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.- Abstract. Two forcing free characterizations are given for genmeric structures. The height
and Scott height of generic models are also discussed.

i

Intuitively, a generic structure is one which is conceived of as being, in some
sense, representative. This notion of being representative may in turn be loosely
thought of as comprised of both a positive and negative component. The positive
component, which appears to be the simpler of the two, requires that the structure
satisfy some condition, e.g. that it be a model for some theory. The negative com-
ponent requires that the structure not be unusual or peculiar in certain respects.
In short, a generic structure is envisioned as being a “typical” structure satisfying
certain properties.

In this paper we use the term generic in a very precise technical way which is
fairly standard by now. One of our principal objectives here is to show that these
generic structures are indeed “gemeric” in an intuitive sense. The first task is, of
course, to capture the essential content and flavor of the intuitive notion within
the formal framework, In practice this proved to be the main difficulty. Once the
correct conjecture was formulated, the proof was found directly.

It is natural to expect that, in some sense, “typical” structures be quite similar,
and perhaps even indistinguishable. However, “typical” structures ought not, in
general, to be necessarily of the same isomorphism type. Then, of course, assuming
they are countable, such structures would always be distinguishable from one
another, for example, by their Scott sentences. This observation is in no way sur-
prising since one only expects generic structures to be typical within a certain limited
context. More precisely, one usually discusses D-generic structures, for some set D,
and the Scott sentences of D-generic structures need not be in D.

In turns out that generic structures are those structures which contain no
“unusual” elements nor tuples of elements. Hence, within the given context, all
generic structures will have the same “local” structure, and thus will be indis-
tinguishable in that context.
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Having concluded our very informal and sketchy, but hopefully somewhat
heuristic discussion, we proceed to our formal investigation, culminating in The-
orem 1.4 below.

§ 1. We assume the reader is familiar with some of the basic properties of
infinitary logic and admissible sets as presented, for example, in [7].

By the height of a structure we shall mean o(d4), the least ordinal not in 4,
where 4 is the smallest admissible set containing the structure (and hence the alpha-
bet for the structure etc.). For uniformity we may assume that the elements of the
structure are urelements, so that the height of a structure depends only on its
isomorphism type. For any set x, x™ denotes the smallest admissible set con-
taining x.

Given a structure 9, and tuples 7 and # of elements of M, we write M ~H
iff 4 and 7 satisfy in 9% the same formulas of quantifier rank <o. By the Scott height
of M we mean the least ordinal « such that for any tuples 72 and # of elements of M,
i~ implies 712 ~** 171, Hence, if M has Scott height «, the canonical Scott sentence
of M has quantifier rank o+ w. It is shown in [7] that the Scott height of a structure
is less than or equal to its height.

Familiarity is also assumed with the basic notions of forcing in infinitary logic,
as presented in [4] or [5]. For simplicity we consider forcing properties of the form
P(Zp, T), where T is a theory in the fragment ¥, and P(%5, T) is the set of alt
finite sets of sentences of ', the language obtained from %, by finite substi-
tutions of constants from some set C of new constants, holding in models (M, m,),cc
of T. Later, we will discuss the case in which we replace the fragment % by a more
geperal set of sentences. In particular we will not repeat the definitions of p i+ ¢,
read “p forces ¢” or of p I ¥, read “p weakly forces ™. Given a theory TS Ly,
a structure I is said to be an A-generic model of T iff there is a mapping of the
structure onto some set of new constants C, such that for each sentence @ of
H 4y (D, M) B @ iff there is some finite p = Thy((M, my).ec)s the complete theory
of (M, m,).cc in Ay, such that p I+ ¢ in the forcing property P(Z, T) formed with
respect to C. For the purposes of this paper, it is not necessary to require that
generic structures be countable. Then, for any condition p, and sentence ¢ of 4,
for %, countable, p ¥ ¢ iff ¢ holds inevery A-generic structure (M, m.), ¢ such

that p SThy((OR, m,),cc). From now on, we confuse M and M, m),ec, and always ~

assume we have some mapping of the forcing constants onto the structure in mind.

We use X and J to represent arbitrary finite sequences of variables and & to
represent an arbitrary finite sequence of forcing constants. We write ¢ (%), resp. ¢ (2);
to mean that the free variables, resp. forcing constants of ¢(), resp. ¢ (&), are
among the elements of X, resp. & We assume the existence of some conveniently
definable association between the variables and the forcing constants. In particular,
X is associated with &, and y with 4.

By an Zp-type with respect to T we mean a set @ of formulas of £ whose
free variables are among some finite set of variables, which is satisfied in some
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model of T. If a type is denoted by & (%), it is assumed that the free variables of the
formulas in @(X) are among those in X. $(%) is said to be a k-type if % is a sequence
of k variables. For convenience we assume X has length k for some arbitrary positive
number k. An Zptype @(x) is said to be principal if there is some formula (%)
of &5 consistent with T such that T'F ¢o(%)— ¢ (%) for every ¢ (%) € ®(%). Otherwise
a type is said to be non-principal with respect to T. A complete & p-type & (%) with
respect to 7" is one which contains, for each formula (%) of &5, either ¢ (%) or
19 (%), i.e. is the set of all formulas satisfied by some k-tuple of elements of a model
of T. Since T remains fixed we omit mention of it, and say simply non-principal
type, or complete type, etc.

The result below, for the case of finite forcing, was already mentioned by
Robinson [8], and stated by MacIntyre [6] and Simmons [9]. '

THEOREM 1.1. 4 structure M is an A-generic model of T iff
ME (YR eE)— \ {@PDpE, 5): pE,d) Ik 9(c) for d arbitrary}],
Sfor every formula ¢(X) of £,.

The proof of Theorem 1.1 is immediate from the definition of generic. More-
over one can replace “ I by “ I *” in Theorem 1.1.

Remark 1.2. If 4 is admissible and P € 4, then, since I ” is defined by a A-re-
cursion on A, it follows that for each ¢ €.%,, the sentence mentioned in The-
orem 1.1 is again in % ,. Hence, the A-generic models over P are axiomatizable by
a set of sentences of .%,. This is in sharp contrast to the non-axiomatizability result
we shall obtain in the mext section.

Our next result gives a forcing free characterization of A-generic models of T
in the special case that T is a complete theory in #5. We remind the reader of
a simple lemma [cf. 5] which states that, without adsuming T complete, p I+ ¥ ¢
ff Tupk @, for any pe P and ¢ € A'5. We also need to observe that if, given
p(¢) and @ (&), there is some condition g2p(?), such that gI-* @(Z), then there
is a condition r(&)=p(&) such that r(&) Ir¥(&). This is easily established
by an induction on ¢(&), which we omit. Consequently, for any condition p(&)
and sentence ¢ (&), p(&) IF ¥ 719 () iff for every condition g(&) = p(&), not g(&) I+ ¥ @ (&).
Similar phenomena occur for disjunctions and existential quantifiers. It should
be noted that in Theorem 1.3, the theory Th (%) is in the language %, rather
than A ,.

THEOREM 1.3. Let T be complete for £y. Let & 4 be any fragment extending &y
Then M is an A-generic model of T iff M £ T and for each formula ¢ (%) of £,

ME (V) (@B \ {0(%) € Lp: Thy(M) k 0F)—0®))) -

Proof. One direction follows easily from Theorem 1.1 since if M is 4-generic,
and p(Z, d) I ¢(¢), then Th, W) E@P) A pE, PD—o ).

1%
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§

. To_establish the reverse implication it suffices from Theorem 1.1 with * | v,
to show that for every p(& e P and ¢(&) e Ay,

(O] ‘ T*op@Fk @ i p@ Y@,

where we use T* as an abbreviation for. Th,,(I).
. ,Wenﬁrst show that for any condition p(&) and sentence ¢ (&) of e

() T*wp@F T iff for all conditions ¢(&)2p(@), not T* U ¢(&) k @ (&).
One direction is trivial, i.e. if T* U p(¢) F T19(¢), then not T* u q(8) F o)
for ‘all conditions ¢(&)2p(&), since T is complete.

For the reverse direction, assume that not T* L (&) E¢(?), for every - con-
dition ¢(&)=2p(2). If it is not true that T* U P@F T1¢(é) then

T*E@AD(Ap® & o).
Then under the general hypothesis, there is some 0(%) € %5 such that
: SUEF@(E) and THEOER—(A\p(E) & (p(5c’)).

Now, let ¢(2) = p(¢) U {8(8)}. Clearly (&) is a condition, and we thus have,

o TH G 4@ F 9@
for some condition ¢(8)2p(é), a contradiction.

. By substituting "¢ for ¢ we obtain

(%) T* U p(&) k (&) iff for all conditions g(®)=2p(8), not T* U g(&) k T1p@@):

Now we proceed to prove () by induction on the formation of 0.
.. The step for ¢ atomic does not require the use of (+x) or (#+%), but does require
the hypothesis that T is complete. This is the only other step in which the com-
pleteness of 7' is needed. For ¢ atomic,

T*Up@Fe@ iff THEVYIDAPE—o®]
it TEVR[A p(X)—0(®)], since
T is complete for £,
iff Tup@Ee@
iff  p@) Y@, by our observation
above, since ¢ € 5.
If ¢(&) is 71Y(2), then, using (xx)

T*Op@FE 1@ iff for all conditions g@=2p(®
not T'u g(&) E (&)
iff  (by induction hypothesis) for all
conditions g(&)2p (&), not (&) I "y (&)
iff p(& 1YY (®) by the observation

preceding the theorem.
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If @ is \/¥(&), then using (++%),

T*up@E\/¥ if for all conditions g(&)2p(d)

not T* U g(@F 1\ P(©®).

iff  for all conditions g(&)=p (&) there
isa Yye¥ and a condition r(&)=24(%)
such that T% U r(C) k ¢ (2)

iff  (by induction hypothesis) for all conditions
q(&)=2p (&) there is a Y € ¥ and a condition
#(&)=2¢(&) such that r(&) ¥ ¥ (&)

iff pir*\/®, by the observation

preceeding the theorem.

The step for the existential quantifier is similar and we omit it.

We will see in Remark 2.2 below, that the hypothesis that T is complete cannot
be omitted in Theorem 1.3. There is, however, a more geheral result, namely, the
analog of Theorem 1.3 in which Th () is replaced by

T{ = {p: ¢ is a sentence of %, with 0+ *¢}

= {p: ¢ is a sentence of ¥, true in every A-generic model of T},

The proof of this result is more direct than the proof of Theorem 1.3 since in this
case, (*) follows immediately. Perhaps more interesting is Theorem 1.3, and its
corollary which we state next.

THEOREM 1.3". Let T be a theory in &y. Let £ 4 be any fragment extending %y.
Then T4 is the unique theory T' in £ 4 Satisfying

(i) For each sentence 0 of ¥z, Tk O iff T'E 0.

(if) For each sentence 0 of £, if T'F 0, then 8 T".

(iii) For each formula ¢ (%) of &4 consistent with T', there is a formula 0(%)
of &y consistent with T such that

T EOE)—p(X).

Proof. The verifications that T satisfy (i), (ii) and (iii) are straightforward,
For example, (iii) can be established as follows.

Suppose the formula ¢(X) of £, is consistent with TY. Then, since not
T4 FE 1@ (%), @%) (%) holds in some 4-generic structure M. Hence, for some
condition p(¢, d), satisfied in M, p(Z, d) I+ * @ (&). Thus, in every A-generic model, if
A p(&,d) holds, ¢(Z) holds. Then, we must have TfF ANAPE, M= ().

The proof that T4 is the unique theory on &, satisfying (i), (if) and (iii), proceeds
by again showing (%) as in the proof of Theorem 1.3, but with T replacing T*.
The argument is almost the same as in that proof, except that (i) is used instead
of the completeness of T, while (iii) is used rather than the hypothesis in Theorem 1.3.
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COROLLARY. Let T be a theory in &y. Let & 4 be any fragment extending £y
Then T4 is the unique theory T' in & 4 Satisfying (i) and (it) above and such that M is
an A-generic model of T iff for each formula ¢(%) of %,

ME VD (pE <\ (0E) e Ly Tk 0@ —0(X)}).

Now limiting our attention to admissible 4, we state our primary result, which
may be viewed as a formalization of our intuitive introductory remark.

TeroREM 1.4. Let 4 be admissible, and suppose A contains the forcing property

P = P(T, %), where T is a theory in the fragment %y. Then a structure is an
A-generic model of T iff it is a model of T and omits every non-principal & s-type in A.

Proof. That an 4-generic model of T is a model of 7" and omits every non-
principal Z-type in 4 is already apparent from [4] and to this we refer the reader.
We will prove the converse.

Suppose Mk T" and M omits every non-principal L ytype in 4. We fix some
one to one assignment of the elements of M onto a set C of new constant symbols,
and show that for any sentence ¢ € o,

Aredipkol,

where G = Thy(M, m,),.c. Before proceeding to prove this by induction on the
formation of ¢, we make one crucial observation.
Let ¢(&) be a sentence of 2", and define

ME @ iff

0@ = {(1@NAPE. ) pE ) Ikp(@ or pE, ) F 9,
where d is arbitrary.}

We claim that @ is not realized in M. By our hypothesis it is sufficient to as-
sume that @ is a type and show that it is in 4 and non-principal.

Since P e A4, and A is admissible, © is easily seen to be an element of A4, asin
Remark 1.2,

‘We assume next that, on the contrary, @ is principal, and derive a contra-
diction. Suppose there is a formula 6(%), consistent with T, such that Tk 6(X)
=@ Ap(%, 7), for each formula @M AP, e O. Let p = {§(&)}. Then
pDEP. Noy’v, directly from the definition of forcing, thereis some ¢(&, d) e P such
that ¢(¢, d)2p and either ¢(Z, d) F@(?) or g(Z,d)E 1¢(&). However, this means
that (A7) A¢(%, ¥) € ©. Hence, we arrive at the desired contradiction, viz.

Tup(@F q(2,d), and the claim is established. Stated slightly differently, we
have shown

® MEVHVENAPE D pE D ke or p@E A g, for d a.xbitrary.}

] It is fairly well-know that () is really sufficient since it implies that for each
@ €A 4, there is a p in Thy(M, m,),.. which “decides” @. However we continue
anyway and proceed to the induction.

icm
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The initial step for ¢ an atomic sentence of 2¢", is immediate, without appealing
to the claim, .

Next, suppose ¢ is 71y, and we have shown that Mk i iff there is a pe G
such that p . Then

ME@ iff not ME Y-
iff (Ype @ [not p iry], hence by ()
if Ape@®[pir W].

The induction steps for @ of the form \/¥ or (@x)y(x) are straightforward.
We verify only the second case.

ME@x)P(x) iff MEY(c) for some ceC
. iff (by induction hypothesis) (Ip e G)[p ¥ (c) for some c]
iff @pe@ip F@xY)].

This completes the induction and the proof of the Theorem.

Remark 1.5. From the preceeding proof it is clear that the %, sentences
given by (*) are a set of axioms for the A-generic models of T. These axioms are
in a simpler form than those in Remark 1.2 since we have eliminated the formula ¢
itself.

Remark 1.6. Some of the above results admit certain obvious generalizations.
For example, in Theorems 1.1 and 1.3, 4 need not be a fragment, but only closed
under subformulas. In addition, in Theorems 1.1 and 1.4 one need require only
that ¥ be closed under subformulas. In that case, in Theorem 1.4, rather than
considering & z-types, one considers sets of Vv 3 formulas over %, in the sense
of [4]. In particular, then, this generalization of Theorem 1.4 includes the original
finite forcing of Robinson. ’

§ 2. This section is devoted to the consideration of two examples which will
serve to settle certain questions which arose in our investigations. In order to sharpen
our conclusions for our first example we consider a complete theory T. We select T’
to be a theory without a prime model, for otherwise, as we observed in [5], we find
ourselves in the “degenerate” situation of having a unique generic model.

The complete finitary theory T of the additive integers (Z, +, as considered
in [1], will serve our purpose. We assume the reader has at least some very basic
acquaintance with group theory, especially concerning torsion free abelian groups.
An excellent reference for our purposes is [2].

For n a positive integer, and x a group element, we write nx to represent the
sum of x added to itself n—1 times. If n is a negative integer then nx denotes
(—n)(—x) where —x is the inverse of x in the group. An element x of a group G is
said to be divisible by the integer n if there is some y e G such that ny = x. We ab-
breviate this as #|x, and the negation as # f x. A group G is said to be of rank 1 if


GUEST


80 * V.lee and M. Nadel

for any two elements x,y of G, there are integers », m, not both zero, such that
nx+my = 0. It is easy to see that {Z,+) has rank 1. However, the property of
having rank 1 is not expressible in .%,,,,, and there are' models of 7' which are not
of rank 1. In #,,,, this property is easily captured by the sentence :

(+) Vx)(¥y) \/ {nx+my = 0: n, m not both zero} .

We will be working with the forcing property P = P(T, 2,,). We assume
that A is admissible and contains P and the above sentence (~). The smallest ad-
missible set containing o will serve. The reader will observe that admissibility is
not really required for certain of our observations. It is to be understood that when
we refer to an A-generic group below we are more precisely referring to an 4- generic
model of T. Our first observation is:

Every A-generic group is a torsion free Abelian group of rank 1.

The theory T itself directly insures the first two conditions. We simply show
that O IF¥(+). Using Theorem 2.1 of [4], it is sufficient to show that for each formula
@(x, y) consistent with 7', there are m, n not both zero such that T U {o@x, N} u
U {nx+my = 0} is consistent. However, if @(x, y) is consistent with 7', then there
are integers x,, y, such that {(Z, +>’P= @ (xq, yo).‘Furthermore,‘ there are integers
Mg, Mg, mot both zero, such that nyxo-+mgyy, =0, whence T U {ox, My
U {ngx+myy = 0} is consistent, and we have completed the proof. Of course,
this same result would hold if we began with any complete theory of groups ad-
mitting. a group of rank 1. . .

It is our good fortune that the structure of torsion free Abelian groups of
rank 1 is well understood, and that such groups are easily representable. With
cach element x of such a group G we may associate an infinite sequence §* of
length w taking values in o U {c0} where oo ¢ w. The sequence S* is defined so
that the value S; at the nth place in S* is m if m is the highest power of p,, the nth
prime, which divides x, and co if x is divisible by all powers of p,. Then, using the
fact that G is of rank 1, it is easy to show that for any x,ye G, Sy, S, can differ
at only finitely many #, and then only if S¥ 5 oo. Consequently, each torsion free
Abelian group of rank 1 is completely determined by such a sequence. Conversely,
such a sequence in turn defines a torsion free Abelian group of rank 1 in a canonical
way as a subgroup of the additive rationals. Of course, two sequences which differ
at only finitely many places, and never with only one taking value co at such a place,
give rise to the same group.

Given elements x, y of the torsion free Abelian group G of rank 1, it is easy
to show that x can be taken to y by an automorphism of G iff §* = $”. Equivalently,
X can be taken to y by an automorphism of G iff x and y satisfy the same com-
plete &, type. Similarly, using, the fact that G is of rank 1, we see that a k-tuple %
of elements of G can be carried coordinatewise onto the k-tuple j by an auto-
morphism of G provided that ¥ and J satisfy the same complete %, types. Given
pairs {xq, x;> and {y,, y,> for example, there is an automorphism of G taking
Xo to Yo and x, to y, iff x, and y, satisfy the same complete .%,,, type and ngy, +
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"4nyy,="0 for some integers ng, n;, not both zero, such that NoXo+i Xy = 0.

Consequently since any group of rank 1 is countable, we see that any torsion-free
Abelian group of rank 1 has Scott height at most w. )

It is an easy exercise to show that any type of the form {x # 0, 1p|x, mlx, ...},
for infinitely many distinct 7, is non-principal with respect to T. Hence A4-generic
gnoﬁps will never have an co in their representations. Furthermore, each type of
the form {pji t x} for infinitely many ks is also seen to be non-principal with
respect to T. Hence, any sequence representing an 4-generic group cannot have
any infinite subsequence in A.

Next, we note that from the preceeding discussion, it is clear that if the torsion
free Abelian group G of rank 1 is represented by some sequence not in 4, then
every non-principal complete type realized by a tuple of elements of G is not in 4.

In addition we observe that any torsion free Abelian group G of rank 1 re-
presented by a sequence without oo is a model of 7. This is seen by noting that
for aﬁy prime p, G/pG is isomorphic to the integers modulo p, and appealing to
the result of Szmielew [10].

Remark 2.1. Finally, we conclude that, since there are sequences without co
which are not in 4, but which have infinite subsequences in A, the statement of
Theorem 1.4 cannot in general be weakened by replacing “types” by “complete
types”.

Our second example will serve a dual purpose. The alphabet & involved will
consist, in addition to the equality symbol, of the single unary relation symbol %,
and the constant symbols 0,1,2, .. For the theory T we choose the following
sentences of %,,:

n#m for n,mew, n#m,

@x) . @ DI A % £ ;& A\ U(x)]  for neow,
i¥j<n i<n
@Ax) o @x-d[ A\ x#& N T2 x)] for new.
i#n<j i<n

Hence, models of T consist of distinct interpretations of the constants, and perhaps
other elements, such that the interpretation of % is infinite, as well as the set of
elements of the model not in the interpretation of .

It is clear that every completion of T in %, is 8o-categorical. Furthermore,
suppose £, is a fragment containing the sentence iy = (Yx) \/ x = 1, ¢ (%q, v+, X4—1)

isin &, and M = (M, U,0,1,..> is a model of Tu {y}, i.e. an w-model of T.
For each finite sequence s of k matural numbers, let 0,(xo; ..., Xy—{) = A X

i<k
= 8;. Then, in M, 6, completely determines the isomorphism type of {xg, ..., X;— DA
whence o :

ME (Vg) o (V)@ o\ {0 Lot Thy(M) kb)) .
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However, it is clear that not every such 9t is A-generic. One need only select U
in A4 and appeal to Theorem 1.4.

Remark 2.2. It is now clear that in Theorem 1.3, in general we cannot drop
‘the hypotheses that T is a complete theory.

Now, if 4 is any admissible set containing o, and M = (M, U,0,1,2,..> is
A-generic, then M will be an w-model, since the type {x, # O,x#1,..}edis
clearly non-principal with respect to T

Conversely, from Theorem 1.4, in order that M be A-generic, it is sufficient
that 3 be an w-model, both U and M\U be infinite, and that neither U, nor M\U
have any infinite subset in A.

For countable 4 it is quite simple to construct such models, and simultaneously
incorporate extra information, via a simple diagonal argument.

Let f be any function from w to ®, and let Sy, Sy, ... be a listing of all subsets
of @ in A which are neither finite nor cofinite. We proceed as follows:

Oth Stage: (i) Put into U all numbers through first number 1, missing from S, .

(i) Continue inincreasing order beyond n, putting numbers in U until reach-
ing the next number in S,. We omit this number from U, as well as the next f(0y
numbers. Let m, be the last number omitted.

(k+1)th Stage: (i) Put into U all numbers begining with m, through next
number n,,, missing from S,.,.

(ii) Continue putting numbers in U until reaching the next number in Sit1-
We omit this number from U, as well as the next f(k+1) numbers. Let m,,, be
the last number omitted.

It is clear that such a process can be carried out since each S, is neither finite
nor cofinite. Moreover, any U constructed in this manner can have no infinite
subset in A, nor can w\U. Finally, it is clear that f is recursive in U.

Remark 2.3. Using the above construction, one can, for countable admiss-
ible 4, find 4-generic models of arbitrarily large countable height by choosing f
accordingly. In particular then, it is clear that not every A-generic model need be
A-"generic in the sense of [5]. Moreover, it shows that there may be no sentence ¢
of £, axiomatizing the set of 4-‘generic, or 4-generic models of height <o(4).
Let ¢ be such a sentence, and suppose ¢ € ¥, for D countable admissible. Then
since every A-"generic model, or every 4-generic model of height <o(4) would
satisfy ¢, it follows that O -¥¢. In that case, all & p-generic models would have
to satisfy ¢. However, the above shows that .#,-generic models need not have
height <o(4).

Finally, there may be 4-generic models of height <o0(A4) which are not
A-*generic. Regarding the universe of these models as w, then the % of an A4-*generic
model is seen to be a Cohen generic real over A. However, if % corresponds to
a Solovay random real over 4, then the corresponding model will also be 4-generic
and have height <o(4). Those two classes of reals are well-known to be disjoint.
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§ 3. In this section we consider the Scott height of generic structures. We as-
sume that our forcing property P is an element of some countable admissible
set 4, containing @ which may just as well be thought of as the smallest admissible
set containing P.

In [5] we used the fact that 4-°generic structures have height <o(4) to as-
certain that they also have Scott height <o0(4). As we have seen earlier, 4-generic
structures need not have height <o(4).

We assume for convenience that all structures considered are structures for
the same arbitrary but fixed countable alphabet. Suppose for each countable «
there were a sentence g, of %, , such that for any structure I, Mk g, iff M has
Scott height <a. Then, since for every 4-‘generic structure M, we have M k Qo(ay»
it follows that O IF"g,.y. Whence if 4’24 U {0,4)} every A’-generic structure
satisfies g,c4), thus having Scott height <o(4). )

We now show how to construct the sentence g,. The essential idea involved
is already in [3], though we noticed the fact without having Vaught sentences in
mind.

First, for each k € ©, and ordinal o we construct a formula

V(X0 wovs Xgm15 Vs oes Vim1)
such that for any elements my, ..., m_;, ng, ..., n_; of the model M,
WMEYEMy, ooy Mgy Ny s e q] AT gy ey My >~y s vy e 1D
The formula Yi(xg, ..., X3—1, Yo, -5 Yx—1) Will say nothing about the specific type
realized by {xq, ..., Xg—1> OF {Pg, .. V-1, but simply.that they are the same.
It is for this reason that these formulas are constructible directly from the alphabet,
unlike the more common canonical Scott types for which one needs a structure
or a reasonable fascimile. We define recursively
‘l’l?(xm s X 15 Vo vy Yeo1) = /\ {0(xg, o X )
0(yg, ..., Yp—1): 0 is an atomic formula}
‘l’f(xm ooy Xp—15 Y05 es Vi)
= (V) @YVis1(X0s -oos Xim 15 %> Yo s Vi1 Ye)
& (V2 @x )5+ 1(X05 +vs Xem15 Xies Vo5 eoos Yem15 Vi) »
‘/’:(xm ey Xpm 13 Vo5 oves YVmi) = /\ ‘/’:(xo; vy Xg 15 Yo oues Yim1)
a<
for 6 a limit ordinal .

It is quite clear that Y} behaves as advertised.
We can now define g, to be

k/\ (Vx0) e (V- ) (Vr0) oo (Ve ) ioyrk ]

It is clear that g, will be in any admissible set containing w, the alphabet under
consideration, and o.


GUEST


84 V. Lee and M. Nadel

In particular, we have now established
THEOREM 3.1. Suppose M is (P*)*-generic. Then M has Scott height at most o (P’*)'

An absoluteness argument shows that it is not really necessary to assume
that 4 is countable.
. The example of the previous section shows that a (P*)*-generic structure
need not be P*-*generic, nor even of height <o(P*). If we assume that our orlgmal
theory T is complete, it is then clear that all (P*)*-generic structures have the
same Scott height.
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Homogeneity, universality and saturatedness
of limit reduced powers III

by

Leszek Pacholski (Wroclaw)

Abstract. Let & be an ultrafilter on I and & a filter over I'x I. The paper gives a character-
ization of those pairs (&, %) which have the property that for every relational stracture % the Iimit

ultrapower | is »*-saturated. The notion used to obtain this characterization is 2 natural
extension of Keisler’s notion of a x-good filter.

A property P of a relational structure 2 is a compactness type property if
there is a definition of P which is of the form: for every set X of formulae (of some
language connected with ), ¥ can be satisfied in 2 if and only if every finite sub-
set of ¥ can be satisfied in . The saturatedness, universality and homogeneity of
relational structures can be considered as properties of the compactness type.
Various other properties of the compactness type have been investigated by several
authors (e.g. atomic compactness [6], [11], positive compactness [11]). Here we
restrict ourselves to saturatedness, homogeneity and universality.

By the classical results of Keisler ([3], [4]) ultraproducts can be used to obtain
structures with a given compactness type property. For example, if a filter & is
(w, )-regular, then for every relational structure 9 with |L ()< the ultrapower
A is st -universal. If F is x-good, then for every family {2;: eI} of similar
relational structures with |L(U)|<x the ultraproduct []%,/# is »*-saturated.

iel

The results of Keisler have been extended by Shelah and the present author to
the case of products which are not necessarily maximal (see [7] and [10]). Another
application of reduced products to compactness can be found in [8]. For the
generalization of Keisler’s results to Boolean ultrapowers see [S].

The problem of homogeneity of reduced products had not been extensively
investigated. By a recent result of Wierzejewski [13] if the ultrapower % is
x*-homogeneous for every structure U, then for every U the ultrapower AL is
x*-saturated.

In the present paper we investigate the problem of compactness of limit ultra-
powers. We give a characterization of pairs (%, %) which have the property that
for every relational structure 20 such that |L(){< s the limit ultrapower UL|F is
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