is satisfied by <{a;, ..., 4;,_,» @, By (4) the formula
@ is a consistent &-formula, so that ¢ = ¢, for some r & S, 4(T). Choose b,, & B
such that {b;,, ..., b, _,, b, realizes r. (Such a b,, exists because B is hoin;)geneous.)

Let g be the (m+1)-type realized by <(by, ..., b,». It remains to show that
{ag, ..., @,y satisfies the formula @, To show this suppose that jy, ..., j,—,<m
and that <bjy, . by, .5 Bigs oovs By, _,» by Tealizes the type s. Let ¢ = s|2. Then
from (3) the sentence v

Vg5 s O30y (@—T05,09

is a conjunct of 4. But then, since ¥ is'a @-nucleus of X it must be that
{jgs voes Bjoys Bigs wnes Q> Ay

satisfies the @-formula ¢,. Thus <ay, ..., 4, satisfies I

§ 2. Trees. In this section we will apply Theorem 1.1 to the theory of trees.
A ftree (;I', <) is a partially ordered set such that the set of predecessors of any
element is linearly ordered by <. (Notice that we do not require a tree to be well-
founded, nor that it be rooted.)

A component X of T is aminimal non-empty subset of T'satisfying: if x, y,ze T
are such that xe X and y<x, z, then ze X. The set of compbnents o£ ; tree
form a partition of the tree. If x,y e T, then the set

T,y = {ze T: whenever w<x, y, then w<z}.
Fo ill s )i
thc};} e(a;h M<w1 we will say that a tree (T, <) is n-branching iff whenever x,ye T,
then | . ;)' 125 at most n components. A tree is 1-branching iff it is a linear
ting. Notice that for each n<o there is an V3 sentence whose models arc

I - 1 . ﬁ ite- i
ust the z-branc hing trees. A tree 18 finite-branchi [or some n<® it is
g nch ng ff 1 r 1<

The theorems which we will

prove in this section concerni -categori
trees are the following two. Bring ¥-categorical

THEOREM 2.1. Every No-categorical tree is decidable.

icm®
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THBEOREM 2.2. An ,-categorical tree is finitely axiomatizable iff it is finite-
branching. '

Proof of Theorem 2.1. Let (T, <) be a countable g-categorical tree. The
proof will consist of finding an expansion of (7, <) which is nuclear and xp-cat-
egorical.

_ I x,yeT and X is a component of Ty, let us say that the set-fype of X is
Th(T, <, X). By Ryll-Nardzewski’s Theorem, there are only a finite number of
set-types. Let Zg, ..., Z,—; be those set-types which are realized in (T, <) by an
infinite number of components of some Ty,. For each x, ye T and i<n, let <k,
be a linear ordering of those components of T, which realize X;. Each relation
<L, is chosen in such a way that <l=<i, if T,,=T,,, and the order type of
<!, is that of the rationals. Now define the 4-ary relations R;, for i<m, as
follows: <x,y,a,b) € R, iff there are components X, Y of Ty, each realizing Z;
such that ae X, be ¥ and X<, Y. It is easy to see that (T, <, Ry, .., Ryq) i8
%,-categorical and nuclear (cf. Lemma 2.3). Thus it is finitely axiomatizable, so
that (T, <) is decidable. m

We now will prove Theorem 2.2. To show that every finite-branching
x,-categorical tree is finitely axiomatizable, it suffices to prove the following lemma.

Lemma 2.3. If 4<n<w, then every n-branching tree is (n—1)-nuclear.

Proof. Let 4<n<w and let (T, <) be an n-branching tree. We will show
that (T, <) is (2—1)-nuclear. Let X<T be finite and @ € " Let X, = {xeX:a<x}.
‘We will consider two cases which depend on whether X, is empty or not.

First suppose X, = 0. Let x € X be such that whenever y € X, then T ET,,-
If ¥ is the component of T, which contains a, then ¥ n X = 0. Thus there is

. aset A= X, card(4)<n—1, such that 4 meets every component of T, that X does.
By a back-and-forth argument it is easy to see that 4 is a nucleus of X for a.

Now suppose X, # 0. Let x,y€ X, be such that whenever u,ve Xy, then
T,,cT,,. Let ze X—X, be such that whenever we X~X,, then T, & T,,,. Again,
by a back-and-forth argument, it is easy to see that {x,¥,z} isa nucleus for a. ®

Remark. Every 1-branching tree is 2-nuclear; every 2- or 3-branching tree
is 3-nuclear. These results and Lemma 2.3 are easily seen to be optimal.

To prove the other direction of Theorem 2.2 it will be convenient to introduce
some definitions. First we recall the notion of quantifier-rank of a sentence. Let
us define the rank of a formula ¢ as the number of distinct variables occurr.ing in @.
Thus the rank of a sentence is the same as its quantifier-rank. Let us denote by Q.
the set of formulas which have rank <a. Notice that any subformula of a formula
in Q, is also in Q,. For each n, the set O, is finite (up to logical equivalence). Let
(T4, <) and (T, <) be trees. Define (Ty, <) =, (T}, <) iff whenever o is a sentence
in ©,, then (Ty, <)k g iff (T, <)Fo. Ceitainly =, is an equivalence relation
with only a finite number of equivalence classes. Define (T, <)<, (T,, <) iff
(T, <)=(T,,<) and whenever @ (g, r Ve—1)E Oy 15 & k-ary formula and
@y, rtlyy €Ty are-such that (T3, <)F g (g, dy» s G—y)> then there is
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ao €Ty such that (T, <)k ¢(dy, ..., @—1). It is easily shown (as in the proof
of Tarski’s Criterion in [7]) that (T, <) <, (T,, <) implies (7}, <) =, (T, <).

Let us say that a subset 4 =T is n-able iff whenever x,y e T and X is a com-
ponent of Ty, then the number of components ¥ of T, such that (X, <) =, (¥, <)
and Yn4 # 0 is at most n.

Lemma 2.4. Let (T, <) be a tree and AST a finite n-able subset. Suppose that

@ Woses V1) € O, and ay,...,a,_, € A are such that (T, <) Evpp (g, a4, a2 ).
Then there exists ay e T such that (T, <) E @(ags s tp_) and 4 U {ao} is n-able.

Proof. Let by T be such that (T, <)k ¢(by, 4y, .., @-1), and set 4, = 4,
Let us suppose, by way of contradiction, that there is no @, € T such that (T, <)
Folay, .., a—;) and 4, U {go} is n-able. Then there are x,ye T and distinct
components Xy, ..., X, of T, such that if m = 0 and i<j<n, then '

1)y (X3, <) =,(X, <),
2 X;nd#0,
(3) byeX,.

Notice that X, n 4 = O since 4 is n-able. Now let i<n be such that X;n
N {ay,...,a,_;} = 0. Then there is by e X; such that (T,<)k ¢ (b, ay, ..., Gy).
Let 4, =X;n4 and ¥, = X;. ,

We proceed by induction. Suppose we already have b, 4,,, Y, where Y, is
a component of some T, 4, = Y, N4, b,e Yoo (T, <YE @by, ay, .., @yy)
and {a;,..,4,_;} 0 ¥,, = 0. Thus, there are x,y€ Y, and distinct components
Xy, s X, of T, such that if i<j<n, then (1)-(3) above hold. Choose burr€Xo
so that (T, <) F @ (bp1, 4y, ..., a,_;). Then set Y1 =Xoand 4, = Y, 0 A.

We then get a sequence 4,> A, 54,2 ... But A4 is finite; hence this is a contra- *

diction, completing the proof of the lemma. ]

LemMA 2.5. Let (T, <) be a tree and let n<w. Then there is a finite-branching
(Ty, <) <, (T, <).

. Proof. By the Downward Lowenheim~Skolem Theorem, we can assume that
?’15 com?table. Let Lo vy, &, s @y )i i< be a list of all unary formulas
in .Q,, which are satisfiable in T (with parameters from T), and let ¢b;: i<w) be
a list of the elements of T. By induction on J, define n-able subsets 4 ST as follows.
Let 4, =.0. Now suppose A4 ; has already been defined, If Jis even, then choose
the least <o such that b;& 4;, but b,<a for some ged,. Then set 4, = 4, L
U {b;}, which is still n-able. (Tf no-such i exists, then theJ set A, q = ,é ) / is
odd, then choose the least i< such that " " 7t

a, ..., d . v ] !
L@y €4, and (T, <)k Toda, i, oy alyy)

fordeaci;l a efA_,., By Lemma 2.4 there is b & T such that (T, <)k (b, al-g)
fo 4 2 " Ay ey Gl
ju{b} is n-able. Then the set Ajiy = A4;0 {B}. Now setling

icm°®
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T, = U{dpj<o} itis easy to see that (T}, <) <, (T, <). Furthermore, if
x<yeTy, then xeT,. It is easy to see, then, that (T;, <) is n-branching. B

" Proof of Theorem 2.2. Suppose that (T, <) is a finitely axiomatizable,
sg-categorical tree. If (T, <) is axiomatized by a sentence o € Q,, then by Lemma 2.5
there is  finite-branching (T}, <) <, (T, <). But then (T, <) k o so that (T}, <)
= (T, <). Thus (T, <) is finite-branching. ®

Lemma 2.5 has the following interesting corollary.

COROLLARY 2.6. If @ sentence o is true in some tree, then it is frue in some finite-
branching tree.

There is a result analogous to Corollary 2.6 for s,-categorical ‘trees. We first

need to prove a lemma.

Lemma 2.7. Let (T, <) be an wg-categorical tree. Let n<w have the property
that whenever x,y e T and X, Y are components of T, such that (X, <) =, (Y, <),
then (X, <) = (Y, <). Let A<T be a finite n-able subset. Finally, suppose that
Qys wees s Doy ooy by y € A are such that {aq, ..., a,—> and {by, ..., b,,_,> realize
the same m-type. Then there is b, € T such that {ay, ..., @,y and by, ..., b, realize
the same (m+1)-type and 4 U {b,} is n-able.

Proof. Suppose the hypotheses of the lemma. Let b € T be such that {ag, ..., @z
and (b, ..., by,—y, by realize the same (m+1)-type. If 4 U {b} is n-able we are
done, so suppose it is not. Then there are x, y € T and distinct components X, ..., X,
of T, such that whenever i<j<a, then

(1) (Xi: <) = (Xj; <)~

() X;nd=£0,

(3) beX,. .

Since {ag, ..., &} is n-able, so is {bg, ..., b,—1, b}. Therefore, there is i<n such
that X; 0 {by, ..., by-1} = 0. The proof can now be completed as in the proof
of Lemma 2.4. &

THEOREM 2.8. If a sentence ¢ is true in some ¥,-categorical tree, then it is true
in some finite-branching w,-categorical (and, hence, finitely axiomatizable) tree.

Proof. Let (T, <) be a countable x,-categorical tree. Let n<w have the
property that whenever x,y e T and X, ¥ are components of T, such that (X, <)
=, (Y, <), then (X, <) = (¥, <). By dove-tailing applications of Lemmas 2.4
and 2.7, we can get a finite-branching tree (T3, <) <, (T, <) with the additional
property that Wwhenever @g, .. @m, Boseesbu—g €Ty and {dg, ..., 8,—;> and
{bBgs s by realize the same m-type (in (T, <)), then there is b, € Ty such that
{8y ey Uy and by, ..., b, realize the same (m+1)-type (also in (T, <)). Now
by a back-and-forth argument it is easy to see that if two m-tuples {ag, -, @m-1>
and (by, ..., by, realize the same m-type in (T, <), then they realize the same
m-~type in (T, <). Thus by Ryll-Nardzewski’s Theorem, (T, <) is §o-categorical. @
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Two closed categories of filters
by

Andreas Blass (Ann Arbor, Mich.)

Abstract. Two categories mentioned in the title each have as objects all filters. The
morphisms from D to E in one of the categories are just the maps sending D to a filter extending E;
The morphisms in the other category are equivalence classes of such maps modulo “equality on
a set in D”. After discussing some elementary relationships between these categories and some
pairs of adjoint functors between them and the category of sets, we showt hat the first of our cat-
‘egories is both left and right complete. The second category is finitely left complete and has co-
products, but we give examples showing that it lacks coequalizers and infinite products. We also -
show. that each of two categories of filters is a closed monoidal (but not symmetric) category, in
the sense of Eilenberg and Kelly, and we briefly discuss some examples of categories over these
closed categories.

A useful methodological principle in modern mathematics is that, when one
defines a type of mathematical structure, one should also define the ‘notion of
a morphism (or map) between-two structures of that type. For a long time, this
principle was ignored in the case where the structures are filters. As far as I know,
the first published definition of a morphism of filters is in [6], where it is only briefly
mentioned. A different definition was proposed, and the resulting category of
filters investigated, in [7]. (This definition was also used, but only for ultrafilters,
in [1]) The purpose of the present paper is to investigate the categories & and
@ arising from these two definitions of morphisms.

In Section 1, we define two categories and develop their most elementary
properties, including various functors between them and the category of sets and
various adjunctions between these functors. This section also contains a discussion
of the heuristic meaning of the difference between the definitions of morphisms
in & and 9. In Section 2, we prove a number of results about the existence or
non-existence of various sorts of limits in our categories. The neatest of these results
is that & is both left and right complete, but perhaps more interesting are some
of the counterexamples to completeness in %. In Section 3, we amplify the dis-
cussion, at the end of Section 1, of the relation between & and ¢ by showing that ¥
can be obtained from & as a category of fractions with respect to a very natural
class of morphisms. We further show that this class admits a calculus of right frac-
tions; this provides an alternate proof of some results in Section 2. Finally, in
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