

The Lefschetz fixed point theorem for some non-compact multi-valued maps

by

Gilles Fournier (Montréal) and Lech Górniewicz (Gdańsk)

Abstract. A multi-valued map $\varphi: X \rightarrow Y$ is called an *admissible map* provided there exists two maps $p: Z \rightarrow X$ and $q: Z \rightarrow Y$ such that

(i) p is a Vietoris map,

(ii) $qp^{-1}(x) \subset \varphi(x)$ for all $x \in X$.

In this paper, we consider admissible multi-valued maps $\varphi: X \to X$ which are locally compact and for which there exists a compact subset K of X such that, for any open neighbourhood V of K, we have $X = \bigcup_{n=0}^{\infty} \varphi^{-n}(V)$. The Lefschetz fixed point theorem is proved, for these maps, in the following classes of spaces:

- (i) open subsets of admissible linear spaces (in particular, locally convex spaces),
- (ii) all NES(compact) spaces.

 This result is applied to eventually compact maps and to asymptotically compact maps.

 In this paper, all spaces are Hausdorff.

It is known [5], [6], that the Lefschetz fixed point theorem is true for compact admissible maps in the following classes of spaces:

- (i) open subsets in admissible linear topological spaces (in the sense of Klee [9]) or, in particular, open subsets of locally convex topological spaces,
 - (ii) all NES(compact) spaces (in the sense of Hanner [8]).

In this note, we will be concerned with the extension of the above results for some non-compact admissible multi-valued maps.

In the single-valued case, these results were given by Fournier in [2], [3], [4]. In this paper, all spaces are Hausdorff.

1. Preliminaries. By a pair of spaces, (X, X_0) , we understand a pair consisting of a Hausdorff topological space X and one of its subsets, X_0 . A pair of the form (X, \emptyset) will be identified with the space X. By a map, $f: (X, X_0) \rightarrow (Y, Y_0)$, we understand a continuous (single-valued) map $f: X \rightarrow Y$ satisfying the condition $f(X_0) \subset Y_0$.

Let H be the Čech homology functor with compact carriers [7] and coefficients in the field of rational numbers \mathcal{Q} , from the category of all pairs of spaces and all maps between such pairs, to the category of graded vector spaces over \mathcal{Q} and linear

247

cm[©]

maps of degree zero. Thus $H(X,X_0)=\{H_q(X,X_0)\}$ is a graded vector space, $H_q(X,X_0)$ being the q-dimensional Čech homology with compact carriers of X. For a map $f\colon (X,X_0)\to (Y,Y_0)$, H(f) is the induced linear map $f_*=\{f_{*q}\}$, where $f_{*q}\colon H_q(X,X_0)\to H_q(Y,Y_0)$.

A non-empty space X is called acyclic provided (i) $H_q(X) = 0$ for all $q \ge 1$ and (ii) $H_0(X) \simeq 2$. A map $p: (X, X_0) \rightarrow (Y, Y_0)$ is said to be a *Vietoris map* provided the following conditions are satisfied:

. (i) p is proper, i.e., for any compact C, the counter-image $p^{-1}(C)$ is also compact,

(ii)
$$p^{-1}(Y_0) = X_0$$
,

(iii) the set $p^{-1}(v)$ is acyclic for every $v \in Y$.

Note the following evident remark.

Remark 1.1. If $p: (X, X_0) \rightarrow (Y, Y_0)$ is a Vietoris map and $(B, B_0) \subset (Y, Y_0)$, then the map $\tilde{p}: (p^{-1}(B), p^{-1}(B_0)) \rightarrow (B, B_0)$ is also Vietoris, where $\tilde{p}(x) = p(x)$ for each $x \in p^{-1}(B)$.

Theorem 1.2 (Vietoris–Begle Mapping Theorem [7]). If $p:(X,X_0) \rightarrow (Y,Y_0)$ is a Vietoris map, then the induced map $p^*: H(X,X_0) \stackrel{\sim}{\rightarrow} H(Y,Y_0)$ is a linear isomorphism.

Let $u\colon E\to E$ be an endomorphism of an arbitrary vector space. Let us put $N(u)=\{x\in E|\ u^n(x)=0,\ \text{for some }n\}$, where u^n is the nth iterate of u, and, $\tilde{E}=E/N(u)$. Since $u(N(u))\subset N(u)$, we have the induced endomorphism $\tilde{u}\colon \tilde{E}\to \tilde{E}$. We call u admissible provided $\dim \tilde{E}<\infty$. Let $u=\{u_q\}\colon E\to E$ be an endomorphism of degree zero of a graded vector space $E=\{E_q\}$. We call u a Leray endomorphism if (i) all u_q are admissible and (ii) almost all \tilde{E}_q are trivial. For such u, we define the (generalized) Lefschetz number $\Lambda(u)$ by putting

$$\Lambda(u) = \sum_{q} (-1) \operatorname{tr}(\tilde{u}_q).$$

The following important property of the Leray endomorphisms is a consequence of the well known formula $tr(u \circ v) = tr(v \circ u)$ for trace.

PROPOSITION 1.3. Assume that, in the category of graded vector spaces, the following diagram commutes

then, if u' or u'' is a Leray endomorphism, so is the other; and, in that case, $\Lambda(u')$ = $\Lambda(u'')$.

An endomorphism $u\colon E{\to}E$ of a graded vector space E is called *weakly-nil-potent* if for every $q\geqslant 0$ and for every $x\in E_q$, there exists an integer n such that $u_q^n(x)=0$. Since, for a weakly-nilpotent endomorphism $u\colon E{\to}E$, we have N(u)=E. so

PROPOSITION 1.4. If $u: E \to E$ is a weakly-nilpotent endomorphism, then $\Lambda(u) = 0$. Let $f: (X, X_0) \to (X, X_0)$ be a map. If $f_*: H(X, X_0) \to H(X, X_0)$ is a Leray endomorphism, then f is called a *Lefschetz map*. For such f, we define the Lefschetz number $\Lambda(f)$ of f by putting $\Lambda(f) = \Lambda(f_*)$. Clearly, if f and g are homotopic, $f \sim g$, then f is a Lefschetz map if and only if g is a Lefschetz map; and, in this case, $\Lambda(f) = \Lambda(g)$.

Consider two maps $p, q: (Y, Y_0) \rightarrow (X, X_0)$, where p is a Vietoris map. Let $p', q': Y \rightarrow X$ and $p'', q'': Y_0 \rightarrow X_0$ be maps given by the same formula as p and q respectively. Observe that p' and p'' are Vietoris maps. Then, we have:

LEMMA 1.5. If two of those endomorphisms, $q_*p_*^{-1}$, $q_*'p_*'^{-1}$, $q_*'p_*''^{-1}$, are Leray endomorphisms, then so is the third; and, in that case,

$$\Lambda(q_*p_*^{-1}) = \Lambda(q_*'p_*'^{-1}) - \Lambda(q_*''p_*''^{-1}).$$

Lemma 1.5 clearly follows from the exactness axiom for the Čech homology with compact carriers and coefficients in 2, and from (1.4) in [1].

2. Multi-valued maps. In the following, φ, ψ will be reserved for multi-valued maps; the single-valued maps will be denoted by f, g, p, q, ... Let $\varphi: X \rightarrow Y$ be a multi-valued map. We associate with φ the following diagram of continuous maps:

$$X \stackrel{p_{\varphi}}{\leftarrow} \Gamma_{\alpha} \stackrel{q_{\varphi}}{\rightarrow} Y$$

in which

$$\Gamma_{\varphi} = \{(x, y) \in X \times Y | y \in \varphi(x)\}$$

is the graph of φ and the natural projections p_{φ} and q_{φ} are given by:

$$p_{\varphi}(x, y) = x$$
 and $q_{\varphi}(x, y) = y$.

The image of a subset $A \subset X$ under φ is

$$\varphi(A) = \bigcup_{x \in A} \varphi(x) .$$

The counter-image of a subset $B \subset Y$ under φ is

$$\varphi^{-1}(B) = \{x \in X | \varphi(x) \subset B\}.$$

A multi-valued map $\varphi: X \to Y$ is called *upper semi-continuous* (u.s.c.) provided (i) $\varphi(x)$ is compact, for each $x \in X$, and (ii) for each open set $V \subset Y$, the counter-image $\varphi^{-1}(V)$ is an open subset of X.

PROPOSITION 2.1 ([1]). If $\varphi: X \rightarrow Y$ is an u.s.c. map and A is a compact subset of X, then the image $\varphi(A)$ of A under φ is compact.

A multi-valued map $\varphi\colon X{\to} Y$ is called *compact* provided the image $\varphi(X)$ of X under φ is contained in some compact subset of Y. Let $\varphi\colon X{\to} Y$ be a multi-valued map, A a subset of X and B a subset of Y. If $\varphi(A){\subset} B$, then the contraction of φ to the pair (A,B) is the multi-valued map $\varphi'\colon A{\to} B$ defined by $\varphi'(a)=\varphi(a)$ for each $a\in A$. A contraction of φ to the pair (A,Y) is simply the restriction $\varphi|_A$ of φ to A. Let $\varphi\colon X{\to} X$ be a multi-valued map and let A be a subset of X. If $\varphi(A){\subset} A$, then A is called an *invariant subset* under φ . A point $x\in X$ is called a *fixed point* of φ if $x\in \varphi(x)$.

Let $\varphi \colon X \to Y$ and $\psi \colon Y \to Z$ be two multi-valued maps. Then the composition of φ and ψ is a multi-valued map $\psi \circ \varphi \colon X \to Z$ defined by $\psi \circ \varphi(x) = \psi(\varphi(x))$ for each $x \in X$. For a multi-valued map $\varphi \colon X \to X$, we denote by φ^m , $m \geqslant 1$, the mth iteration of φ (i.e. $\varphi^m = \varphi \circ ... \circ \varphi$); by φ^0 , we denote the identity map Id_{Y} .

We note the following (see [7]):

Proposition 2.2. The composition of u.s.c. maps is also u.s.c.

From Proposition 2.2 and the definition of an u.s.c. map, we obtain:

LEMMA 2.3. Let $\varphi \colon X \to X$ be an u.s.c. map and let U be an open invariant set under φ . Assume that, for every $x \in X$, there exists an integer n such that $\varphi^n(x) \subset U$. Then, for every compact subset K of X, there exists an integer m such that $\varphi^m(K) \subset U$.

3. Admissible maps. An u.s.c. map $\varphi \colon X \to Z$ is said to be *acyclic* provided the set $\varphi(x)$ is acyclic for every point $x \in X$. We observe that if $\varphi \colon X \to Z$ is an acyclic map, then the natural projection $p_{\varphi} \colon \Gamma_{\varphi} \to X$ is a Vietoris map.

Let $\varphi: X \rightarrow Z$ be a multi-valued map; a pair (p, q) (of single-valued, continuous) maps of the form $X \leftarrow Y \leftarrow Z$ is called a *selected pair* of φ (written $(p, q) \subset \varphi$), if the following conditions are satisfied:

- (i) p is a Vietoris map,
- (ii) $q(p^{-1}(x)) \subset \varphi(x)$ for each $x \in X$.

. Remark 3.1. We observe that, if φ is a compact map and $(p,q) \subset \varphi$, then q is also compact.

DEFINITION 3.2 (see [5], [7]). An u.s.c. map φ is called *admissible* provided there exists a selected pair (p,q) of φ .

Every acyclic map and, in particular, every continuous single-valued map is admissible; for example, the pair $(p_{\varphi}, q_{\varphi})$ is a selected pair of φ . We note that the composition of admissible maps is also admissible (see [5] or [7]).

DEFINITION 3.3. An admissible map $\varphi \colon X \to X$ is called a *Lefschetz map* provided, for each selected pair $(p,q) \subset \varphi$, the linear map $q_*p_*^{-1} \colon H(X) \to H(X)$ is a Leray endomorphism.

If $\varphi \colon X \to X$ is a Lefschetz map, then we define the Lefschetz set $\Lambda(\varphi)$ of φ by putting

$$\Lambda(\varphi) = \left\{ \Lambda(q_* p_*^{-1}) | (p, q) \subset \varphi \right\}.$$

Remark 3.4 (see [5] or [7]). If φ is an acyclic Lefschetz map, then the set $\Lambda(\varphi)$ is a singleton and, in this case, we shall denote it by $\Lambda(\varphi)$.

Let $\varphi \colon X \to X$ be an u.s.c. map and U be an open invariant subset of X under φ . Assume that, for every $x \in X$, there exists an integer n such that $\varphi^n(x) \subset U$. Let (p,q) be a selected pair of φ of the form $X \stackrel{\leftarrow}{\leftarrow} Y \stackrel{q}{\to} X$. Define $\tilde{p} \colon (Y,p^{-1}(U)) \to (X,U)$, $\tilde{q} \colon (Y,p^{-1}(U)) \to (X,U)$ by putting $\tilde{p}(y) = p(y)$ and $\tilde{q}(y) = q(y)$, for every $y \in Y$. Observe that \tilde{p} is a Vietoris map. Then we have:

LEMMA 3.5. The endomorphism $\tilde{q}_*p_*^{-1}$: $H(X, U) \rightarrow H(X, U)$ is weakly-nilpotent. Lemma 3.5 simply follows from Proposition 2.3 and the fact that H is a hom-

element 3.3 samply follows from Proposition 2.3 and the fact that H is a nonology functor with compact carriers, since $(qp^{-1})^n(K) \subset \varphi^n(K)$, for each compact K of X.

4. Lefschetz multi-spaces.

DEFINITION 4.1. A Hausdorff space X is called a Lefschetz multi-space for a class $\mathcal Q$ of multi-valued maps, written $X \in L_M(\mathcal Q)$, provided that any u.s.c. admissible map $\varphi \colon X {\longrightarrow} X$ belonging to $\mathcal Q$, is a Lefschetz map and $\Lambda(\varphi) \neq \{0\}$ implies that φ has a fixed point.

When 2 is the class of compact maps, we have the following theorem.

Theorem 4.2. Are Lefschetz multi-spaces for the class of compact maps open subsets of

- (i) admissible topological vector spaces (in the sense of Klee [9]); in particular, locally convex topological vector spaces,
 - (ii) NES (compact) (in the sense of Hanner [8]); in particular, ANR (metric).

Proof. It is evident from [5], Theorems 6.3 and 7.3, and the fact that an open subset of a NES (compact) is NES (compact).

DEFINITION 4.3. A multi-valued map $\varphi\colon X{\to}X$ is said a compact absorbing contraction if there exists an open set U of X such that $\overline{\varphi(U)}$ is a compact of U and $X{\subset}\bigcup_{i=1}^\infty \varphi^{-i}(U)$.

We state now our main theorem.

THEOREM 4.4. Let X be a space such that every open set V of X satisfies $V \in L_M$ (compact), then $X \in L_M$ (compact absorbing contraction).

Proof. Let $\varphi\colon X{\to}X$ be an admissible map such that $\varphi\in 2$. Since $\varphi(U)$ $\subset \overline{\varphi(U)}{\subset U}$, consider $\varphi'\colon U{\to}U$ the contraction of φ to the pair (U,U). Let $p,q\colon Y{\to}X$ be a selected pair of φ and, since $q(p^{-1}(U)){\subset}\varphi(U){\subset}U$, consider $p',q'\colon p^{-1}(U){\to}U$ the contractions of p and q respectively. By Remark 1.1, p' is a Vietoris map; hence (p',q') is a selected pair of φ' , so φ' is admissible. Moreover φ' is compact, since $\varphi(U)$ is a compact of U; so φ' is a Lefschetz map since $U{\in}L_M$ (compact). Consider the maps $p'',q''\colon (Y,p^{-1}(U)){\to}(X,U); p''$ is a Vietoris map and, by Proposition 2.3, if K is a compact subset of X, then there exists $n{\in}N$ such that $\varphi^n(K){\subset}U$; so the map $q''_*p''^{*-1}_*$ is weakly-nilpotent, hence, by Proposition 1.4,

 $\Lambda(q_*''p_*''^{-1})=0$. By Lemma 1.5, $q_*'p_*'^{-1}$ is a Leray endomorphism and $\Lambda(q_*p_*^{-1})=\Lambda(q_*'p_*'^{-1})$. Hence φ is a Lefschetz map and $\Lambda(\varphi)\subset\Lambda(\varphi')$. Now $\Lambda(\varphi)\neq\{0\}$ implies that $\Lambda(\varphi')\neq\{0\}$; and, since $U\in L_M$ (compact), there exists $x\in X$ such that $x\in\varphi'(x)=\varphi(x)$.

5. Compact attraction maps. Now, we define some classes of maps for which we will prove the Lefschetz theorem.

DEFINITION 5.1. An u.s.c. multi-valued map $\varphi: X \rightarrow Y$ is called *locally compact* provided that, for each $x \in X$, there exists an open subset V of X such that $x \in V$, and the restriction, $\varphi|_V$, is compact.

DEFINITION 5.2. A multi-valued locally compact map $\varphi: X \rightarrow X$ is called *eventually compact* if there exists an iterate $\varphi^n: X \rightarrow X$ of φ such that φ^n is compact.

DEFINITION 5.3. A multi-valued locally compact map $\varphi: X \rightarrow X$ is called compact attraction if there exists a compact K of X such that, for each open neighbourhood V of K, we have $X \subset \bigcup_{i=0}^{\infty} \varphi^{-i}(V)$. The compact K is then called an attractor for φ .

Definition 5.4. A multi-valued locally compact map $\varphi \colon X \to X$ is called asymptotically compact if the set $C_{\varphi} = \bigcap_{n=0}^{\infty} \varphi^n(X)$ is a non-empty, relatively compact subset of X. The set C_{φ} is called the *center* of φ .

Note that any multi-valued eventually compact map is a compact attraction and asymptotically compact map.

LEMMA 5.5. Any eventually compact map is a compact absorbing contraction map.

Proof. Let $\varphi \colon X \to X$ be an eventually compact map such that $K' = \overline{\varphi^n(X)}$ is compact. Define $K = \bigcup_{i=0}^{n-1} \varphi^i(K')$, we have

$$\varphi(K) \subset \bigcup_{i=1}^{n} \varphi(K') \subset K \cup \varphi^{n}(X) \subset K \cup K' \subset K.$$

Since φ is locally compact, there exists an open neighbourhood V_0 of K such that $L = \overline{\varphi(V_0)}$ is compact.

There exists a sequence $\{V_1,...,V_n\}$ of open subsets of X such that $L \cap \overline{\phi(V_i)} \subset V_{i-1}$ and $K \cup \varphi^{n-i}(L) \subset V_i$ for all i=1,...,n. In fact, if $K \cup \varphi^{n-i}(L) \subset V_i$ and $0 \leqslant i < n$, since $K \cup \varphi^{n-i}(L)$ and $CV_i \cap L$ are disjoint compact sets of X, there exists an open subset W of X such that

$$K \cup \varphi^{n-i}(L) \subset W \subset \overline{W} \subset V_i \cup CL$$
.

Define $V_{i+1} = \varphi^{-1}(W)$; since $\varphi(K) \cup \varphi(\varphi^{n-(i+1)}(L)) \subset K \cup \varphi^{n-i}(L) \subset W$, we have $K \cup \varphi^{n-(i+1)}(L) \subset V_{i+1}$; and $\varphi(V_{i+1}) \subset \overline{W} \subset V_i \cup CL$ implies $L \cap \overline{\varphi(V_{i+1})} \subset V_i$. Beginning with $K \cup \varphi^n(L) \subset K \subset V_0$, we define, by induction $V_1, ..., V_n$ with the desired properties.

Putting $U = V_0 \cap V_1 \cap ... \cap V_n$, we have $K' \subset K \subset U$ and

$$\varphi(U) \subset \varphi(V_0) \cap \varphi(V_1) \cap ... \cap \varphi(V_n) \subset L \cap \overline{\varphi(V_1)} \cap ... \cap \overline{\varphi(V_n)}$$

hence

$$\overline{\varphi(U)} \subset (L \cap \overline{\varphi(V_1)}) \cap \dots \cap (L \cap \overline{\varphi(V_n)}) \cap L \subset V_0 \cap \dots \cap V_{n-1} \cap V_n = U,$$

but $\overline{\varphi(U)}$ is compact since $\overline{\varphi(U)} \subset L$. Moreover,

$$X \subset \bigcup_{i=1}^{n} \varphi^{-i}(K') \subset \bigcup_{i=0}^{\infty} \varphi^{-i}(U)$$
.

Proposition 5.6. Any compact attraction map is a compact absorbing contraction map.

Proof. Let $\varphi\colon X{\to}X$ be a compact attraction map, K, a compact attractor for φ and W, an open set of X such that $K{\subset}W$ and $L=\overline{\varphi(W)}$ is compact. We have $L{\subset}X{\subset}\bigcup_{i=0}^{\infty}\varphi^{-i}(W)$ hence, since L is compact, there exists $n{\in}N$ such that

$$L \subset \bigcup_{i=0}^{n} \varphi^{-i}(W)$$
. Define $V = \bigcup_{i=0}^{n} \varphi^{-i}(W)$; then

$$X \subset \bigcup_{i=0}^{\infty} \varphi^{-i}(W) \subset \bigcup_{i=0}^{\infty} \varphi^{-i}(V)$$
,

$$\varphi(V) \subset \bigcup_{i=0}^{n} \varphi^{-i+1}(W) \subset \varphi(W) \cup V \subset L \cup V \subset V$$

and

$$\varphi^{n+1}(V) \subset \bigcup_{i=0}^{n} \varphi^{n-i+1}(W) = \bigcup_{j=0}^{n} \varphi^{j+1}(W) \subset \bigcup_{j=0}^{n} \varphi^{j}(L)$$

which is compact and included in V, since $L \subset V$ and $\varphi(V) \subset V$ implies that $\varphi^l(L) \subset V$ for all $j \in N$. Consider the contraction $\varphi \colon V \to V$ of $\varphi \colon \varphi' \colon v \to U$ is an eventually compact map, since V is an open set. By Lemma 5.5, there exists an open set U of V, hence of X, such that $\varphi'(U) = \varphi(U)$ is a compact of U and $V \subset \bigcup_{n=0}^{\infty} \varphi^{-n}(U) \subset \bigcup_{n=0}^{\infty} \varphi^{-n}(U)$; hence

$$X \subset \bigcup_{i=0}^{\infty} \varphi^{-i}(W) \subset \bigcup_{i=0}^{\infty} \varphi^{-i}(V) \subset \bigcup_{n=0}^{\infty} \varphi^{-n}(U) . \blacksquare$$

From Theorem 4.4 and Proposition 5.6, we obtain:

COROLLARY 5.7. Let X be a space, if V open in X implies that $V \in L_M$ (compact), then $X \in L_M$ (compact attraction).

6. Asymptotically compact maps.

LEMMA 6.1. Let $\varphi: X \to X$ be an u.s.c. multi-valued map, $C_{\varphi} = \bigcap_{i=0}^{\infty} \varphi^{i}(X)$ and V an open subset of X such that $C_{\varphi} \subset V$. Then, for each compact K of X, there exists $n \in N$ such that $\bigcap_{i=0}^{\infty} \varphi^{i}(K) \subset V$.

Proof. The family $\{\bigcap_{i=0}^n \varphi^i(K) \cap CV\}_{n\in\mathbb{N}}$ of closed subsets of the compact K, has empty intersection, hence there exists a finite empty intersection.

LEMMA 6.2. Let $\varphi \colon X \to X$ be an u.s.c. multi-valued map, $C_{\varphi} = \bigcap_{i=0}^{\infty} \varphi^{i}(X)$, $U_{\varphi} = \{x \in X | \bigcup_{i=0}^{\infty} \varphi^{i}\}$ is compact and V, an open subset of X such that $C_{\varphi} \subset V$. Then $U_{\varphi} \subset \bigcup_{i=0}^{\infty} \varphi^{-i}(V)$.

Proof. Let $x \in U_{\varphi}$, $K = \bigcup_{n=0}^{\infty} \varphi^{n}(x)$ is compact; by Lemma 6.1, there exists $n \in N$ such that $\varphi^{n}(x) \subset \bigcap_{n=0}^{\infty} \varphi^{i}(K) \subset V$.

Definition 6.3. A multi-valued map $\varphi\colon X{\to}X$ is called with compact orbits if $\bigcup_{i=1}^\infty \varphi^i(x)$ is relatively compact for every $x\in X$.

Proposition 6.4. Any asymptotically compact map with compact orbits, is a compact attraction map.

Proof. Let $\varphi\colon X{\to}X$ be an asymptotically compact map with compact orbits, then $U_{\varphi}=X$ so \overline{C}_{φ} is a compact attractor for φ and φ is a compact attraction map. \blacksquare

COROLLARY 6.5. Let X be a space, if V open in X implies that $V \in L_M$ (compact), then $X \in L_M$ (asymptotically compact with compact orbits).

LEMMA 6.6. Let X be a space and $\varphi: X \rightarrow X$ an asymptotically compact map of center C_{φ} . Then, there exists an open subset V of X such that $C_{\varphi} \subset V$, $\varphi(V) \subset V$ and $\overline{\varphi(V)}$ is compact.

Proof. Let U be an open set of X such that $\overline{C}_{\varphi} \subset U$ and $K = \overline{\varphi(U)}$ is compact. By Lemma 6.1, there exists $n \in N$ such that $\bigcap_{i=0}^n \varphi^i(K) \subset U$. Define $V = \bigcap_{i=0}^n \varphi^{-i}(U)$. Since $\varphi(C_{\varphi}) \subset C_{\varphi}$, we have that $C_{\varphi} \subset V$. Moreover,

$$\varphi(V) = \bigcap_{i=0}^n \varphi^{-i}(\varphi(U)) = \bigcap_{i=0}^n \varphi^{-i}(K) = \bigcap_{i=0}^n \varphi^{i-n}(K) = \varphi^{i-n}(\bigcap_{i=0}^n \varphi(K)) = \varphi^{i-n}(U) ,$$
 hence
$$\varphi(V) = \bigcap_{i=0}^{n-1} \varphi^{-i}(U) \cap \varphi^{-n}(U) = V. \text{ Since}_{\P} \varphi(V) = \varphi(U) = K, \ \overline{\varphi(V)} \text{ is compact.} \blacksquare$$

Proof. By Lemma 6.6, let V be an open set such that $C_{\varphi} \subset V$, $\varphi(V) \subset V$ and $K = \overline{\varphi(V)}$ is compact. Let us show that $U_{\varphi} = \bigcup_{i=0}^{\infty} \varphi^{-i}(V)$. By Lemma 6.2, we have that $U_{\varphi} \subset \bigcup_{i=0}^{\infty} \varphi^{-i}(V)$. Let $x \in \varphi^{-n}(V)$, then for all m > n,

$$\varphi^{n}(x) = \varphi(\varphi^{k}(\varphi^{n}(x))) \subset \varphi(\varphi^{k}(V)) \subset \varphi(V) \subset K$$

where k = m-n-1, so $\bigcup_{n=0}^{\infty} \varphi^n(x) \subset (\bigcup_{i=0}^n \varphi^n(x)) \cup K$, which is compact, hence $x \in U_{\varphi}$.

In these conditions, $\varphi'\colon U_\varphi{\to}U_\varphi$, the contraction of φ is defined and one is tempted to say that φ' is an asymptotically compact map with compact orbits, or that $\overline{C_\varphi}$ is a compact attractor of φ' . Unfortunately neither of those hypothesis is true. The counterexample being complicated, is not presented here. However, one statement is true: φ' is a compact attraction map. Hence the following proposition.

Proposition 6.8. Let $\varphi\colon X \to X$ be an asymptotically compact map, then the contraction $\varphi'\colon U_\varphi \to U_\varphi$ of φ is a compact attraction map.

Proof. Since $\overline{C_{\varphi}}$ is a compact subset of X, U_{φ} is an open set and $C_{\varphi} \subset U_{\varphi}$; by Lemma 6.1, there exists $n \in N$ such that $K = \bigcap_{i=0}^{n} \varphi_i(\overline{C_{\varphi}}) \subset U_{\varphi}$. Note that K is compact and that $\varphi^n(C_{\varphi}) \subset \bigcap_{i=0}^{n} \varphi^i(C_{\varphi}) \subset K$, since $\varphi(C_{\varphi}) \subset C_{\varphi}$. Let W be an open such that $K \subset W$, since $\varphi^n(C_{\varphi}) \subset W$, so $C_{\varphi} \subset \varphi^{-n}(W) = V$; by Lemma 6.2, $U_{\varphi} \subset \bigcup_{i=0}^{\infty} \varphi^{-i}(V)$ hence $U_{\varphi} \subset \bigcup_{i=0}^{\infty} \varphi'^{-i}(W)$, since $\varphi(U_{\varphi}) \subset U_{\varphi}$. So K is a compact attractor for φ' , and φ' is a compact attraction map.

COROLLARY 6.9. Let X be a space such that V open in X implies that $V \in L_M$ (compact), then if $\varphi \colon X \to X$ is an admissible asymptotically compact map, the contraction $\varphi' \colon U_{\varphi} \to U_{\varphi}$ is a Lefschetz map; and $\Lambda(\varphi') \neq \{0\}$ implies that φ has a fixed point.

References

- C. Bowszyc, Fixed point theorems for the pairs of spaces, Bull. Acad. Polon. Sci. 16 (1968), pp. 845-850.
- [2] G. Fournier, Théorème de Lefschetz, I Applications éventuellement compactes, Bull. Acad. Polon. Sci. 6 (1975), pp. 693-701.
- [3] Théorème de Lefschetz, II Applications d'attraction compacte, ibid., pp. 701-706.

^{6 -} Fundamenta Mathematicae XCIV

- [4] G. Fournier, Théorème de Lefschetz, III Applications asymptotiquement compactes, ibid. p. 707-713.
- [5] and L. Górniewicz, The Lefschetz fixed point theorem for multi-valued maps of nonmetrizable spaces, Fund. Math. 92 (1976), pp. 213-222.
- [6] and A. Granas, The Lefschetz Fixed Point Theorem for some classes of non-metrizable spaces, J. Math. Pures et Appliquées 52 (1973), pp. 271-284.
- [7] L. Górniewicz, Homological methods in fixed point theory of multivalued maps, Dissertationes Math. 129 (1976), Warszawa.
- [8] O. Hanner, Retraction and extension of mappings of metric and non-metric spaces, Ark. Math. 2 (1952), pp. 315-360.
- [9] V. Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), pp. 286-296.

Accepté par la Rédaction le 10. 2. 1975