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ally adjacent with » and v, since G is outerplanar. Because u and v may be adjacent,
G contains at least 2a,—2 vertices. However, there exists an outerplanar graph G
of order 2a,—2 with 95 = {2, a,} (see Fig. 2); therefore, po(2, az) = 2a,—2.

i

W
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\ " A\ /

Fig. 2

We note in closing that po(S) has been completely determined for |S] = 3,

and the result will be presented elsewhere.
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Models of arithmetic and the 1-3-1 lattice
by

J. B. Paris * (Manchester)

Abstract. In this paper we show that if 7' is any complete theory in the language of number
theory extending Peano’s Axioms then there is a model M of T'such that the 1-3-1 lattice can be
embedded in the lattice of elementary substructures of M.

Introduction. Let T be a complete theory in the language of number theory
extending Peano’s Axioms. For M a model of T, let § (M) be the lattice of clementary
substructures of M. In this paper we show that there is a model M of T such that
the 1-3-1 lattice can be embedded in $(M).

This result continues investigations started in [1]. Related work also appears
in [2] and we adopt the notation of that paper. Thus for A a model of T, ay, ..., @,
e M, Mla,, ..., a,] is the smallest elementary substructure of M containing ay, ..., @,-
Since M is a model of Peano’s Axioms, Ma,, ..., @,] consists exactly of those el-
ements of M definable in M from ay, ..., a,.

THEOREM. There is a model M of T such that the 1-3-1 lattice can be embedded
in $(M).

Proof. Fix M to be an o,-saturated model of T and identify &, the natural
numbers, with an initial segment of M. We shall show that M satisfies the properties
of the theorem.

Before proceeding further it will be useful to have the following crude estimate.

LevmMa 1. Let r,qe M, se N and s=2. Let x;,y;, 1<i<q be sequences of
elements of M definable in M and let :

=

a
Sx; =Yy, =r (sums taken in M) .

Then
q 1.7-
S x.p;— (the sum of the s largest x,7;) € —=— -
i=1 4(s—1)
* This paper was written when the author was working at Manchester University and the
University of California, Berkeley. .
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196 J. B. Paris

Proof. We work in M. We shall simplify the proof by working with rationals
in the sense of M, hereafter just called rationals. It is easy to check that the rational
arithmetic required in the proof can be carried out in M.

Given x,y; as above we may assume,

XN BX2YaZ o 2.V,

and x,4(Ps1>0, since otherwise the result is trivial. By removing rational fractions
of the x; for i<s we can obtain positive rational z;, ¢, for i<s such that

and z1t; = 2Zyly = .= Zghy = Xgyp g Veiq -

By further redistributing rational fractions of x,.; to x; and y,.; to y; for
s+1<i<g we can obtain non-negative rationals z;, ¢, for s+1<i<m, where m<gq,
such that

m m
z;<r, Z n<r,
i=1 i=1-
XertVs+1 = Tsrrlspr = Zopolows = w0 = Zy o by 22,0,
and
m q
Y oztz Y ;.
i=st1 i=s+1
Put
m—1 m=1
iz:] Z Z ll
a= = = =1
m—1 m—1

By Cauchy’s inequality for 1<ig<m—1,

ab;zi)‘i>z‘m’m 3

SO

m

q
T X< Y st <(n—-s)ab |
i=sd-1

=g

Since

m
a(m— 1)+Zm = Zzlgr ’
1=

m
b(ﬂl—— ])+tm = Z Lsr
=1

©
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2
abg ——,
= (m—1)?
$0
i (m—s)rZ R

Z RIS

i m—1)? 4G-1°

as required. m
Now pick pe M~ NN and set
= {{ay, a2, a3)| a6y +a5 = Omodp, 0<ay, a;, a3<p} .
A is definable in M {rom p, hereafter shortened to p-Def. For C<4 and C p-Def
let |C| be that @ e M such that
M E C has exactly a elements .

Thus |4] = p®. Let F,, ne N enumerate the p-Def functions from M into M
and let w,, n e ¥, enumerate all 6-tuples {i,j,k,s,t,wp with i,j, k, distinct,
1<i,j, k<3 and s,t,ue N.

LemMa 2. Let A, <A be p-Def and |A,|=p*/m, some me N.: Let =,
=i, j,k,s,t,up. Then 3 p-Def A,, <A, such that ]A,,+1]>p %/g, some ge N
and if {a;, @y, as) € A, 4, then

i) either Fyaj)) # F,(a;) or Fy(a) = F,(a;))e M[p],

" i) F(p) # a.
Proof. First notice that if m e N then m<p so p?*/m is large. Set

B = {{ay, 0, a5p € 4| F(p) = a} .

Since there are at most p elements {a,, a,, a3 € 4, such that F,(p) = a,, |BI<p.
Now for ve M set

1, = {0} 0<a<p & F(a) = v} ,

J, = {a} 0ga<p & F,(a) = v} .
Thus in A,
LUl =210 =p.
v v N
Now assume that |I,|-|/,|, 1<g<m+1 are the m+1 largest elemenis of
{117\ ve M}. Since m e N, we may assume that vy, ..., v+, are definable in M
from p 50 vy, .., U4y € Mp].
Set
= {ay, ay, asy € 4| Fy(a) # F,(a;) or Fya) = F(a;) =v,, .
some 1<g<m+1}.

Vo4
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Then
K| = ; [{<ay, a3, a3y € d| Fya) = e) & Fila)) = ex}|+
erFex
m+1 .
+ Z |{<”1= y, azy € 4| F o)) = F,((lﬁ = “qH
g=1
m+1
= 3 L Wel+ X 1L,
e1Fey q=1
mH1
= 2 W Wl = [ 1L = 2 1o 17,11
ey,e2 v q=1
> p*—p*/4m by Lemma 1,
Set
App1 = A, NK—B=A-(A-A4)v(A-K)uU B.
Then

[ys1l 2 P~ (p*—p*fm)—(p* —p* +p*[4m) ~p=p*[4m .
Furthermore for {a;,a,,a:> € 4,,,

@) Since 4,4, K either Fy(a)) # F,(a;) or Fy(a) = F(a) = ve M[p] some
Isg<sm+],

B) Since 4,4 n B = @, F,(p) # ay.
We are now ready to construct the required sublattice of M.
Set 4, = A4 and having found 4, such that |4,|>p*/m, some me N, find,

by Lemma 2, 4,,;S4, such that [4,,|>p%/g some ge N. Since all the A4, are
non-empty and p-Def, and since M is «,-saturated, we can find

<a11 al>a3> € n An'
neN

‘We now claim that we have the following sublattice of A:

Mlay, ay, a3, p]
/ ’ AN

MTlay, p] Mla,, p] Mlay, p]

N S

N

Mp]
To see this, let 1<i, j, k<3 and i, j, k distinct. Then,

ee M[a[,p]/\M[aj,p] « s, 1, F(a) = Fi(a) = e+ ee M[p] by o),
S0

M[”i:P]/\M[ﬂj,P] = Mip].
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By B) F,(p) # a for all ue N so M[p] # M[p, )] . Finally a; = the least z such
that 0<z<p and z44a;+a, = Omodp , so

a;€ Mla;, plv Mla,, p] .
Thus
Mla,, a;, @, p] = Mla;, plv Mlay, pl .

Concluding remarks. It may be hoped that this result could be improved to:

There is a model M of T such that §(M) is isomorphic to the 1-3-1 lattice.

However, if T'is the theory of N then this is impossible, by an unpublished
result of Gaifman and the author. (This result is implicit in work of Wilkie, [2].)
We do not know if the improvement is possible in the case when T is not the theory
of N.

It is known that the pentagon lattice can be embedded in the model M of the
main theorem (see [2]). Thus M is both non-distributive and non-modular. We
do not know if there is a model M’ of T such that §(M) is modular but non-dis-
tributive, that is a model M’ such that the 1-3-1 lattice can be embedded in $(M")
but the pentagon lattice cannot.

We finally remark that a very similar proof to the above will show the em-
beddability of the 1-n-1 lattice in M for all ne N, n>3.
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