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Abstract. “A multi-valued map @: X—Y is called an qdmissible map provided there exists
two maps p: Z—X and g: Z--Y such that

(i) p is a Vietoris map,

(i) gp~ ' (%) Co(x) for all x e X.

In this paper, we consider admissible multi-valued maps ¢: X—>X which are locally compact
and.for which there exists a compact subset K of X such that, for any open neighbourhood V of X,

o
we have X = U @~ "(V). The Lefschetz fixed point theorem is proved, for these maps, in the follow-
n=0

ing classes of spaces:
(i) open subsets of admissible linear spaces (in particular, locally convex spaces),
(i) all NES (compact) spaces.
This result is applied to eventually compact maps and to asymptotically compact maps.
In this paper, all spaces are H_amsdorff.

1t is known [5], [6], that the Lefschetz fixed point theorem is true for compact
admissible’ maps in the following classes of spaces:

(i) open subsets in admissible linear topological spaces (in the sense of Klee [9])
or, in particular, open subsets of locally convex topological spaces,

(i) all NES(compact) spaces (in' the sense of Hanner [8D.

In this note, we will be concerned with the extension of the above results for
some non-compact admissible multi-valued maps.

In the single-valued case, these results were given by Fournier in [2], [3], [4]-

In this paper, all spaces are Hausdorfl. )

"

1. Preliminaries. By a pair of spaces, (X, X;), we understand a pair con-
sisting of a Hausdorff topological space X and one of its subsets, Xo. A pair of
the form (X, @) will be identified with the space X. By a map, f: (X, X)—(Y, Yo)
we understand a continuous (single-valued) map f: X—¥ satisfying the condition

fXo)= Yo

Let H be the Cech homology functor with compact carriers [7] and coefficients
in the field of rational numbers 2, from the category of all pairs of spaces agd all
maps between such pairs, to the category of graded vector spaces over 2 and linear
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maps of degree zero. Thus H(X, X,) = {H(X, X,)} is a graded vector space,
H/(X, X,) being the g-dimensional Cech homology with compact carriers of X,
For a map f: (X, X,)—(¥, Yo), H(f) is the induced linear map f,, = { fi}, where
feat H(X, X)—~H(Y, Y,).

A non-empty space X is called acyclic provided () H,(X) =0 for all g>1
and (i) Ho(X)~2. A map p: (X, X)—(Y, ¥,) is said to be a Vietoris map provided
the following conditions are satisfied: ) :

(@) p is proper, ie., for any compact C, the counter-image p~*(C) is also
compact,

(i) p7H(¥,) = Xo,

(iii) the set p~(y).is acyclic for every ye ¥.

Note the following evident remark.

Remark L1 If p: (X, X;)—(Y, ¥) is a Vietoris map and'(B, By (Y, Yy),
then the map p: (p™"(B), p~*(By))—(B, By) is also Vietoris, where p(x) = p(®)
for each xep~(B).

TrEOREM 1.2 (Vietoris-Begle Mapping Theorem [7]). If P (X, Xo)— (Y, Yp)
is a Vietoris map, then the induced map p*: H(X, Xo)SH(Y,Y,) is a linear iso-
morphism.

" Let u: E—~E be an endomorphism of an arbitrary vector space. Let us put
N@) = {xe E| u"(x) =0, for some n}, where " is the nth iterate of u, and, B
= E[N(u). Since u(N())<N(), we have the induced endomorphism #: E—sf.
We call » admissible provided dim E<oo. Let u = {u,}: E—E be an endomorphism
of degree zero of a graded vector space E = {E,}. We call u a Leray endomorphism
if (1) all u, are admissible and (ii) almost all E‘q are trivial. For such u, we define the
(generalized) Lefschetz number A(u) by putting

AW =Y, (—1) tr(d,) .

The following important property of the Leray endomorphisms is a consequernce
of the well known formula tr(u o v) = tr(vou) for trace.

PROPOSITION 1.3. Assume that, in the category of graded vector spaces, the
following diagram commutes '

E____Ngr

then, if u' or u'’

e is a Leray endomorphism, so is the other; and, in that case, A(u')
= A").
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An endomorphism u: E—E of a graded vector space E is called weakly-nil-
potent if for every ¢=0 and for every x € E,, there exists an integer 7 such that
u(x) = 0. Since, for a weakly-nilpotent endomorphism u: E—E, we have N@w
= E, so

PROPOSITION 1.4. If u: E—E is a weakly-nilpotent endomorphism, then A(u) = 0.

Let f: (X, Xp)—(X, Xo) be a map. If fo,: HX, Xp)—H(X, Xo) is a Leray
endomorphism, then fis called a Lefschetz map. For such f, we define the chschettz
number A(f) of f by putting A(f) = A(f,). Clearly, if f and g are homotopic,
f~g, then [ is a Lefschetz map if and only if g is a Lefschetz map; and, in this( case,

= A(g).
A(leonsid(gr) two maps p, q: (¥, Yo)—(X, Xo), where p is a Vietoris map. Let
P, q: Y=X and p", ¢"¢ Y;—X, be maps given by the same formula as p and ¢
respectively. Observe that p’ and p” are Vietoris maps. Then, we have:

LevMa 1.5. If two of those endomorphisms, qypy s qipy Y qi py Y, are Leray
endomorphisms, then so is the third; and, in that case,

Agyps®) = Algeps™ )= AG P T -
Lemma 1.5 clearly follows from the exactness axiom for the Cech homology
with compact carriers and coefficients in 2, and from (1.4) in [1].

2. Multi-valued maps. In the following, ¢, ¥ will be reserved for multi-valued
maps; the single-valued maps will be denoted by f, g,ps g, ... Let @: X—+I.’ b(?
a multi-valued map. We associate with ¢ the following diagram of continuous maps:

Po

x&r, 5y
in which .
r,={x»eXxY|yeo®}
is the graph of ¢ and the natural projections p, and g, are given by:

P63 =x and g%, =7.

The image of a subset A;:X under ¢ is
pd) = UoXx).
xed

The  counter-image of a subset B<Y under ¢ is
¢~ }B) = {xeX| ¢(x)=B}.

A multi-valued map ¢: X—Y is called upper semi-continuous (0.5.c.) proﬁ§ed 4]
(%) is compact, for each x € X, and (if) for each open set Vc. Y, the counter-image
(V) is an open subset of X. :

ProrosiTion 2.1 ([11). If ¢: X—Y is an u.s.c. map and A is a compact subset

of X, then the image ¢(A) of A under ¢ is compact.
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A multi-valued map ¢: X~Y is called .compact provided the image ¢(X)
of X under ¢ is contained in some compact subset of Y. Let o: X—Y¥ be a multi-
valued map, A4 a subset of X" and B a subset of Y. If ¢(4)<B, then the contraction
of ¢ to the pair (4, B) is the multi-valued map ¢': 4—B defined by ¢'(a) = o(a)
for each a € 4. A contraction of ¢ to the pair (4, Y) is simply the restriction ol4
of ¢ to 4. Let ¢: X—X be a multi-valued map and let 4 be a subset of X. If ¢ (4) = 4,
then A is called an invariant subset under @. A point x € X is called a fived point
of ¢ if xeq(x).

Let : X—Y and y: ¥—Z be two multi-valued maps. Then the composition
of ¢ and ¥ is a multi-valued map ¥ o p: X—Z defined by ¥ o o (x) = ¥ (o(x)) for
each xe X. For a multi-valued map ¢: X—X, we denote by ¢", m>1, the mth
iteration of ¢ (i.e. o™ = po..0¢); by ¢° we denote the identity map Id,.

We note the following (see [7]):

PROPOSITION 2.2. The composition of u.s.c. maps is also u.s.c.
From Proposition 2.2 and the definition of an u.s.c. map, we obtain:

Lemma 2.3. Let ¢: X—X be an us.c. map and let U be an open invariant set
under @. Assume that, for every x € X, there exists an integer n such that ¢"(x)c U.
Then, for every compact subset K of X, there exists an integer m such that ™(K)< U.

3. Admissible maps. An us.c. map ¢: X—Z is said to be acyclic provided the
set ¢(x) is acyclic for every point x € X. We observe that if @i X—Z is an acyclic
map, then the natural projection Py: I',—X is a Vietoris map.

Let ¢: X—Z be a multi-valued map; a pair (p, ¢) (of single-valued, continu-

14
ous) maps of the form X Ye-Z i called a selected pair of ¢ (written (p, 7)< 0),
if the following conditions are satisfied:

(@) p is a Vietoris map,

() g(p~"(x)) =9 (x) for each xe X,

Remark 3.1. We observe that, if ¢ is a compact map and (p, )<, then g is
also compact. . .

DerFmvTioN 3.2 (see [5], [7]). An us.c. map ¢ is called admissible provided
there exists a selected pair (p, g) of 0.

.Every acyclic map and, in particular, every continuous single-valued map is
admissible; for example, the pair ( Py 4,) is a selected pair of ¢. We note that the
composition of admissible maps is also. admissible (see [5] or [7]).

PEFIN’ITION 3.3. An admissible map ¢: XX is called a Lefschetz map
provided, for each selected pair (p, g)<¢, the linear map g, p; *: HX)—H(X)
is a Leray endomorphism.

If ¢: X=X is a Lefschetz map, then we define the Lefschetz set A(¢) of ¢ by
putting

A(9) = {44 Y| (p, g)< o} .

icm

©

.

The Lefschetz fixed point theorem for some non-compact multi-valued maps 249

Remark 3.4 (see [5] or [7]). If ¢ is an acyclic Lefschetz map, then .the set
A(o) is a singleton and, in this case, we shall denote it by 4(¢).

Let ¢: X—X be an u.s.c. map and U be an open invariant subset of X under ¢.
Assume that, for every x € X, there exists an integer » such that ¢"(x)cU. Let

(p,q) be a sclected pair of ¢ of the form X< ¥5 X, Define 7(Yp7i(U)
—~(X,0), §: (¥, p7'(U))—(X,U) by putting p() = p(3) and §(3) = q(y), for
every ye Y. Observe that j is a Vietoris map. Then we have:
LEMMA 3.5. The endomorphism §.px ' H(X, Uy—H(X,U) is weakly-nilpotent.
Lemma 3.5 simply follows from Proposition 2.3 and the fact that H is a hom-
ology functor with compact carriers, since (gp~*)"(K)=¢"(K), for each compact
K of X.

4. Lefschetz multi-spaces.

DreriNITION 4.1. A Hausdorff space X is called a Lefschetz multi-space for
a class 2 of multi-valued maps, written X e L;,(2), provided that any w.s.c. admiss-
ible map ¢: X—X belonging to 2, is a Lefschetz map and A{g) # {0} ‘implies
that ¢ has a fixed point.

When 2 is the class of compact maps, we have the following theorem.

THEOREM 4.2. Are Lefschetz multi-spaces for the class of compact maps open

subsets of - .
(i) admissible topological vector spaces (in the sense of Klee [9]); in particular,

locally convex topological vector spaces, ‘
(ii) NES (compact) (in the sense of Hanner [8]); in particular, ANR (metric).
Proof. It is evident from [5], Theorems 6.3 and 7.3, and the fact that an open
subset of a NES (compact) is NES (compact). @
DEFINITION 4.3. A multi-valued map @: X—X is saig_§ compact absorbing
contraction if there exists an open set U of X such that ¢(U) is a compact of U

and X< | o~'(U).
=0

We state now our main theorem.

THEOREM 4.4. Let X be a space such that every open set V of X satisfies V€ Ly
(compact), then X € Ly (compact absorbing contraction). .

Proof. Let ¢: X—X be an admissible map such that ¢ € 2. Since ¢ (U)
cq;(—ch U, consider ¢': U—U the contraction of ¢ to the pair (U, U)f Let JIJ, g _
Y—X be a selected pair of @ and, since g(p~ ()= U)<=0, co,n_sxder piq:
p~}(U)—U the contractions of p and ¢ respectively. By‘Re?mark 1.1, p"is a,“/’ietorls
map; hence (p’; ¢) is a selected pair of o', so ¢’ is admissible. Mf)reover ¢’ is com-
pact, since m is a compact of U;so ¢’ is a Lefschetz r):la}p sm.CC U.e Ly (corg—
pact). Consider the maps p”, ¢": (¥,p~ (D))= (X, U); p"isa VleForls map 3111;
by Proposition 2.3, if K is a compact subset of‘ X, then there exists neN 51]12
that ¢"(K)< U; so the map gx px ~ " is weakly-nilpotent, hence, by Proposition 1.4,

i
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A(gy p¥™") = 0. By Lemma 1.5, g4ps ' is a Leray endomorphism and A(g,ps?)
= A(gapi V). Hence ¢ is a Lefschetz map and A(p)< A(9). Now A(g) # {0}
implies that A(p') # {0}; and, since Ue Ly, (compact), there exists x € X such
that xe @'(x) = @(x). B

5. Compact attraction maps. Now, we define some classes of maps for which
we will prove the Lefschetz theorem.

DEFINITION 5.1. An u.s.c. multi-valued map ¢: X—Y is called locally compact
provided that, for each x € X, there exists an open subset V" of X such that xe V,
and the restriction, ¢|y, is compacr.

DeFmNITION 5.2. A multi-valued locally compact map ¢: X—X is called
eventually compact if there exists an iterate ¢": X—X of ¢ such that ¢” is compact.

DermvrTioNn 5.3. A multi-valued locally compact map ¢: X—X is called
compact atfraction if there exists a compact K of X such that, for each open

0
neighbourhood ¥ of K, we have X< |J @ /(¥). The compact K is then called an
i=0

i

attractor for ¢.
DerNiTION  5.4. A multi-valued locally compact map ¢: X—X is called

0
asymptotically compact if the set C, = ) @"(X) is a non-empty, relatively compact
n=0

subset of X. The set C, is called the center of ¢.

Note that any multi-valued eventually compact map is a compact attraction
and asymptotically compact map.

Lemma 5.5. Any eveniually compact map is a compact absorbing contraction map.
Proof. Let ¢: X—X be an eventually compact map such that X’ = ¢"(X)

n—=1
is compact. Define K = {J ¢/(K’), weghave
i=o0
e(K)=U o (K)cKu ¢"(X)cKU K'cK.
i=1

Since ¢ is locally compact, there exists an open neighbourhood ¥, of X such that
L= Wo—) is compact.

There exists a sequence {V;,..,V,} of open subsets of X such that
LooV)eViyand Ku " (D)W, for all i = 1,...,n. In fact, if K0 @" (L)
<V, and 0<i<n, since K U 9" (L) and CV; N L are disjoint compact sets of X,
there exists an open subset W of X such that

Ko™ (L)eWe WV, u CL.

Define ¥,y = ¢ '(W); since ¢(K) U'gp (" “*UL) =K U o™ (L) W, we have
KL{ (o't‘““"(L)c Vier; and o(Viy ) WV, u CL implies Lno(Viio<V;.
Beginning with KU ¢"(L)c K<V, we define, by induction Vi, ..., ¥, with the
desired properties.
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Putting U= Vo a Vi n..nV,, we have K'<KcU and
o(M)=e (V) 0 (V) M. 0 9(FIL 0 o (V) 0 (7).
hence
oL o)n..o@oelW)nleVon.nVuinV, =T,

but ¢@(U) is compact since ();_(—L?)_cL. Moreover,
n . LY
XcU e (K)=Uo™(U). &
=1 i=0 )

PROPOSITION 5.6. Any compact attraction map is a compact absorbing con-
tracrion map.
Proof. Let ¢: X—X be a compact attraction map, K, a compact attractor
for ¢ apd W, an open set of X such that Ke W and L = ¢(W) is compact. We
@

have LeX< |J @ (W) hence, since L is compact, there exists ne N such that
i=0 .

’Lc O @ (W). Define ¥V = | ¢ {(W); then
=0 i=0
Xc o (W)= Uoco""(V),
i=0 i=

o) U =i )< (W) U VeL U VeV
i=0 .
and
e U o m) = U et U oD
i=0 j=0 =0

which is compact and included in ¥, since Lc¥ and ¢(V)c V, implies‘that
@(L)c=V for all je N. Consider the contraction ¢: V—V of ¢; ¢ :vv—-rU is an
eventually compact map, since ¥ is an open set. By Lemma 5.5, there exists an open
set U of V, hence of X, such that qo’(V) = @(U) is a compact of U and ¥V
o =]
<o ™"U)e U ¢~ "(U); hence
=0 n=0

n

xe U o™ Me Gowmc Ue="(W).
i=0 i= n=0

From Theorem 4.4 and Proposition 5.6, we obtain:
COROLLARY 5.7. Let X be a spdce, if V open in X implies that V € Ly (compact),
then X € Ly (compact attraction).
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6. Asymptotically compact maps.
LEMMA 6.1. Let @: X—X be an u.s.c. multi-valued map, C, = ﬂ @'(X) and V an
open subset of X such that C,< V. Then, for each compact K of X, rhere Lxists ne N

such that [\ ¢'(K)=V.

i=0

n
Proof. The family { ) ¢'(K) N CV},.y of closed subsets of the compact X,
i=0 )
has empty intersection, hence there exists a finite empty intersection. M
@

Levva 62. Let @2 X—X be an us.c. multi-valued map, C, = () ¢'(X), U,
v i=0

= {xeX| U ¢ is compact} and V, an open subset of X such that C,=V. Then
=0

U,= U e~UY).
i=0

Proof. Let xe U,, K= U ¢"(x) is compact; by Lemma 6.1, there exists

r=

neN such that ¢"(x)c () ¢(K)=V. m .
=0

DEFINITION 6.3. A multi-valued map ¢: X—X is called with compact orbits .

if | ¢"(x) is relatively compact for every x e X.
n=0

PROPOSITION 6.4. Any asymptotically compact map with compact orbits, is
a compact attraction map.

Proof. Let ¢: X=X be an asymptotically compact map with compact orbits,
then U, = X so C is a compact attractor for ¢ and ¢ is a compact attraction
map. B

COROLLARY 6.5. Let X be a space, if V open in X implies that V'€ Ly; (compaci),
then X e Ly, (asymptotically compact with compact orbits).

Lemma 6.6, Ler X be a space and @: X—X an asymprotically compact map of
center C,. Then, there exists an open subset V of X such that C,<V, @(V)<=V and
(V) is compact.

Proof. Let U be an open set of X such that C,c U and X =_(/TU‘) is compact.

" n
By Lemma 6.1, there exists n € N such that () ¢!(K)<U. Define ¥ = ) o~ (U).
i=0 i=0

Since ¢(C,)=C,, we have that C,< V. Moreover,

<O(V)c_(=‘"10 tp'i(coLU))C_éo ¢7I(K)
n—1
hence qa([’)cvooqa_i(U) ne~"(U) =

pact. @

=N oK) =g éo ¢ (K)o ~"(U),

V. Sinceso (V)= o(U)<K, ¢(V) is com-
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LemMA 6.7. Let X be a space and ¢: X—X an asymptotically compact map of
center C,, then U, is open and ¢ (U, )u C,=U,.

Proof. By Lemma 6.6, let ¥ be an open set such that C,=¥, o(V)=¥ and

—_ o0
K = @(V) is compact. Let us show that U, = |J ¢~(V). By Lemma 6.2, we have
i=0

that U,= U @™(¥). Let xe @~ "(¥), then for all m>n,
=0
o"(x) = o[p"(e"®)) =0 (" (M) =e(V) =k,

where k = m—n—1, so U (p"(x)c( (p”(v)) v K, which is compact, hencexe U, d

In these condmons, Q' U[,,—>U,,,, the contraction of ¢ is defined and one is
tempted to say that ¢’ is an asymptotically compact map with compact orbits,
or that E‘;is a compact attractor of ¢'. Unfortunately neither of those hypothesis
is true. The counterexample being complicated, is not presented here. However,
one statement is true: ¢ is a compact attraction map. Hence the following prop-
osition.

PrROPOSITION 6.8. Let ¢: X—X be an asymptotically compact map, then the
contraction (p':' U,—U, of ¢ is a compact attraction map.

Proof. Since E is a compact subset of X, U, is an open set and C,=Ul,; by

Lemma 6.1, there exists n e N such that X = ﬂ o (C, )c U,. Note that X is com-
pact and that ¢™(C,)= ﬂ ¢(C,) K, since ¢(C,)=C,. Let W be an open such
that K< W, since ¢™(C,)= W, so C,c ¢~ (W) = ¥; by Lemma 6.2, U, < U o~i(V)

hence U, U o ~{(W), since @(U, )cU So K is a compact attractor for ¢’,

and ¢’ is a compact attraction map. B

COROLLARY 6.9. Let X be a space such that V open in X implies that Ve Ly
(compact), then if ¢: X—X is an admissible asymptotically compact map, the con-
traction ¢': U,—~U, is a Lefschetz map; and A(¢’) # {0} implies that ¢ has
a fixed point.

References

N .

[11 C.Bowszyc, Fixed point theorems for the pairs of spaces, Bull. Acad. Polon. Sci. 16 (1968),
pp. 845-850.

[21 G. Fournier, Théoréme de Lefschesz,
Acad. Polon. Sci. 6 (1975), pp. 693-701.

[3] — Théoréme de Lefschetz, IT— Applications d’attraction compacte, ibid., pp. 701—706

6 — Fundamenta Mathematicae XCIV

Bull.

I— Applicati 1. 1p


GUEST


[4]
[51
[61
7
[8]
]

icm®

G. Fournier and L. Gérniewicz
G. Fournier, Théoréme de Lefschetz, III — Applications asymp pactes, ibid.
p. 707-713.
—— and L. Gérniewicz, The Lefschetz fixed point theorem for multi-valued maps of non-

metrizable spaces, Fund. Math. 92 (1976), pp. 213-222.

— and A. Granas, The Lefschetz Fixed Point Theorem for some classes of non-metrizable
spaces, J. Math. Pures et Appliquées 52 (1973), pp. 271-284.

L. Gérniewicz, Homological methods in fixed point theory of multivalued maps, Dissertationes
Math. 129 (1976), Warszawa.

O. Hanner, Retraction and extension of mappings of metric and non-metric spaces, Ark. Math.
2 (1952), pp. 315-360.

V. Kfee, Leray-Schauder theory without local convexity, Math, Ann. 141 (1960), pp. 286-296.

Accepté par la Rédaction le 10. 2. 1975


GUEST




