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Note on decompositions of metrizable spaces I
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R. Pol (Warszawa)

Abstract. In this note we investigate, in the class of metrizable spaces, the property of being
o-locally of weight <t, introduced by A. H. Stone in his theory of non-separable absolutely Borel
spaces [8], and we prove some facts related to the questions raised in [8].

In this note we investigate, in the class of metrizable spaces, the property of
being ¢-locally of weight <t, introduced by A. H. Stone in his theory of non- separ-
able absolutely Borel spaces [8], and we prove some facts related to the questions
raised in [8].

Our topological terminology and notation is from [2] and. [5]; our set—
theoretical terminology will follow [4]. All of our spaces are assumed to be
metrizable. For a given space X we say that ¢ is a metric on X if ¢ is any metric
compatible with the topology of X. For a metric 9, a set 4=X and £>0, we
write B(4, &) = {xe X: o(x, 4)<e}. The symbol w(X) denotes the weight of
a space X and |S] the cardinality of a set S. The set of all ordinals less than a given
ordinal 2 is denoted by W(A). For an initial ordinal A of a regular cardinality t we
call a set I'cW(A) stationary if and only if for every function ®: I'—-W(2) with
D(£)<, there exists a<l such that [ '(«)| = t. The successor of a cardinal
number t is denoted by t*.

We say that a space X is h-locally of weight <t (in symbols, X € ) —Lw(<1);
see [8], 2.1) provided X = {J {X,: ae .4}, where [4]<h and each X is locally of
weight <t. It is easy to verify (cf. [8], 2.1) that for a metric ¢ on X this is equivalent
to the following condition: there are families & of subsets of X of weight <t
and >0 for se .S, where |S|<D, such that
o X=U{U#F,:seS} and

o(F', F"yz¢, for different F', F"' e &,.

For h = no we write X € o Lw(<1); if X e h—Lw(<8,) we say that X is h-discrete.

Prorostrion (cf. [8], Theorem 3). Suppose that t is a regular or sequential
cardinal and Y<t. If Xeh—Lw(<ft), then XeoLw(<t).
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Proof. Let &, for se S, be families satisfying (1). For each ne N put S,
= {seS: g=1/n}. Then S = |J S, and for each open ball B of radius 1/2# we have

)] |[{Fe
Assume that t is regular. Write E, = U{U

F: FnB # @} <1 for each ses,.

Fse8,}. Since X = | E, it

n
suffices to verify that the local weight of E, < t. Let B be any open ball of radius 1/2n.

Then we have

‘BnE,cU{Fe#F;: FNnB+# 0,58} =U

SeSn

U{FeF: Fn B+ @},

and, by (2), we obtain

w(B N E) Y, w(F),

SeSn

where F,e #,

thus w(B n E,)<t, because t is a regular cardinal.

Assume that t = limt,, where t,<1. We can assume moreover that t, = m;" >0.
Put Fy = {FeF,: wF)<t,}. Since U Fa=Fs, for Ep = ) Fy and X,

= U Eg, we have X = U X,.. Bach Eg, has the local weight <t,, thus each X,

eaLw(<t,,), therefore Xe oLw(<t).

The proposition was proved in the case of X absolutely Borel and t non-limit
by A. H. Stone [8] (Theorem 3). It gives an answer to the question raised in [8]
(see Remark on page 261). The assumptions about t cannot be omitted, as was
shown by a simple example in [8].

A disjoint covering & of a space X we call a decomposition of X a selector
for a decomposition & is a set S intersecting each non-empty member of & in exactly
one point.

Further we shall deal with the following natural decomposition 2 of a space X.
Let A be an initial ordinal with ¢f(4)>w,. Let {X;};<; be a sequence of subsets
of X such that

3) Xic..cXc.. X, X§ Xeyw wX<wX), for &<,
4) X=UX; md X- UX. for limit ¢<1.

Let us put -
(5) P = {P;: £<}}, where

P,=XNUX,,
a<é

(6 I'(P)={: Py#0, ¢&is alimit ordinal <7}, &%= {P;: £ ().

If w(X) = tis a non-sequential cardinal, A the initial ordinal of cardinality t

and {x;: £<A} a dense set in X, then the sets X = {x,: a<¢} satisfy (3) and (4)
and hence define a decomposition 2.

icm

©
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TreOREM 1. Let X be a space of regular weight w(X) = t and let & be any de-

composition of the space X satisfying (5). Then the following conditions are equivalent:
(i) XeoLw(<t),

(ii) there exists a selector for P* (see (6)) which is cLw(<t),

(iii). I'(#) is not stationary.

Proof. Let ¢ be a metric on X. Note that for a decomposition & satisfying (5)
we have |A] = 1, which is an easy consequence of regularity of . The implication
(1)=>(ii) is obvious.

(i)=(iii) Write I' = I'(#) and let a;eP; be points such that the space

= {a,;: éeT}eoLlw(<t). By (1) there is a decomposition {4;};.y of 4 such
that 4; = U {4;: s€5;}, where S, S; = @& for i #j and

) w(AS)<t for se US; and (4, 4,)>¢; for different ', 5" € S;.

Put I'; ={el: ae 4}, Ty={lel: aze A;}. Thus {I'};cy is a decom-
position of I' and {I';},.s, is a decomposition of I';. Note that

®) rj<t for seUS,,
i

since, by (7), it follows that for some ¢ <A we have 4, X, and hence 4,={a,: u<&}.
Let

e =1i= tel;.

For each £el, by (4), we can choose a<& and by € B(ay dep) N X,. Put
@(¢) = a. Thus

©) &: T-W()y, dE<¢ for Eel,

(10) 0(ag, b) <3ty and b€ Xog -
It is enough to show that

an @Y o)| <t for a<A.

Suppose contrary, that there exists a<A with |#7*(a)| = t. Then there exists fe N
such that |¢7%e) N Iy =t and since by the regularity of t and (8) the set
{s: Ty 0 (D~ 1) A T') 5= @} is of cardinality t, we can choose a set I' =@ () N I,
of cardinality t intersecting each I', in at most one point. For each & € I'" we have
D) =, ¢(f) =1 and thus, by (10), {b:: EeI"}cX, and o(ay, b)<ide, for
Eel”. By (3) we have w(X,)<t, therefore we can find two different ordinals
¢, & e I' such that o (b, bev) <de,, whence o(ag, az)<e;. But this contradicts (7),

as & ely, " el for different indices &, 5" €S; and thus ay e Ay, ap. € Ag.
(ii))=(ii) Write I' = I'(#) and let

& T—-WR)y, &E<éfor el [P ()<t for a<d.
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Extend @ over the whole W{(%) (not changing the notation) taking
O(§) = ¢ for a limit ordinal ¢¢I" and P(E+1) = & for E<l.

Let us notice that

(12) o)<t forall el and non-limit £<A  and [&~ Y] <t for <A .
Put (cf. [5], §30, X, (8)
Xew = X \B(Xop, 1/n)  for 1<&<A, neN (we take X, = ©),
X, = U{X,: E<A} for neN.

First we shall s_how that each X, is locally of weight <t. Take x € X and let &o
beA the first £<4 with x € X,. By (12) and the regularity of t it follows that there
exists {; <A such that for £>¢; we have &(E)>¢&,. Thus ‘

B, 1m) 0 X cB(Xy, 1) N Xy = B for &3¢,
$0
B@x,1/m) n X, U {X,: E<é}cX,,
and, by (3),
w(B(x, 1/n) 0 X;)<t.

It is enough to show that X = |J X,. Take xe X and let &, be chosen as be-
fore. Si . N .
re. Since x e X¢n> lgoX,, if & is a limit ordinal, then &, & I". By (12) we infer that

<
D(&p)<Ey, thus x ¢ X,
o« 3( < coX". ¢ Xo@,) and for some nme N also x ¢ B(Xos,y, 1/n), whence
CQROI:,LARY 1. Let m = , be a regular cardinal. For every space Z of weight
<Ngio, With Z & cLw(<m) there exists a subspace EcZ such that E ¢ ocLw(<m)
and w(M) = |M| for every McE.
Notice that, by Proposition, for m = n* the conditi impli
that E is not n-discrete. orcition £ rLw(<m) implies
Proof. Let t = min{w(¥): Y=Z, YéoLw(< i
; : . m)}. Since 8, <t<®,,,, tis
a regular cardngl, Take X<Z such that w(X) =t and X & o‘Lw(\< m). gi‘;:,ce for
every YcX with w(.Y‘)<t we have YeoLw(<m), we obtain Xé¢oLw(<t)
Let 2 be a decomposition of X satisfying (5) and let {x;: (e I'(P) = I''=k bé
a selector for 2%, By Theorem 1 we infer that E¢oLw(<t). Let M = {x;:¢¢ Ccr}
be any subspace of E. Using the arguments given in [5], § 24, II (see:Remark 1)
we shall show that w(M) = |M|. Let & be a base of M with [B] = w(M) Fo;
each ¢ e C denote by &* the successor of ¢ in C and choose Uy € 4 such that X, n
N Uy =@ (cf. (3)) and x,. € Uy. Then for different ordinals &,¢"eC we hgve
U, iU¢u and thus |M|<|2B| = w(M)<|M].
. H. Stone proved the above statement for abs i
= : olutely analytic spaces without .
the restrictions on the weight of a space Z (see [8], Theorem 2 andpSectimi 3051;t
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ExampLE. Let B(&) = W(£)°, for an ordinal &, be the Baire space, ie. the
product of 8, copies of the set W(¢) with the discrete topology. Let X = B(4),
where 1 is an initial ordinal of regular cardinality t and X = B(¢), for {<A. Then
the sequence X; < ... =X, ... satisfies (3) and (4) and thus we obtain the de-
composition 2 defined by (5). It is easy to verify that I'(#) = {¢{<i: cf(§) = wo}
(see (6)). Choosing a selector E(f) for #* we obtain the space defined by A. H. Stone
(cf. [7}, 5; [8], 3.5). Since X ¢ sLw(<1t) (by Baire’s theorem; cf. [8], 2.1), by The-
orem 1 we receive Stone’s result (cf. [8], Lemma 2) that E(f) is not sLw(<t) (for
t = §* — equivalently, by Proposition — E(§™) is not h-discrete).

In the sequel we shall use the following fact kindly communicated to the
author by K. Alster. .

Lemma (K. Alster). Let & = {E,: s€ S} be a decomposition of a space X such
that w(E)<t, for se S, and each selecior for E is t-discrete. Let A be the initial
ordinal of cardinality t. Then there are sets Wy, for §<A and s€ S, such that E,
= U {Wy: <} and each family Wy = {Wg: s& S} is t-discrete ™.

Proof. Let 2 be the class of all t-discrete families #~ = {W,: se S} such that
every W, is an open subset of the space F;. Since for each selector 4 for E there
exists ¥~ € U which covers A4, we can define by the transfinite induction a sequence
of families %, = {Wy: se S} e for £<J, such that for every s€.§ and £<1

i ENU{W,: a<é} # @, then Wyn (ENU{W a<t)) # 9.
It remains to verify that for every s € S we have E, = {J Wy,. In the opposite case
§<2
we would obtain a strictly increasing sequence U, = |J W, of open subsets of E,
a<iZ

of type 4, contrary to the assumption w(E)<t.

THEOREM 2. Let & be a decomposition of a space X such that for a regular, or
sequential cardinal t each member E e & is cLw(<1) and for some m<t each selector
for & is wi-discrete. Then X is cLw(<t).

Proof. We shall consider only the case of t regular. The case of t sequential
can be derived then easily by the-same reasons as in the second part of the proof
of Proposition. We shall prove our theorem in three steps.

Suppose first that w(E)<t, for E€ &, and w(X) = t. Let A be the initial ordinal
of cardinality t. We shall define a sequence Xj < ... X< ... <X of type A satisfy-
ing (3), (4) and

(13) St(Xy, €)cXpey for E<A().

Let {x;: <2} be a dense set in X. Put X; = {x,}, Xe4s = StXy, &) U {xgt a<&}
and X; = U X,, for limit ordinals. It suffices to show that w(X,) <t for a<4.

a<§

() It means that ¢ is the union of t discrete subfamilies.
@ Std, &) =U{Ecf: End+ 0O}
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Suppose that we have done it for a<&. If & is a limit ordinal it follows immediately
from the regularity of t that w( |J X,)<t. Let £ = n+1. Since each selector for

a<é

& is m-discrete, we have
{E: Ee &, En X, # @} <mw(X)<t

and, by the regularity of 1, also w(St(X;, £))<t, therefore w(X)<t. Let 2#* = {P,:
EeI'(#) = I'} be the decomposition satisfying (6). By Theorem 1 it is enough to
show that choosing points p; € P, we obtain a selector M = {p,: £ € I'} e cLw(<t).
‘We shall show that M is m-discrete (our conclusion will follow then by Proposition);
to see this it suffices to verify that for each Ee & we have |M n E|<1. Indeed,
if £, nel, with £<#, we have £+1<1# (since 7 is limit), and, by (13), none of Ee &
intersects both P, and 7,. ’ BTES

Next suppose that w(E)<t, for Ec &. Let & = {E,: s € S}. Using the Lemma
we infer that X'is the union X' = U { U#",: £ <1} and since each #, is a t-discrete
family consisting of sets of weight <t, we have Xet—Lw(<t). Thus Xet—
—Lw(<t*) and, by Proposition, X'e cLw(<t*); therefore we have a decompo-
sition (1) of X (with |S| = &,). Since each Fe &, is of weight <t, by the case con-
sidered before. (where & is changed by &|F = {En F: Ee&)}), we infer that
FeoLw(<t1) and it follows easily that X e cLw(<t1).

Finally, assume that Ee oLw(<t), for Ee &. Write & = {E,: se S}. By (1),
for each s € S, we have E; = |J { U#$: ie N}, where &7 consists of sets of weight
<t and o(F', F")>¢,>0, for different F', F"' e #i. Put F = U {F: eu=1/k).
Then #; is a decomposition of X = {J %, and each member of & % 18 of
weight <t. We shall show that each selector for %, is m-discrete and hence X’ ik
€ oLw(<1). Let M be any selector for & ;; write M = () M,, where M, = M N E,.

seS
Each open ball B of radius 1/2k contains at most one point of M,, for every se S;

thus B n M is a subset of some selector for & and thus it is m-discrete. The set M is
therefore locally m-~discrete and so is wmi-discrete.

We shall define now a class of mappings preserving the property oLw( <t)
for some cardinals . Namely, call a one-to-one function f: X' — Y d-isomorphism
if both f and £~ take o-discrete sets to o-discrete sets. oo ‘

COROLLARY 2. Let f: X—Y be a d-isomorphism. For a regular or sequential
cardinal t, if X is aLw(<1), then so is Y.

Proof. By (1) we have X = |J{ U#;: ie N}, where each &, is a discrete
family consisting of sets of weight <t. Put &; = f#,. Then &; is a decomposition
of a space Y; = |J&;, consisting of sets of weight <t (because, as is easy to verify,
d-isomorphism preserves the weight) and each selector for &, is o-discrete (as the
image of some selector for #,). From Theorem 2 it follows that Yieolw(<t)
and thus also Y = ) ¥;eocLw(<?).

i
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COROLLARY 3. Let f: X — ¥ be a one-to-one function such that both f and f -1
onto

take absolutely Borel (resp. absolutely analytic) spaces to absolutely Borel (resp.
absolutely analytic) spaces. If t is a regular or sequential cardinal and X is eLw(<t),
then so is Y.

Proof. It suffices to show, in virtue of Corollary 2, that f'is a d-isomorphism.
But this follows immediately from A. H. Stone’s (resp. A. G. El'kin’s) theorem that
an absolutely Borel (resp. absolutely analytic) space, each subspace of which is
a Borel (resp. analytic) set, is o-discrete ([7], Theorem 2; [1]).

A. H. Stone [8] proved that the property o Lw(<1) is invariant under analytic
isomorphisms in the class of absolutely analytic spaces for all cardinals t (The-
orem 1'). Our Corollaries 2 and 3 are related to the question raised in [8] (Re-
mark 3.3): to what extent the above fact apply to spaces, which need not be ab-
solutely analytic?

Note that the mappings considered in Corollary 3 differ in general from Borel
or analytic isomorphisms.

Let us finish with a few remarks.

Remark 1. Tt would be interesting to know answers to the following questions.

QUESTION 1. Can we omit the assumption on weight of Z in Corollary 1; is it
true for m = 8; and w(Z) = 8,,?

QUESTION 2. Can we omit the assumption that t is a regular or sequential car-
dinal in Theorem 2 and Corollaries 2 and 3; are these statements true for t = %,,?

Remark 2. We can improve a special case of Theorem 2. We call a decompo-
sition. & = {E,:se S} of a space X t-discretely decomposable if there exist sets Eg,,
for t & T with |T| = t, such that E, = U E,, and each of the family {E,: se S} is

teT .
discrete (see [3], 1). It is easy to verify (cf. [3], Lemma 3) that if §|F = {E,nF:5¢ S}
is t-discretely decomposable for each Fe &, where & is a o-discrete covering of
a space, then & is t-discretely decomposable.

Let & be a decomposition of a space X such that each selector for & is t-discrete
and Ee cLw(<t™*) for Ec & Then & is t-discretely decomposable.

Proof. By Theorem 2 our proof reduces to the case w(X)<t*. Thus we can
assume also that & = {Eg: <A} where 4 is the initial ordinal of cardinality t*.
Let X, < ... <Xz ... =X be a sequence of type A satisfying (3). Put

Fe=FEnX, and Gy= E~NB(X:, 1/n) .

Since £, = Fy U U Gy, it suffices to show that families & = {F;: é<A} and
n

G, = {Gy,: E<]} are t-discretely decomposable.

4

Let F = (J&. Since w(F,)<t" we infer, by Theorem 2, that Fis oLw(<t*)
and this implies easily that & is t-discretely decomposable.
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Put Uy, = B(Xy, 1/n) and %, = {Uy,: £<A}. Then %, is an open covering
of X and for each «>¢ we have Uy, N G,, = @. Thus %, is locally t-discretely
decomposable and hence, by paracompactness of X, it is t-discretely decomposable.

QUESTION 3. Let & be a decomposition of a space X such that each selector
for & is o-discrete. Is then & wy-discretely decomposable (equivalently: is every
d-isomorphism a o-discrete mapping in the sense of [3], 3.1)?

By the above proposition, if & consists of sets which are o Lw(<&,), the answer
to Question 3 is positive. Notice, that the negative answer to Question 2 would
give the negative answer to Question 3.

Remark 3. Corollary 3 can be reformulated in the following manner. Assign
to a space X the lattice % (X) (7 (X)) of its absolutely Borel (absolutely analytic)
subspaces. Then for every regular or sequential cardinal t and spaces X and ¥,
if the lattices & (X) (o (X)) and % (¥) (o7 (Y)) are isomorphic, and X is cLw(<1),
then so is ¥.

Remark 4. A space X of weight &, is d-isomorphic to the Baire space B(w,)
(see Example) if and only if for every (equivalently — for some) decomposition 2
of the space X satisfying (5) the set {E<w,: |P{<2%} is not stationary.

This result is closely related to the following statement: a subset C< IW(w,)
contains a closed cofinal subset of W(w,) if and only if the lattice of all non-
stationary subsets of C is isomorphic to the lattice of all non-stationary subsets
of W(w,).

Remark 5. Adopt the notation of Example. Write I' = I'(#) and let
{xs: eI} = E(t) be a selector for #*. Put f(£) = x,. Using the arguments given
in the proof of Theorem 1 we can show that for every C T the set f(C) is sLw(<1)
if and only if C is not stationary. Thus f induces an isomorphism of the lattices of
all non-stationary subsets of I" and all sLw(<t) subsets of E(%).

Remark 6. Using A. H. Stone’s characterization of absolute F,-spaces [6] it
is easy to prove, by Theorem 2 (for t = &,), the following statement: a space X is
an absolute F,-space if and only if it is a continuous image of the free union of
Cantor’s sets under a mapping which takes discrete sets to o-discrete sets.

Added in proof. W. G. Fleissner has kindly informed the author (letter, June 1976) that
he constructed a model of set theory in which the answer to Question 3, and — a fortiori —
to Question 2 is positive. On the other hand, the author proved in the second part of this
paper (Note on decompositions of metrizable spaces {I, Fund. Math.) that in a model of set
theory the answer to Question 3 is negative.
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