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A locally connected non-movable continuum
that fails to separate E®

by
D. R. McMillan, Jr. * (Madison, Wisc.)

Abstract. A locally connected continuum X (Fig. 2) is constructed by tunneling into a 3-cell
in such a way that E®— X is connected. The non-movability of X is proven using the three-manifold
techniques of Haken and Waldhausen.

1. Introduction. K. Borsuk has introduced and studied the important shape
property of movability for compacta. Examples of movable compacta include com-
pact absolute neighborhood retracts and compacta embeddable in 2-manifolds
(see [1], [10], and [7]). Some of the more exotic continua, such as solenoids, are not
movable ([1). It seems especially worthwhile to seek convenient characterizations
of movable compacta in 3-manifolds. Most examples of locally connected continua
in Euclidean 3-space E® that come to mind are movable (for example, locally con-
nected one-dimensional continuna are movable), but in general this is not enough
to do the job. In particular, Borsuk gave in [2] an example of a locally connected,
non-movable continumum in E3. His example separates E> into two pieces. In an
effort to focus on what does (and does not) make a continuum (i.e., compact, con-
nected Hausdorff space) in E® movable, we present an example of a locally connected,
non-movable contimium with connected complement in E*. (This answers the second
part of Borsuk’s Problem 5.5 in [2].)

A compactum X is movable if for some (and hence for every) embedding XcQ
(= the Hilbert cube), the following holds: Bach neighborhood U of X contains
a neighborhood ¥ of X such that for each neighborhood W of X, the final stage of
some homotopy of Vin U throws ¥ into . Of course, it can be shown that if X lies
in a nice space, such as a manifold M, then X is movable by the preceding definition
if and only if the corresponding movability statement holds for X with respect to
its neighborhoods in M. Our example is constructed from a 3-cell by an infinite
sequence of tunneling operations. (See Figure 2: any resemblance to a Christmas
tree is coincidental.)

‘While the example itself is easy to describe, our proof of its non-movability
seems rather elaborate. Perhaps simpler proofs and/or examples exist. ‘We rely heavily

* Research supported by N.S. F. grant GP-38877A4f1.
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on the techniques and concepts of W. Haken ([3], [4]) and F. Waldhausen ([13]).
The reader must also be willing to accept omegatators (see our Section 2 and refer-
ences [6] and [12]) and their elementary properties.

2. Preliminaries. The next few sections contain our most important definitions,
notations, and conventions.

All of our mappings, manifolds, submanifolds, etc., are to be piecewise-linear.
A “manifold” is connected. A 2-manifold Fin a 3-manifold M3 is usually properly
embedded, i.e., OF = F n 0M (where “0” denotes boundary of a manifold), and
2-sided in the sense of having a collar neighborhood Fx [—1, 1] each of whose levels
Fx {1} is properly embedded. (In such notation, Fis always identified with Fx {0}.)
We let 4" denote an n-simplex. A piecewise-linear homeomorph of 4" is an n-cell;
a piecewise-linear homeomorph of §" = 84"** is an n-sphere. E" denotes Euclidean
n-space. A cube-with-handles of genus n is a 3-manifold piecewise-linearly homeo-
morphic to the regular neighborhood in E® of a finite, connected graph of Euler
characteristic 1 —n. The disk-sum of two oriented 3-manifolds M;, M, with nonempty
boundary is the oriented 3-manifold obtained by pasting M;, M, together via an
orientation-reversing homeomorphism between 2-cells Dy, D,, where D;cdM;,
i=1,2.

A disjoint collection (“system”) {F;} of 2-manifolds in the 3-manifold M? is
compressible in M® if for some 2-cell DeM?, D~ |JF, = 8D and 8D bounds
no 2-cell in | F;. Otherwise, the system is incompressible in M*. M? is boundary-
irreducible if dM? is incompressible in M3, We say that M? is irreducible if each
2-sphere in M* bounds a 3-cell in M3, The properly embedded system {F} is
boundary-compressible in M3 if some component of some 8F; bounds a 2-cell in
M, or if for some 2-cell DeM3, D N U F; is an arc Acd.D that fails to cut off
a 2-cellin U Fy, with (D) —4=3M>, and with (D) n | 3F; consisting of exactly
two points. Otherwise, the system is boundary-incompressible.

If Gisa group and a, b € G, [a, b] denotes the commutator a™* b~ ab of a and b.
For nonempty subsets 4, B of G [4, B] denotes that subgroup of G generated by
the set of all commutators [a, 4], for a € 4, b e B. The smallest normal subgroup

of G containing 4 is denoted {4, G>. We let G,, denote the mth term in the lower '

central series of G. That is, Gy = G, G, = [G,, G] (the commutator subgroup),
and in general G,y; = [G,, G] for m>1. By G, we mean () G, (the omegatator

mz1

subgroup). Each G, is normal in G, for m<w. A basic fact we use is that G, =1
for each free group G (see pp. 108-109 of [9].)

Of course, our groups are really fundamental groups of arcwise connected
spaces M. A loop in M is a mapping f: S'—M. (A * ‘mapping” is always continuous.)
A free homotopy between loops is a homotopy that may not fix the basepoint. A loop
in M determines a conjugate class of elements in the fundamental group m,(M),
and it makes sense to consider whether the r,-class of a loop belongs to a given
normal subgroup of 7,(A). To say that a loop in M is an omegatator in M (where M is
an‘arcwme connected space) means that the n,-class of the loop belongs to m,(M),.
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We sometimes write ¢J, ;(M3)) when J is a 1-sphere (or simple closed curve)
in a 3-manifold M3, to mean the smallest normal subgroup of 7,(M?) containing
the m,-class of a loop corresponding to J. A 2-handle is a 3-cell with a product
structure as 42x [—1, 1]. To attach a 2-handle along a simple closed curve J=8M 3,
we paste the 2-handle onto M via a homeomorphism of (94%) x[—1, 1] with a reg-
ular neighborhood of Jin 8M3. Finally, Z denotes the infinite cyclic group;  denotes
free product; ~ symbolizes homeomorphism of spaces; and = symbolizes isomor-
phism of groups.

3. The continuum X. Our continuum X will be defined as the intersection of
a nested sequence M(1)>M(2)>... in E* of compact 3-manifolds with connected
boundary. Let M(1) be the compact 3-manifold with connected boundary of genus
two shown in Figure 1. This figure shows a 3-cell T(0) and two linked, “spanning”

(solid cylinder= 3-cell 70))

' A1) )
N Ky
|
]
* 3-cell Ty
. Y
F(0)=lateral =Y /
annulus S ST A 4
d J @ (tunnels)
1 1 1 il
11 1 1 \
VS R - b 3-cell T3
1z b
— — N

simple closed curve J(0)
M(1) = closure: TX0)— (TP

v " Fig. 1

tunnels (3-cells) 75 and T5. The closure of T(O)— (Tt v T3) is M(1). It is shown
in [15] that =, (M (1)) is not a free group. (In“fact, as shown algebraically in [15]
and in Section 3 of [6], the simple closed cutve J(0) represents a non-trivial omega-~
tator in M (1). The fact that J(0) represents an omegatator can also be seen geometri-
cally from Figure 1, where J(0) bounds a punctured torusin M(1): There is a non-
separating simple closed curve in this punctured torus that is freely homotopic in
M(1) to J(0). By induction, it can be seen that J(0) represents an element belongmg
“to each tetm in the lower-central series of . (M(1)).)

Some homeomorphism 4 of E* onto E® reduces to the identity Qut51de a 3 cell
containing’ T(0), throws the 3-cell T(0) onto the 3-cell T(1), throws the-oriehted
arc A(0) onto the oriented arc A (1), and throws the annulus F(0) onto, the closure

3 — Fundamenta Mathematicae XCVI
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of 3(T(1))—d(M(1). We can also choose k so that the diameter of B"(T(0)) goes
to zero as n goes to infinity. (We denote the n-fold composition of & by A")
If M(n—1) has been defined for some n>2, we put M (n) equal to the closure of

Mu-1)—HK"YTfvTy).
Finally, let X = (O‘; M) (see Fig. 2). It is clear that X is a locally connected con-
n=1

tinuum, and that E3—X is connected. Note that X minus a point is a 3-manifold-
with boundary.

X is: the solid right
circular cone minus a network of tunnels

Fig. 2

‘We introduce some notation for later use. M(n) contains some special annuli
F(0), ..., F(n—1) (defined by Figure 1 and by F(}) = K(F(0)) for i>>0), some special
arcs: A(0), ..., A(n—1) (defined by Figure 1 and by 4() = A'(4(0)) for i>0), and
some special simple closed curves J(0), ..., J(n—1) (defined by Figure 1 and by
J(@) = H(J(0)) for i>0). We.take M) to be the closure of: M(x) minus a thin
regular neighborhood of A4() in M(n) for 1gign~1.

4. X is not movable. We first collect some facts for our proof.
Facr 1. M(n) is irreducible.
Proof. M(x) is irreducible because E is irreducible and dM(n) is connected,

FAcT 2. The annuli F(1), ..., F(n—1) are disjoint and properly embedded in M (r),”

Further, F(i) splits M(n) into a cube-with-handles H, of genus 2i+1 and a 3-submani-
fold By(n) homeomorphic to M(n—1i). Hence, Mn) is homeomorphic to the disk-sum
of H; and B{n).
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Proof. These statements are easy to verify geometrically by drawing a few
diagrams. We leave them to the reader.

Facr 3. J(0) is a non-trivial omegatator in M () for each n>1. Hence ny(M(n))
is not free. Further, there is a homomorphism of 7,(M (1)) onto a free group of rank 2n
whose kernel is precisely -

IO, my (M(m)) = 3 (M (), -

Proof. It has been remarked earlier (using [15]) that J(0) is a non-trivial omega-
tator in M (1). The neatest way to exhibit the desired homomorphism from m, (M (n))
onto a free group of rank 2» is by means of a geometric construction, Namely, attach
a 2-handle to 9M (n) along J(0) and observe that the resulting 3-manifold has a fun-
damental group that is free of rank 2n. We leave this pleasant sketching exercise to
the reader. (Figure 3 may help: it shows M (2) from a slightly different perspective.)
The homomorphism described has the correct kernel (i. e., the left side of the displayed
equation above), by van Kampen’s theorem. By [6] Theorem 1, this kernel is also
7, (M(n))o. Hence, J(0) is an omegatator in M(n).

M(2)

Fig. 3

To prove inductively that J(0) is not contractible in M (), we need only observe
that some retraction

M@n)-»B(m~=MHn~1)

takes J(0) homeomorphically to J(1). (In fact H;, a cube-with-handles of genus 3,
retracts onto F(1) in the desired way since J(1) generates a direct summand in the
integral first homology of H;.)

FAcr 4. The system of surfaces F(1), ..., F(n—1) is incompressible and boundary-
incompressible in M(n).
3o
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Proof. To show incompressibility, it must be proven that there is no 2-cell
DeM(ny with D n |J F(j) = 8D, a non-contractible simple closed curve in some
F(i). Any such 2-cell D would lie entirely in H; or entirely in By(n). It would then
follow that attaching a 2-handle to dH, (respectively, 8B,(n)) along 0.0 would not
affect its fundamental group. But (as can be seen geometrically) the result of attaching
a 2-handle in this way to 8H, (respectively, B,(n)) is a 3-manifold homeomorphic
to M(i) (respectively, a 3-manifold with fundamental group free of rank 2(n—i)).
Since (Fact 3) the fundamental group of M(j) is never free, no such 2-~cell D can
exist.

To show. boundary-incompressibility of this system of annuli, it must first be
noted that no component of any 8F(i) bounds a 2-cell in dM(n). This is clear by
examining the two pieces into which such a component separates dM(n). (Neither
is a 2-cell) )

Second, it must be shown that there is no 2-cell DeM(n) with D n U F;
equal to an arc AcdD that is a spanning arc of some F(), with (9.D)—A=3dM (),
and with (8.D) n |J 8F; consisting of exactly two points. (We assume that 4 spans
F(i), since if 04 is in one component of 8F(), then the closure of one component
of F(i)— A4 is a 2-cell) Such a 2-cell D would be properly embedded in H; or properly
embedded in Bj(n). Then, the effect of attaching a 2-handle to 0H,; (respectively,
dB,(N)) along a component of 8F(i) would be to replace H; (respectively, B;(n)
by a 3-manifold R* homeomorphicto H,cut along D (respectively, B;(n) cut along D.)
But (considering the first possibility: D Hy)x,(H)) is free, so n;(R*) would be free,
This is impossible, since it is clear geometrically that a 2-handle can be attached to
8H; along a component of 8F(i) so as to yield M(i). Similarly, if it were true that
D By(n) we would note that m, (B,(n)) is not free, so m;(R*) would not be free. But
this is absurd, since it is clear geometrically that a 2-handle can be attached to
9B;(n) along a component of dF(f) so as to yield a 3-manifold with free fundamental
group. We conclude that the system of surfaces is boundary-incompressible.

FAact 5. M(n) is boundary-irreducible.

Proof. It must be shown that for each properly embedded 2-cell DcM(n),

n~1

8D is contractible in M (n). We put- D.in general position with respect to |J F(j)
J=1

and induct on k, the number of components of

n—1

D U FQG).

j=1
If k = 0, then D is properly embedded either in B, (n) =~ M (1), or in some compo-
nent of M(n)— U F(j) homeomorphic to H; (a cube-with-handles of genus 3).
In either case, we could conclude that M (1) is boundary-reducible. (In the second
case, attach a 2-handle to the component of M(n)~ (J F(j) along a compornent
of 9F(i) to see this.)

From the boundary-reducibility of M (1), it would follow that M(1) is the disk-
sum of two compact 3-manifolds, each bounded by a torus. (Bach is a “cube-with=
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a-possibly-knotted-hole”.) Each such 3-manifold is well-known (see [5; Theorem 5])
to admit a mapping onto a cube-with-handles of genus 1 that induces a homeo-
morphism between their boundaries. (An equivalent concept is that of “boundary-
retractability”, see [6].) From this it would follow that M (1) admits such a mapping
onto a cube-with-handles of genus two. This is known to be false (see [8] and [6]).

1f >0, we construct an isotopy of M () onto M(n) that moves D off J F().
This is a routine argument: Use incompressibility of the F(j)’s and irreducibility
of M(n) to remove any simple closed curves in D n U F(j); use boundary-incom-
pressibility of the system of F(j)’s, plus irreducibility of M (), plus the “k = 0
case above, to remove any arcs in this intersection. We omit the details.

FACT 6. The loop J(0) is not freely homotopic in M(1) to an omegatator in M(n),
for n=1 and 1<ig<n—1.

Proof. By Fact 2, M(r) is topologically the disk-sum of a cube-with-handles
of genus (2i+1) and a 3-manifold By(s). Further, some homeomorphism of B,()
onto M(n—i) takes J(i) onto J(0). By Fact 3 and the existence of this homeo-
morphism, some homomorphism of Ttl(Bi(n)) onto a free group of rank 2(n—1i)
has kernel

(@), “1(3 i(”))> .

Hence, some homomorphism of
7 (M) & 7, (By(m) * (free group of rank 2i+1)
onto a free group of rank 2n+1 has kernel

(@), my (M) -
By [6] Theorem 1,

(@), my (Mi(”)» = 7'51(M,:("))m .

The last displayed equation, plus the fact that J(i) lies in a 3-cell in M(1),
imply that the inclusion M(n)—»M(1) induces a 7;-homomorphism that maps
my (M (n)),, trivially. The desired conclusion now follows from Fact 3.

Facr 7. For n=1 and 1<i<j<n—1, no non-zero multiple of J(i) homotopes
in M(n) into F(j).

Proof. Attach a 2-handle to M(n) along J(j) and note that some polyhedral,
properly embedded 2-cell in the resulting 3-manifold splits it into two pieces. One
of these admits a homeomorphism onto M(j) that reduces to the identity on F(i).
Hence, by Fact 4 the conjugate class of elements in 7ty (M (n)) determined by a mul-
tiple of J(i) meets

I, ma (M)

trivially. This more than proves the above claim.
TueoreMm. The contimum X described above is not movable.
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Proof. Enlarge each M(n) slightly by adding a collar to its boundary, to obtain
a compact, polyhedral neighborhood U(n) of X, so that each

Un)cIntUpn=1).
and yet X = 01 U(n). In particular, U(n) is homeomorphic to M(n). U(n) contains

some special annuli, arcs, etc. which correspond to those already described in M (r).
We use the same notation for these corresponding objects in U(n), even though they
are slightly different.

If X were movable, there would be a fixed integer 71 such that for each in-
teger k>0, some mapping f, makes the diagram

U 2 Uitk

\U(l)
homotopy-commutative. (The unlabeled arrows are inclusions.) We show that each
choice of n must fail for sufficiently large k.

Let n>1 be given. Let NV be a finiteness number for U(n). That is, each disjoint
f:ollection of N or more compact, properly embedded, incompressible and boundary-
mc?rnprsssible 2-manifolds in U(n) contains a pair of 2-manifolds that are topo-
logically parallel in U(n). (See [3] and [4] for the proof that N exists. Cf. also [14].)
We claim that no mapping f makes the diagram

Utn) > U+

¥
\U (€Y
homotopy-commutative.
' It there were such an f; it could be assumed (possibly after a homotopy) that
f is transverse with respect to the system of surfaces

F={F(Q),..., Fn+N—1)}

in U(n+N), and that each component of £ ~*(F)is properly embedded, incompress-
ible and l?oundary-incompressible in U(n). (We are using Fact 1 and the ﬁfst part
of Fact 4 in U(n+N), plus Fact 5 in U(n), and some standard constructions: see [13]
Proposition, p. 60].) We claim that for some 5 1€j<n+N~1, and for ea,ch com-

ponent. S (if there are any) of f~*(F(})), the homo hi
P FW) morphism of fundamental groups

_ m(S)-m (F(1),
is trivial. ' )

» FoT, if this cl;.a,in.n is false there is for each j, 1<j<n+N— 1, a component S, of
STY(F()) contradicting our assertion. Since #n+ N —1=N, some S, is topologicglly
parallel to some S in Z./'(n). By the way S; was chosen, some loop & in S is mapped
by f to a non-contractible loop in F(i). Since S, is parallel to §; in U(n), k freely
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homotopes in U(n) to a loop in S;. Applying f to this homotopy in U(x) yields
a homotopy in U(n+N) that contradicts Fact 7. The claim follows.

Suppose j is such that for each component S (if any) of f~*(F(j)), the induced
homomorphism

7,(8) =7, (F (7))

is trivial. Then f can be homotoped to a new map (still called f) differing from the
old only in tight collar neighborhoods of each component of f “1(F(j)), and such
that the improved f maps a collar neighborhood of each component of f~*(F(}))
to an arc piercing F(J) at a single point in F(j)—4(j). Thus, f has been replaced by
a homotopic map of U(n) into the subset

U@n+N)—A(G)=Mn+N)

of U(n-+N). Hence, by Fact 3, f(J(0)) represents an omegatator in U(n-+N)—A4().
By Fact 6, J(0) cannot be homotopic in U(1) to f (7(0)). Hence, our diagram is not
homotopy-commutative. The proof is complete.
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