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Abstract. This paper discusses some interrelationships between various statements involving:
sets generated by rectangles, families of functions with a countable base as defined by Sierpifiski,
and some problems of Ulam. The existence of a Q-set and hence a normal, separable, nonmetriz-
able Moore space is obtained under some weak conditions. Also, the existence of a rarefied set
of cardinality ¢ and Borel order w,, is obtained under the assumption that every subset of E* is
an Rgs set.

1. Introduction. Sierpifski has raised the following problem:

(S) For every family F of real-valued functions defined on a set X with
card (F)<2™, does there exist a countable family G of real-valued functions on X
such that each function in F is the pointwise limit of a sequence from G [18]?

Rothberger has shown that if 2¥° = x;, then (S) holds [17].

1t is shown here in Theorem 3.7 that (S) holds on every set X with card (X)-
>2% if and only if

(F) every subset of E? is an R,; set.

In statement (F), E? is the plane and R is the family of all generalized rectangles.
in the plane: all sets of the form 4 x B, where 4 and B are subsets of E.

The question of whether (F) holds was raised by Ulam, Erdds and J. Johnson
[2, 14, 15].

In Theorem 4.1 it is shown that if (F) holds then there is a rarefied number
set M with card (M) = 2% and such that M has Baire (or Borel) order ;.

In Theorem 4.4 it is shown that if (F) holds and B is a real normed linear space,.
|B| = ¢ = 2%, then there is a number set M such that B is embedded as a sub-
space of the Banach space of all bounded functions of Baire’s class 1 on M.

In Theorem 4.5 it is shown that if (F) holds and 2% = 2™, then there exists.
a Q-set and therefore a normal, separable nonmetrizable Moore space.

Also, generalizations of Sierpifski’s problem on countably generated families
are described and shown to be equivalent to certain generalizations of (F) and in.
certain cases to another problem of Ulam’s.
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Finally, it is shown in Theorem 5.1 that if I is the unit interval, then Baire’s
class o on I cannot be generated from the “inside” in y steps, where y <w. This
implies a theorem of Dashiell’s that the Banach spaces B,(I) and B,(I) are not iso-
metric [4].

2. Notation and definitions. Let X be a set and let E denote the set of all real
numbers. It is clear that statement (S) holds for a family F of real-valued functions
-defined on X if and only if there is an algebra 4 of bounded real-valued functions
-on X which is separable under the uniform norm such that every function in F is
the pointwise limit of a sequence from 4. Also, we may assume that 4 contains
the constant functions. In view of this, let us make the following definitions.

DEFINITION 2.1. If 4 is a subalgebra or sublattice of E* containing constants,
then let 45 = A4 and for each ordinal «, let 4, be the family of all pointwise limits
-of sequences from the family 4, ,, if & is not a limit ordinal and let 4, be the com-
plete ordinary function system generated by U 4,, if o is a limit ordinal [7, 12 13].

y<a

. From this point on a separable subalgebra of EX will mean an algebra of
‘bounded real-valued functions on X which is separable under the umform norm
and which contains constants. :

DermNITION 2.2. If F is 2 subset of EX and O<a<w,, then F will be said to
have a countable base of order « provided there is a separable subalgebra 4 of EX
such that FcA4,. :

Of course, if a family F has a countable base of order o, then carngZ“".

Dernarrion 2.3. If G is a family of sets, let My(G) = G and for each ordinal
o, >0, let M {G) be the family of all countable unions (intersections) of sets in
U M(G), if * is odd (even) [2]. Limit ordinals are considered even.

p<a

Of course, M, (G) = M, ,,(G)= U W(G) and M,
family of sets containing G whlch is closed under countable unions and inter-
‘sections.

DERINITION 2.4. If G is a family of subsets of X, then let Zo(G) be G, CZy(»
ibe the family of all complements of sets in G and for each ordinal o, let Z(G) be
‘the family of all countable 1ntersect10ns of sets from U CZ(G) and let CZ,(G) be

M, (G) is the smallest

the family of all complements of sets in Z,(G) [12].
‘We have Zw‘(G) = CZ,(G) = U Z(G) and that Z,(G) is the o~field (algebra)

r<wp

-of sets generated by G.
The family of all sets of the form A x B, where 4 and B are subsets of the real

line, E, will be denoted by R Thus, R is the family of all generalized rectangles in
the plane, E%

3. Countably generated families and gencralized rectangles. In [2], it is shown
that if every subset of E? is in M, 2(R), then there is a countable ordinal o such
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that (x) P(E?) = M(R), where P(E?) denotes the power set of E% In thig section,
we develop a functional equivalence to (x) in terms of families which have a count-
able base.

LemMA 3.1. Let H be a famtly of subsets of X and let 0<oc< . The following
wo . statements are equivalent:

4 1) there is a countable family, G, of subsets of X such that H= M(G), and

2) there is a countable field, W, of subsets of X such that H=Z (W) (H=CZ (W)
if o is even (odd).

. This lemma follows immediately from the facts that if G is a countable famlly
of sets, then the field generated by G is countable and if W is a field, then CZ,(W)
D M(W), if .o is odd and Z(W)2M, (W), if « is even.

’ LEMMA 3.2. Let @ be a vector lattice of bounded real-valued functions defined
on'a set X which contains constants, let' T = { f ~Y(K)| fe® and K 'is closed} and
let 0 <a<w,. Suppose g is a realvalued function defined on X. Then the following

two statements are equivalent: !
'1) the function g is in the Sfamily @, and
2) g~ 1K) e ZLT), for each closed set K.
Moreover, if A is the closure of ® under the uniform norm, then A is a subalgebra
of EX and for each oc>0 A, = P,.
" This is Theorem 3.5 of [13].
. LemMMA 3.3. Let W be a countable field of subsets of X and let

D = {iaiéml a,c¢ E and A;e W},
i=1 .
Ltls’tl A be the closure under the uniform norm of ®. Then A is a separable subalgebra
of EX and for éach a>0, afunctzonfzs in thefamzly A, zfand only tff K)eZz (W)
fok each closed set K.

Lemma 3.3 follows from the precedmg lemma upon noticing that & is a vector
lattice of bounded functions on X, ¢ contains constants and the countable 'set D
comlstmg of all functions in ¢ which map into the rational numbers is dense in 4.

" Lemma 3.4, Let M be a bounded number set and let & be the family of all real-
valued functions which are uniformly continuous on M. Then @ i3 a separable sub-
algebra of EM and &, = C,, for each ordinal o, 0<a<w,, where C is’ the Jfamily of
all bowza’ed real-valued contimious functions on M.

Proof, Since @ is the family of all restrictions of real-valued continuous
funuuons defined on M, the closure of M, it follows that @ is a separable sub-
algebra of E™.

We now show that &, is the family of all functions in Baire’s class 1.on M.

First assume f is a bounded continuous function defined on M.
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. For each rational ¢, with ¢<|/f|l, let U, = {x| f(x)<g}, let 0, be an open
subset of M such that 0, n M = U, and let

q, it xe0,,
hyx) = {]ff” , if xeM-0,.

Then, for each such rational ¢, /, is upper semi continuous on M. Let {g,,}x.

be a decreasing sequence of continuous functions on M which converges to hy.
Let f,, be the restriction of g,, to M.
" We have f,,>f and f,,€ &, for each n and ¢. Assume x e M, £>0 and qis
a rational such that g<f(x)+&<|f]|. Then thereis an n such that g< Jra®) < f(x)+e.
Thus, fis the infinum of a countable subfamily of & and since & is a lattice, fis the
limit of a decreasing sequence from &. ‘

Therefore, in the terminology of [13], fe US®. Thus, C=US® and USC
<US(US®) = USd=USC.

Thus, US® = USC and similarly LS® = LSC. Also, US(LS®) = US(LSC)
and LS(US®) = US(LSC). Since a function is in Baire’s class 1 on M if and only
if it is in the intersection of the classes US(LSC) and LS(USC) ([13], Th. 3.5) and
@y = US(LS®) n LS(USP) ([13], Th. 3.5), we have &, is the family of all func-
tions of Baire’s class 1 on M.

It follows by transfinite induction that &, = C,, for each ordinal «, O<a<gw,,

LEMMA 3.5. Let A be a separable subalgebra of EX and let T = {f7YK) fed
and K is closed}. Then there is a countable subfamily G, of CT such that CT< (G,
and there is a countable subfamily G, of T such that T=(Gy)s-

Proof. Let {f,},2, be a countable dense subset of 4 and let G, be the family
of all sets of the form f;*(I), where n is a positive integer and 1 is an open interval
with rational endpoints.

It Ze CT, then Z = f~X(U), for some feA and some open set U. Assume
f(s)e U. Let n be a positive integer and p and ¢ be rational numbers such that
Pp<f(s)<q and the open interval (p—1/n, g+1/n) is a subset of U. Let & be a positive
integer such that |f—f|<1/n. Then P=1ln<fds)<q+1/n and sefy (p—1/n,
g = 1/n). It follows that CT<(G,),. Also, by considering complements it follows
that the family G, = CG, is a countable subfamily of T and that T<(Gy);.

THEOREM 3.6. Let F be a subfamily of E* having cardinality 2%, let
H={f"YK)| feF and K is closed). The following two statements are equivalent:

1) F has a countable base of order 1, '

2) there is a countable family G of subsets of S such that M,(G)= H.

Proof. First assume A is a separable subalgebra of EX such that Fc A4 i We
may assume 4 is a Banach space. Then 4 is also a vector lattice of real-valued
functions on X and it follows from Lemma 3.2 that a function g isin A4, if and
only if g™*(K) e Z(T), for each closed set K, where T'= {f"*(K)| fe A and K
is closed}. )

By Lemma 3.5, there is a countable subfamily G of CT such that G,2CT.
Then M,(G) = G;;2Z,(T) = (CT);. Thus, M,(G)=2H.
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" Now, assume that there is a countable family G of subsets of X such t.hat

M,(G)2 H. We shall also assume that the family of functions F separates points

of X. It is easy to check that there is no loss in generality by factoring out the
“stationary” sets of F.

Let W = {4}, be a countable field of subsets of X such that H=Z,(W)

(Lemma 3.1).

 Let @(x) =27 377, (%), for each x in X where £, is the characteristic

pe=l

function of a set A. The function ¢ has been termed the .chzfrac‘teristic function of
a sequence of sets {A4,}7;. Then ¢@~! establishes a blumvoc'al cor.res.pfmdence
between the classes Z,(W) = W,; and the family of all G, or inner hmltl.ng sub-.
sets of the image M of X under ¢ ([19], p. 212). Also, since we are.assummg _that
the family F separates points of X, it follows that if x and y are 1,>omts of X, then
there must be some member A, of W such that x € 4, and y € 4,,. Therefore, the
function ¢ is 1 to 1 ([19], p. 215). '
. Thus, if feF, then fo @~ " is of Baire’s class 1 on M, since

(fo ) MK) = o(fHK)) o (f7HK)

is a G, subset of M ([13], Th. 3.5). Let @ be the family of all uniformly continuous
functions on M. If fe F, then by Lemma 3.4, fop~'e &, and th}:s fe Ay, where
A= {foq| fe®}. OF course, A is a separable subalgebra of E.

This completes the argument for Theorem 3.6.

We shall now show the equivalence of statements (S) and (F).

TueOREM 3.7. Each two of the following statements are equivalent:

1. (S) each family of 2% peal-valued functions defined on E has a countable base
of order 1 [18], .

2. for each fumily H of 2% subsets of E there exists a countable family G such
that M,(G)=2 H,

3. (F): P(E?*) = M,(R). ‘

Proof. The proof that statements 2 and 3 are equivalent is c?ntained in [2].
Theorem 3.6 shows that statement 2 implies statement 1. Finally, glven a family H
of 2% subsets of E, let F be the family of all characteristic functions of members
of “H, Theorem 3.6 shows that if statement | holds, then there is a countable fam-
ily. G such that M,(G)=H. Thus, statement 1 implies stz}tement 2. ‘Q.E.D.d.

In [2], it is shown that if P(E?) = M, (R), then there is some countable or li-
nal « such that P(E?) = M,(R). Although there seem, to be no -known n‘q(?dels in
which P(E?) = M,(R), for some a>2, some equivalences‘ t.'o this proposltx?l lare
now. developed and a functional equivalence to the solvability of another problem
of Ulam is given. (See Addendum.) .

TrEoREM 3.8. Let F be a subfamily of EX, let H = {f ~*K)| feF and K is
closed} and let J = { f "X(U)| fe F and U is open} and let o be an ordinal, 0 <a< ;.

and
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Then F has a countable base of order o.-if and only if there is a.countable SJamily G of
subsets of X such that the appropriate condition below holds: . P
. @) if « if finite and odd, H= M, (G),

b) if o is finite and even, J& M, . (G),

©) if o if infinite “and even, HS M(G),

d) if o if infinite and odd, J= M,(G). N

- Proof. First, assume F has.a countable base of order o, A. Let T'= { f ~1(K)|
feA and K is closed}. By Lemma 3.2, a function g is in A, if and only if g~1(k)
€ Z(T), for every closed set K or, considering complements, g"“(U)eGZu(W)‘,
for every open set U. i

Let G be.the family G, as described in Lemma 3.5, It follows by transfinite
induction that M,,,(G)2Z,(T) if « is finite and odd, M, ()2CZD), if «.is
finite.and even. Also, if « is infinite and even, Z(T)= M,(G) and if o is infinité ard
odd, CZ(T)= M,(G). i

It follows via Lemma 3.2 that the appropriate condition a), b), ¢) or d) holds.

Now, assume that there is a countable family G such that the families H or J
are generated in the required number of steps.

Let W= {4,};.} be the countable field generated by G and let ¢ be the
characteristic function of the sequence {4,}7_;. Again, it is assumed that  the
family F separates points of X and consequently, as in Theorem 3.7, ¢ is 1 to,l.

Let M = ¢(X) and let K be the family of all closed sets with respect to M.

It follows from the properties of the characteristic function that Ee My (W)
if and only if @ (E) € Z,(K), if o is finite and even or @ (E) e CZ(K), if o is finite
and odd. Also, if « is infinite, then E e M(W) if and only if ¢(E) € Z(K) (CZ (K )
for o even (odd), (Se¢ [19], p.212.) ~ o ‘

Let '@ be the family -of .all uniformly- continuous functions on M. Let 4
= {foo| fe &}. Then 4 is a separable subalgebra of EX, S
- Suppose o is finite and odd. If f& F, then f;I(F)EMu+](G)SM1441(W) for
every closed set F. Therefore, (fo ™Y R = o (fTUF)) € Z(K), for every
closed set F and fo ¢~* is of Baire class ¢ on M. Thus, fo ™! e @, and fe A,.
The argument for the other cases is similar.

'

THEOREM 3.9..Let o be an ordinal, O<a<w,. Then

2) if O<a<w,, each two of the following statements are equivalent: ',
1) each family of 2™ real-valued Junctions on E has « countable base of order w,

ii) for each family H of 2% subsets of 'E, there is a countable family G of sub-
sets of E such that M, (G)=H,

iii) P(E?) = M,, (R). i
b)-if wo<a<w,, then each two of the following statements are equivalent:
i) each family of 2™ real-valued Junctions on E has a countable base of order ',

i) for each family H of 2°° subsets of E there is a countable Samily G such’ thar
M(G)=H, ‘

ili) P(E?).= M/(R).

©
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Proof. Theorem 8 of [2] shows that (ii)-and (iii) of (2) and (b) are equivalent.
| ) at . - . . . . b)_ '
Theorer 3.9 shows that (ii) implies (1.) in ‘ca.se (ﬁ) or ( .
" In order to show that statement (i) implies (ii), let H be a family of 2% sub-
sets of E and let F be the family of all characteristic functions of me-mbers_of_M.
If £, €F, then the inverse image under &, of the open interval (%, 3) is the inverse
image under &, of 'the closed interval [4, 2] and thus Theorem 3.9 shows that (i)-
implies (i) of (a) or (b). '
e Ula(m)has asked whether statement 2 in Theorem 3.10 below.holds in [22] and‘
[17], p. 405. We give a functional equivalent of this problem in statement 1 of
Theorem 3.10. ‘ “
j g fvalent:
TueoreM 3.10. The following two statements are equivalent:
1) each family F of 2% real-valued JSunctions defined on E has a countable base
der o ' »
o orzl)e;br :ach family H of 2% subsets of E there is a countable family G of subsets
of E such that H= M, (G). ) '
" The proof of this theorem proceeds exactly as in the earlier theorems and
is not. given: It should be noted that it is unknown whether statement 2 of The-
orem 3.10 implies P(E?) = M, (R) [2]. :

4, Some applications of P(E?) = M,(R).

4 ) . . b A
THEOREM 4.1. If P(E?) = M,(R), then there is a nimber set M pf cardlflalzt))l 2%e
“\ohich is rarefied (or has property A,[10], p. 517). Moreover, M may be takenb\t.nA ;c‘t};e
‘Baire or Borel order w,: there exist Borel sets-with respect to M of qu lt)lm‘l [y
high class. : .
" Prool. Let H be thé family of all Borel subsets of E; card H = 2°°. Th:e--
fore, by Theorem 3.7 and Lemma 3.1, there is a countable field W = {4 ,,},0,0=1
sucli that H= W,;. Let ¢ be the characteristic function of the sequence {4 ,,3;[:. +
e e d - .
and let M = @(E). It follows from Section. 4.3 (if) (p. 220) of [19], Fhat th;: setB rlcsl
‘raxeﬁed. Finally, it was shown in [2] (Theorem 12) that the family W mls tlo o
order (bf Since ¢! defines an isomorphism of the Borel classle; of M with tho
' it f hat ] der w,. Q.ED. )
enerated by W, it follows that M has Borel or’ o . -
’ It seem:’ strange that there is a separable metric space in which every countable
set'is a G5 and yet the space has Borel order wy. 5 ~
' Rcarei{’ed spaces have been studied by F. Burton Jones, Kuratows‘kxl,ls.- Bleild
covitch and others. It seems that all previously kno;vlr;) examples have he
i it { ] 5 19]7 P- N .
cardinality &, and are of unknown Borel order ([ P ‘ .
Let g bclz the family of all generalized cubes; C is the family of all sets 4%
xBxé, where 4, B and C are subsets of E. )
i : ivalent:
THEOREM 4.2. The following two statements are equiva -
1) the graph of every real-valued fimction defined on E? is in M,(C), and
2) P(E*) = R,; = M,(R). .
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Proof. First, assume statement 1 holds. Let 4 be a subset of E2 Then by
-assumption the graph of the characteristic function of 4, &,, is in the family C;
= M,(C). 1t can be shown by transfinite induction that if Je MJ(C) and Q is
a plane parallel to the xy-plane then Q ~ J is in the class M,(R). Thus, 4 is in the
family M (R) and statement 2 holds.

Now assume statement 2 and let f be a function from E? into E, Let

® Dy =f"H(~w, —nl)x (=0, n]uU
- I r+1 b4 p+l1
V] y[f 1(<_n+n.2“7 —n+nr))>( (—-il'l'l;““i,;, "‘"'l"'“;”‘z'";')]

W ([n, +00)) x [, +00),

‘where p ranges over the integers from 0 to 2n%-2"—1,
o
For each #, the graph of fis a subset of D,. In fact, () D, is the graph of f
n=1

It can be shown by transfinite induction that if J e M,R) and A<E, then Jx A
'€ M(C). Thus, each of the sets appearing on the right hand side of (%) is in the
family M,(C). Since M(C) is closed under finite unions, we have that for each
7, D, € My(C) = C,;. Since M,(C) is closed under countable intersections, the
.graph of fis in M,(C). QUE.D.

If 4eM,(C), then there is a countable subfamily {4,xB,xC}2, = W

such that 4 e W,;. Thus, as a corollary of Theorem 4.2, we have a solution to
-a problem of Ulam in the following:

. COROLLARY 4.3. Suppose P(E?) = Ry If G is a group defined on E, then there
48 a countable sequence of number sets such that the “representation” of G would be
-of class 2 in the terminology of Ulam ([22], P D.

:THE-OREI:;I 4.4. Suppose P(E®) = R,5. If B is a real normed linear space having
cardinality 2%°, then there iy a subset M of the Cantor set such that B is linearly iso-

-melric to a subspace of the Banach space of all bounded functions of Baire’s class 1
-on M. .

‘ Proof. Let S be the unit ball of the dual of B and for each b & B, let hy(b*)
= b*(b), for each b* e 5. This defines a linear isometry of B with the space H of
-all functions 4, under the uniform norm, .

Let 4 be a separable subalgebra of ES
sequence of sets, Gy, described in Lemma 3.5
-of the sequence {4,}.,. Then, for each SeA, fop~"is 4 continuous function on
the subset M = ©(S) of the Cantor set. Therefore, the transformation T'(h)
= ho¢p™* describes a linear isometry ‘of H with a subspace of B,(M), the Banach

space of all bounded functions of Baire’s class 1 on M under the uniform norm.
‘The theorem now follows. k '

such that H 4. Let {4,}%, be the
and let ¢ be the characteristic function
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THEOREM 4.5. Suppose P(E?) = R,; and 20 = 2™ Then there exists a Q-set [16]
and therefore there is a normal, separable, nonmetrizable Moore space [1].

Proof. Let T be a number set with card(T) = n,. Let H be the family of all
subsets of 7. Then card H = 2% = 2%° Therefore, by Theorem 8b of [2], there is
a countable family G of subsets of T such that HSM,(G). Let W = {4}, be
the countable field of subsets of T generated by G (complements are taken with
respect to T.) Let ¢ be the characteristic function of {4,}7., and let M be o (T).

Since W separates points of T, ¢ is 1-1 and therefore card M = &, ([18], p. 215).
It K= M, then ¢ ~*(K) € H and therefore ¢~ '(K) is a W,; set. Then, K = ¢ (9~ *(K))
is a G; subset of M ({171, p. 212) and ([17], p. 217). Therefore, Mis a Q-set. Q.E.D.

R. W. Heath has shown that the existence of a Q-set is equivalent to the
existence of a normal separable, nonmetrizable Moore space [7]. Thus, under the
hypothesis of Theorem 4.5, the answer to F. Burton Jones’ normal Moore space
problem is no.

QuesTioN. If there is a Q-set, is every subset of E of cardinality s, a Q-set?

Martin and Solovay have shown in [10] that Martin’s Axiom together with
the negation of CH implies Lusin’s second continuum hypothesis: 2% = 2%, Also,
Kunen has shown in [8] that Martin’s Axiom implies P(E?) = R,;. Thus, from
these results and Theorem 4.5 we have a result of Tall and Silver [19]:

THEOREM 4.6. The existence of a normal, separable, nonmetrizable Moore space
(or Q-sef) is consistent with Zermelo~Frankel + Axiom of Choice.

Recently, Kunen and Tall have given a model of ZFC in which Martin’s Axiom
fails, but 2% = 2% and R,; = P(E?).

5. Inner bases. Let F be a family of real-valued functions defined on a set X.
F will be said to have an inner base provided F has a countable base, 4, of order «
for some &, O0<a<w; such that 4SF. The smallest such ordinal o will be called
the inner order of F.

As an example, consider the Banach space, B,(I), consisting of all bounded
functions of Baire’s class o on the unit interval I. Then, B,(I) has an inner base
of order o, namely, any countable and dense subset of C, the space of all continu-
ous functions on I It is shown below that o is the inner order of B,(I), for each
ordinal a, O0<a<®; and that this is an isometric invariant among these space’s.

The problem of determining when a family F has an inner base seems dif-
ficult.

THEOREM 5.1. Suppose 0<y<a. The space B(I) does not have an inner base
of order .

Proof. Assume that 4 is an inner base of B,(I) of order y. Let Z, be the
family of all zero sets of functions in A.

We have that fe 45, 6>0, if and only if f ~*(K) e Z; for every closed set K
({13], Th. 3.5).

5 — Fundamenta Mathematicat XCV'
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Let G, be a countable subfamily of CZ, such that CZ,<(G,), (Lemma 3.5),
Let W be the countable field generated by G, W= {4} Let @ be the
characteristic function of W:

©

2
o) = Z 7 éAp(x) .

r=1
Let M be the image of I under ¢: M = @(I). Since ¢ is 1 to 1, M is a Borel set.
If &g e By(I), then &g € A, and thus g ° ¢~ is in Baire class y on M. Thus, ¢(X) is
a multiplicative class y with respect to M.

Of course, the graph of ¢ is a Borel subset of Ix 7 and therefore contains
a perfect set H. Let T be a subset of H of exactly multiplicative class «. Since the
x-projection mapping of the graph of ¢ to I, 7, is & homeomorphism when re-
stricted to H, we have m(T) is of exactly multiplicative class & on 1. Similarly,
n,(T) is of exactly multiplicative class o on M. Therefore @ (mlT)) = m,(T) is not
a multiplicative class y on M. This contradiction proves the theorem.

THECREM 5.2. Suppose 0<y<a<w,. There does not exist a continuous trans-
formation of B(I) onto B(I), which preserves pointwise limits. '

Proof. Suppose 0<y<a<®; and T is a continuous transformation of B,
onto B, which preserves pointwise limits. }

Of course, p>0, since C(I) = By(I) is separable while B,(I), a>0 is not
separable.

Let A be the subalgebra of B,(I) generated by T(C) = T(By(I)) which contains
constants. Then A is a separable subalgebra of B,(I) and since T preserves pointwise
limits it follows that 4,2T(B,D) = B,(I).

This contradicts Theorem 5.1 and proves the theorem.

Theorem 5.2 implies the following theorem of Dashiell [3].

THEOREM 5.3. Suppose 0<y<a<w;. The Banach spaces BI) and B/I) are
not linearly isometric.

Proof. Suppose T is a linear isometry of B,(I) onto By(I). Let X,(I) and X,(I)
be the “Stone~Cech compactifications of B,(I) and B,(I), respectively [6, 13]. Thus,
there is a 1-1 mapping, ¢@,, of I onto a dense subset, D,, of X,(I) such that the
function fo ¢, ! has an extension to a continuous function f on X, (), for each
feB,I) and the mapping f—f is a linear isometry of By(J) with C(X,(1)). Similar
statements hold concerning B,(/) and C(X, ().

We assume y>0. Since By(I) = C(I) is the only separable space among the
spaces B,(I), 0<a<w,. '

It follows that C(X,(D)) and C(X,(I)) are linearly isometric. Thus, there is
a homeomorphism ¢ from X,(I) onto X(I) and a function p in C(X(I)) with
[p()} = 1 for all x in X(I) such that (T(g))(x) = p(x)g (¢ (x)), for all x e X,(I)
and 2ll g in CQX,(D) ([6], p. 442).

If r €], then &) & B(I) and the extension of &, to X,(I) is the characteristic
function of ¢,(r) on X,(I).
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Therefore, T(Zyy) = P(0™ (0y)))Ep-1(pmoyy- 1t Tollows that ¢~ *(p,(9) & D,
since otherwise the zero function would have two cxtensions to continuous func-
tions on Xy(I). Thus, ¢~ (¢, (D) S @u(D). Similarly we have ¢ (pu(1))< ¢, (D).

Then ¥ = @7 s ¢~ 1o p, maps I into I and 'S(f) = fo ¥ is a continuous
transformation of B,(I} onto B,(I)which preserves pointwise limits. This contradicts
Theorem 5.2 and proves the theorem.

Dashiell and Lindenstrauss have proven that By(I) and B,(I) arc not iso-
morphic [5]. It is not known, in general, whether B,(f) and B,(!) are isomorphic [4].

Addendum. Arnold Miller states that for each a2 there is a model in whith P(EY) = My (R).
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