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Remark. After we had the result that the existence of ¢ e.‘:f such that 9/p
is (%, w)-regular implies the % -universality of QI;I@’, L. Pafholslkl has drowe our
attention that the condition above is also sufficient for the »*-universality of %%
and that the Keisler's proof from [2] works also in our case.

THEOREM D. Suppose D is an ultrafilter on I and & a filter on Ix I such that the
pair (9, %) is x-closed. Suppose that for every o, €9 there is 0,0, 02 €9 such
‘that D)o, is x-good. Then for every structure W, the limit ultrapower DI
n-saturated.

Proof. Let {[f;]s>z<« be a sequence of elements of AL|%. From Theorem 1,
" it follows that there is a relation ¢ €% such that if Jjo = {J;: jeJ} and & = 9o
then there is an elementary embedding F: §,—U5|¥ with [f;]s € Rng(F), for all
E< . From our hypotheses we can additionaly assume that 9/g is %-good. Then,
by Fact I, Uj is x*-saturated. Thus the result follows from Fact IV.

Remark. L. Pacholski has informed meé that he has a combinatorial con-
dition on a pair (2, ) which is equivalent to the statement: “for every W the limit
ultrapower Ny|¥ is u-saturated”. For more informations see [3].
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The irreducibility of continua which are the inverse Timit
of a collection of Hausdorff arcs

by

Michel Smith (Atlanta, Georgia)

Abstract. Consider the space which is the inverse limit of a collection of generalized (non
metric) arcs over a linearly ordered index set. Such a space is a hereditarily unicoherent atriodic
Hausdorfl continuum. It is shown that every indecomposable subcontinuum of the space is irre-
ducible between some two points. A necessary and sufficient condition in order for a subcontinuum
of the space to be indecomposable is stated. Further it is shown that the space must be a generalized
arc if it is not the inverse limit over a countable subset of the index set. Thus it follows that the
space must be an irreducible continuum. :

Introduction. In this work a continuum is a closed. connected subset of a Haus-
dorff space and an arc is a compact continuum which has only two non-cut points.
It is known that if M is a nondegenerate compact atriodic hereditarily unicoherent
continuum and every nondegenerate indecomposable subcontinuum of M is ir-
reducible between somz two points then M is irreducible between some two points.
(S:e M. H. Proffitt [4] for a stronger result.) Sappose S is the inverse limit of
a collection of Hausdorff arcs over a linearly ordered index set. Then S'is a compact
atriodic hereditarily unicoherent continuum. In this paper we show that every
nondegenerate indecomposable subcontinuum of S is irreducible between some
two points. Further we show that if S is not an arc then it must be the inverse limit
of a collection of arcs over a countable index set (this result has also been inde-
pendently discovered by G. R. Gordh and S'be Mardedié.) Also a necessary and
sufficient .condition in order for a subcontinuum of $ to be indecomposable is
stated.

Following are some definitions used in this paper. For theorems concerning
inverse limits the reader should consult Eilenberg and S:eenrod [1], and for theorems
concerning arcs the reader should consult Hocking and Young [2], and
R. L. Moore [3]. ‘

DeFINiTION. Suppose M is an arc and 0 and 1 are the two non-cut points of M:
Then the statement that M is ordered from 0 fo 1 means that if x and y are two points
of M then x<y (or x precedes y) if and only if x # 1 and it is true that y = 1 or
M-y is the sum of two mutually separated sets, one containing 0 and x and the
5 — Fundamenta Matliematicae t, XCIV
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other containing 1. M is ordered means that M is ordered from 0 to 1 or that M is
ordered from 1 to 0.

DeriNiTION. I M is 2 Hausdorff arc and P and Q are two points of M then
[P, Q] denoted the Hausdorff arc which is the subcontinuum of M which has non-cut
points P and Q. R )

DermNitioN. {X, f}s is‘an inverse system over the directed set E means that
X is a function with domain E and f'is a function with domain the subset of Ex E
defined by the relation “<” such that: '

(1) if aeE, X, is a set, ) ‘

(2) if a<b in_E, then f(a, b), denoted by f7, is a function from X;, onto X,, and

(3) if a<b<c in E then f3(f3) = f5. ‘

DermvTION. The space S is said to be the inverse limit, lim{X,},c5, of the
inverse system {X, f)z, where X, is a topological space for each. a e E, if it is true
that: (1) 2 is a point of .S means that P is a function with domain E so that for each a
in E P, is a point of X,, and if a<b in E then P, = f2(P,), and (2) R is an open set
of S means that there is a finite subset {a;}]~; of Eand a collection {R, }!., so that
for each a;, R,, is an open set in X,, and R is the set of points to which P belongs
if and only if P, eR,,.

DerFINITION. S.appose S is the inverse limit of the inverse system {X, g
Then if @ € E the projection 7, is the function from S into the space X, such that
if PeS then m(P) = P,. )

NoraTtion. If for some @ in E, D is a subset of X, then D means the set
{x: x,e D}. : ‘

DeFINITION. The directed set £’ is said to run through the directed ser E if it
is true that E'<E and for each @ in E there is an element & in E”’ so that a<d in E.

The proofs of the following two theorenis are straight forward and the proofs
are left for the reader.

THEOREM 1. Suppose S is the inverse limit of the inverse system {Mf}y and
Jor each a in E M, is a compact Hausdorff space, H is a closed subset of S, and w (H)
= M, for each’a in E. Then H = §.

THEOREM 2. If S is the inverse limit of the inverse system {X,f}g where X, is
a Hausdorff arc for each.a in E, and S' is a subcontinuum of S; then S’ is the inverse
limit of the inverse system {n(S"), g} where ¢° = Soeyisy and 7,(S") is an arc or
a point.

THEOREM 3. If S is the inverse limit of the inverse system {M,f}r where M, is

an arc for each ain E, and E is a linearly directed set; then S is atriodic and heredi-
tarily unicoherent, :

Pro9f. S is atriodic. Suppose T is a subcontinuum of S which is a triod.
Then T is the sum of three proper subcontinua, H,, H,, and H,, such that the
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common part of each two of them is the common part of all three of them and is

a proper subset of each of them. Let,
xEHx—-(Hy'FHz): yEHy_(I,{x'I'Hz)Q ZEHz—(Hx+Hy)a tEHx°Hy°Hz'

There exist regions, Sy, Sy, and S,, of M, for some n of E which are pairwise

mutually exclusive and which contain x,, y,, and z,, respectively, so that:

no point of H, or H, is in 3,

no point of H, or H, is in 3‘;,

no point of Hy or H, is in S, .
Then onc of x,, y,, or z, lies between £, and one of x,, y,, or z,. Suppose #,<x,
<y,. Then m,(H,) intersects ¢, and y, and hence x,. But 7,(H,) does not intersect S,.
This is a contradiction. So S contains no triod.

S is hereditarily unicoherent. Suppose H is a subcontinuum of S and H,
and H, are proper subcontinua of H whose sum is H and so that H, H,is the
sum of two mutually exclusive closed point sets, 4 and B. There is an element a
in E so that n,(4) and =,(B) are mutually exclusive, because 4 and B are compact.
There is a point x of n,(H) in M, between some point of m,(4) and some point
of m,(B). There is a point P of H such that for each b>a in E, P, lies between some
point of 7,(A4) and some point of m,(B). (This follows from the fact that some well
ordered subset of E runs through E.) Suppose that P belongs to H;. There is an
element b>a in E and a region R of M, containing P, so that R does not contain
any point of H,. But n,(H,) contains P, since it is connected and contains every
point of my(4) and of my(B). So m(H,) intersects R. So H, intersects R, which is
a contradiction. So every subcontinuum of § is unicoherent. .

THEOREM 4. Suppose S is the inverse limit of the inverse system {M,f}g, E is
a linearly directed set, M, is an arc for each a in E, 1 is an element of E, and there
are two points, r and t, of M, distinct from the end points so that for each n>1 in
E f¥7'() is separated from f1'(t) by some point x, of M,,. Then S is decomposable,

Proof. Let M, be ordered so that r<t. Let 0, and 1, be the end points of M,
so that /77 ()<[0,, x,] and F7'(H<[*,, 1,} and 0,<1, in M,. Let p and ¢ be
two sequences so that:

by = b= glbff"(pl)
q3. qr = IUbf{r‘(éh)

Then from the continuity of f2 for all @ and b in E and from the properties
of arcs, the following are true:

(a) gy<py for each k>1 in E.

(b) pi<sHpD and g,2fMg,) for each k>iin E.

(¢) No point of {g,,1,] is mapped into [0;, g,] and no point of [0, 0 is
maPPEd into [1)1 H 11] Thus fgul(oi)g[ons qn]a and f;-‘(l 1)E[Pn’ 1n]'

5*

k>1,
k>1.
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(@ £17 00 [0,, ¢,] and 3 (1) ELpas 1,], for all n>k.

© pi = fi(p) and g; = f{(gy) for all k>i>1. :

Thus (a)-(c) prove that the sequences p and ¢ as defined are points of the
inverse limit S. Let

H={x: xe[0np}, K={x xive[‘ln L1}

From (a)-(¢) [0;, p;] is mapped onto [0, p,] for all i>k; and [g;, 1,] is mapped
onto [g;, 1,] for all i>k. 85> H and K are continua since they are inverse limits on
a system of arcs.

7 (H) =[04,p], so H=#S.
n(K) =[gs, 1], so K=#S.
m(H)+n(K) = M, forall k in E.
So H+K = §. So § is decomposable.
COROLLARY TO THE PROOF. If x and y are points of S and x, <r<it<y,, where r
and t are defined as in the theorem, then x is not in K and y is not in H, as defined above.
THEOREM 5. Suppose S is the inverse limit of the inverse system {M,f}g, E is
a linearly directed set, M, is an arc for each a in E, and no countable set runs through E.
Then S is an arc. :

LEMMA 1. If r and t are two points of My, 1 € E, then there is an element uw in E
and an integer n, so that if vzu in E then the set HI'Y to which (a, b) belongs if and
only if fi(a) = r, fi(b) = t, and if xe(a,b) then fi(x)e(r, 1), contains exactly n,
elements.

Proof. HSP is finite for all v>u in E because /7 is continuous. Sappose that
the lemma is false. Then there is an increasing sequence of elements of E {u;}i2,
so that H{") contains i elements for each positive integer i. There is an element w
in E which follows all the elements of the sequence {u;}j2;. Sippose H{P has
only N elements. Consider the mapping £, . Let HrO | = {(a, b)Y}, j=1.

X N ) “N-.)-l' UN w1,

Since fiy ., is onto, there are points x; and y, in M,, so that £ . (x) = a;, fi¥ . (v)
=b;, and £%, (0 e(a, b),;l) if xe(x;,y). Thus HUP contains at least N-+1
elements because {(x;, yi)}i:fEH}Jj{), which. is a contradiction. So the lemma is
established.

( ﬂCOROLLARY TO THE PROOF OF LemMA 1. If u is defined as in the lemma,
r, o ) - v
B contains exactly n, elements, and w>u; then if (a;, b)) belongs to H{P, R
contains only one element.

LEMMA 2. S is decomposable.

Proof. Sappose 1 is an element of £, M, = [0,1], and 0<r<it<1. Define u
as in Lemma 1. There is an element (a;, b;) in HYP so that neither a; nor b, is an
end point of M,. Then by the corollary to Lémma 1: if v>u in E, then f2™'(a)) is
separated from £°~'(h,) by some point x, of M,. Thus by Theorem 4, S is de-

composable; and further, every nondegenerate subcontinuum of S is decomposable.

* ©
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Thus § is atriodic and hereditarily unicoherent and contains no nondegenerate
indecomposable continuum, so §' is irreducible between some two points, 4 and B.

Lemma 3. If x and y are two points of S then S is the sum of two continua, one
not containing x and the other not containing y.

Proof. Suppose x and y are two points of S and 1 is some element 7 of E so
that x; # y;. Suppose r and ¢ are two points of M, which lie in (x, y,) and r<z
in M. By the corollary to Lemma 1 there is an element u of E so that if w>u in E
and if (@;, h;) belongs to I-I,Sfi') then Hf,,‘"’,;b’) contains only one element. Suppose
y,<X,. By the intermediate value property there is an clement (a;,5) in H{}
so that y,<a;<b;<x, Then there is a point z, of M,, w>u, which separates
w=Y(a)) Trom f77'(b) in M,,. Therefore, by the corollary to Theorem 4, § can be
decomposed into two continua, one containing x and not y and the other contain-

ing y and not x.

Proof of Theorem 5. By Lemma 2, S is irreduciblé between some two
points, 4 and B. By Lemma 3 it follows that every point of § distinct from 4 or B is
a cut-point of S. Thus § is an arc.

DerINITION. Suppose M is the arc [4, B], M’ is an arc, and f is a continuous
function from M’ onto M. The interval [a, ¢] of M’ is said to be folded over the
interval [r, £] of M with respect to fif there is a point b of [a, c] so that f(a) and f(c)
lie in one component of M—[r, ] and f(b) lies in the other. ’ ‘

TutoreM 6. If S is the inverse limit of the inverse system {M,f}g, E is the set
of positive integers, M, = [0, 1,] is an ar¢ for each n in E, and there is a subset E !
of E running through E so that {M,[f}g satisfies one of the following conditions,
then' S is irreducible between some two points.

(A) For each n in E', M, is first countable at each end and if 0,<r<t<l1, then
there is an element, k>n, in E' so that some interval, [a, c] of M, is folded over [1, £]
with respect to fr. ’

(B) For each n in E', M, is first countable at 1, but not at 0,, and f ne E' and
tis a point of M, then there is an element, k>n, in E' and three points, &, by, and ¢,
of My, with by, between a, and ¢, and either: (1) Féa) and ficy) lie in [1,1,] and
fr:‘(bk) = Om or (2.) ./Z‘:("k) mfll:("k) = On (md f;’:(b/:) lies in [,’ 1"]'

(C) For each n in E'. M, is not first countable at both ends and if ne E' then
there is an element, k>n, in E' and three points, 6y, by, and cy, of My with by
between a, and ¢, and cither: (1) f¥a) = fcd = 0, and fy(b) =1y, or (2) T
=faley) = 1, and fib) = 0,.

The proofs of the differcnt cases are similar. The following is a proof of
case (A) which,is the most technical, For convenience let E' be E.

LimMa 1. On the basis of the hypothesis of the theorem there is kfm integer k>.n
so that some interval I of M, is folded over [r, {] with respect to f, and I contains
neither end points of M,.
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Proof of Lemma 1. Choose the integer & defined in the hypothesis of the
theorem and employ the continuity of f¥ at the points of 7', and 40,

Lemma 2. Suppose 0,<r<t<l, in M, and k>n, then there are two points r,
and t, in My so that: fi((ry. 1))2[r. £

Proof of Lemma 2. Employ the continuity of f¥ at the points 0, and 1, to
find the desired points.

Proof of Theorem 6(A). Let {rf}j2s be a monotonic sequence of points
of M, which converges to 0, and let {132, be a monotonic sequence of points
of M, which converges to 1; and let rl<tl. Let x,=y; be a point of (r1, t1). There
is a positive 7;>1 and an interval [a,,, ¢,,] of M,, which is folded over [}, 27t
4, <c,,, and so that [a,,, ¢, contains neither end points of M, (Lemma I). Le,
b,, be a point of [a,,, ¢, ] which corresponds to the point b in the definition ot
folding. Let x,, and y,, be preimages of x; and y, respectively under f7* in (a,,, b,,)
and (b,,, ¢,,) respectively.

Let {r"}2, and {£*};2, be monotonic sequencesso that: {r{'}{Z, converges
t0 0, {1}, converges to 1, /7 (¢, %)=+, 4] (by Lemma 2) and it is true that

N
0, <F{*<@yy Coys Xongs Vi, <H' <1y,

Suppose then that k is a positive integer, k>1, and that n;, {r}'}i2, {f'}i24,

@ujs Dyys Cojs Xy and y,, are defined for all j<k. There is a positive integer m.., >m

§o that some subinterval [, , ., ¢y, ] OFf M, is folded over [rg¥, fi] with respect

to fyk+t which contains neither endpoints of M, ., @u,,<Cn.,,> and by, corre-

sponds to the point b in the definition of folding. Let x,,,, and y,,,, be preimages

. under f=** of x,, and P, in (@, ,,» byyy) 804 By prs Lnesy) Tespectively. So .,

<bprs <Vmere- Let P}, and {**'}L; be monotonic sequences of M,,,,
which converge to 0,,,, and 1, respectively so that:
me (o, o) 2 7]

and ’

' 0,

Mr+1
sy T <4, Cy,

Mer1? “NMies1?

e+ 1
x"l¢+1’y"k4~1<ti <lme+1

for each i. Note that neither x, nor y, is 0, or 1,.
Let x and y be the points of S defined by the sequences, x = {x,,}j2; and
¥ = {y,}iz, respectively. Suppose I is a subcontinuum of S containing x and y
So m,(I) contains b,, for each k>1, because b, lies between x,, and .
Suppose k is a positive integer. Let m>k+2

b"m € n"m(l) H b"m"'l € “nm—x(l) 3

frm_ (b,,) belongs to one of [, 1, 1 or [0, ,, 73],

m—1

So m, _,(I) contains one of f;7~¢ or rymt.

Case (). ty=7 belongs to 7, _ (I) and by, em, _(Dsoc,  emn, (D)

f ;:: ;[b'lm 12 Cotpg e 1]) S A ) so [,.;v"m_—lz, l;ln":-—lz] Sy, ;(1 ).

Bme-1

e __© 3
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Case (2) is similar to Case (1). So [ri_,, 1 ;] e m, (D) for all m>k+2, because

far=2((rmds )20 0 1]

Thus [Oy» L] S (1) since m,, (1) is.closed. So @, (I) = [0,,, 1, ] for all k. So I = S,
and hence no proper subcontinuum of S contains x and y. So S is irreducible
from x to y.

COROLLARY TO THE PROOF. S is indecomposable if it satisfies the hypothesis
of Theorem 6. '

A third point z could have been chosen along with x and y so that z,, € (e,,, by,)
it mis even and z,,, & (by,,» Cy,») if m is odd. S can be shown to be irreducible between
each pair of points of the set {x,»,2}. Y

THEOREM 7. Suppose that S is the inverse limit of the inverse system {M,f}g,
E is the set of positive integers, and for each i in E, M, = [0;, 1,] is a Hausdorff arc
which is first countable at neither end. Suppose further that if n is an integer, n>1,
there is a point X, of M, so that [{([x,, 1,]) does not contain O and f{([0,, x,]) does
not contain 1,. Then S is decomposable.

LEMMA. Suppose n is an integer. Then there are two poinis u, and v,, of My so
that v,<u, and neither u, nor v, is 1, or 0y, )

Proof of the lemma. Suppose n is a positive integer, n>1. Let a,
= lubf?™1(0,) and let b, = glbf}~*(1,). Then a,<x,<b,, fi([0s,4,]) does not
contain 1,, and f1([b,, 1,])does not contain 0,. Suppose ¢ is a point of M, —f; ([0ns 2.))
distinct from 1, and r is a point of M;—f1([b,, 1,) distinct from 0,, and let r<z

Suppose r and ¢ do not have the desired property. Then let 4 = Tubfr~t(r)
and B = glbf}~*(r). Then B<.4, otherwise let v, = r and u, =1 and the lemma
is established, a,<d, B<b,, 4 does not belong to [b,, 1,], and B does not belong
to [0, @,]. Thus a,<B<A<b,. $20,isnot in f{([B, 1,]) and 1, is not in f([0,, 4]).

Let ¢ be a point of M, —f3([0,, A]) distinct from 1,, and let ¥ be a point of
M,—fX[B, 1,]) distinct from 0,. Sippose that there are two points x and y so
that fi(x) = # and fJ(y) = ' and so that y<x. From the above, Fi(x) precedes
every point of fI([B, A]) and fi(») follows every point of JU[B, 4]). But a,<y
<x<b,. I ye[0,, 4], then f1() €fi([0,, 4]), which is a contradiction, since #’
= f"(y). Thus y>4 and so x>4. Similarly if xe[B, 1,],then r'e fu[B, 1,]) which

. is a contradiction. So x<B and then y< B, which is impossible. Thus £’ and 7' have

the desired property. So the lemma is established.

Proof of the theorem. Sippose that for cach positive integer n the points #,
and v, are defincd according to the lemma. Since M, is first countable at neither 0,
nor 1, there are points r and r, each distinct from 0, and 1y, so that for each positive
integer n, u,<t and v,>r. Every point of F1=1() follows every point of .
Thercefore, by Theorem 4, S is decomposable.

COROLLARY 1 To THEOREM 7. Sippose that S is the inverse limit of the inverse
system {M,f}z, I is the set of positive integers, and for each i in E, M, is an arc
Which is first countable at neither end. Suppose further that M, = [0y, 1,] and there
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is a point x, of M, which separates M, into two sets, one containing FiY1Y) and the
other containing f21(0,), for each n>1 in E. Then S is decomposable.

Proof. Let M, be ordered so that M, =[0,, 1,] and 0, belongs to the com-
ponent of M,—x, containing f; 7=1(0,) and 1, belongs to the component containing
f27Y(1,). Taen applying Theorem 7 we get the desired result.

COROLLARY 2 To THEOREM 7. If S is the inverse limit of a countable sequence
of arcs each of which is first countable at neither end and S is indecomposable, then §
satisfies the hypothesis of Theorem 6 (C).

THECREM 8. Suppose S Is the Inverse limit of the inverse system {M,f}g, E is
thesset of positive integers, M; = [0;, 1] is an arc which is first countable at 1, and
is not first countable at 0; for each i in E, and suppose also that S is indecomposable.
Then there exists some subsequence E' of E so that {M, [}y satisfies Condirion (B)
of Theorem 6. ’

Proof. If the theorem is not true there is an integer #n>1 and a point ¢ of M,
distinct from 1,, so that if @, = glbf*~%(0,) and b, = lubf¥(0,), then ¢ follows every
point of f¥a,, ) for all k>n. For each integer k>n, let r, be a point of M, which
precedes ¢ defined as follows:

Case (1). fi([b:, 1)) contains 1, and f¥([0,,.]) does not. Then let ¢,
= glbf}~'(1,), so a,<by<c,. Let r be a point of M,—fX[cy, 1,]) distinct from 0,.
Ji[ews 1)) # M, since no point of [¢;, 1,] is mapped onto 0,. If every point of
FEX(r) precedes every point of fX7U(7) let r, = r. Otherwise let p = glbf* (),
so by<p. f¥[p. 1)) does not contain 0,. Then let r, be a point distinct from 0,
which precedes every point of f¥([p, 1,]). So that if p<y<1,, then r.<f ). In
either case lubfF () <glbfF ().

Case .(2). fi([0. a]) contains 1,, and fX[b,,1,]) does not. Then let ¢,
= lubfF~'(1,), so ¢, <a,<b,. Let r be a point of M,~/4[0,, ¢,]) distinct from 0,
If every point of fF7() follows fF71(z), let r, = r. Otherwise let p = lubfE1(s),
P<ay, then let r,, be a point distinct from 0, which precedes every point of £5([0,, »]).
In either case glbfF™ (r) >lubfF™ (2.

Since M, is not first countable at 0, there is a point r of M, distinct from 0,
which precedes every point of the set {r;};2,. Then r and ¢ satisfy the hypothesis
of Theorem 4, since f;f () is separated from £~ (7) in M,. So S is decomposable,
but this contradicts the hypothesis. So the theorem is established.

. THEOREM 9. If S is the inverse limit of an inverse system of arcs{M,f}y, E is

the positive integers and S is indecomposable, then S satisfies the hypothesis of
Theorem 6.

Proof. The proof follows from Theorems 4, 7, and 8, by considering the three

possible cases. . .

CoROLLARY. Every inverse limit of an inverse system of arcs on a linearly directed
set is irreducible between some two points.
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