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- Abstract. The main purppses of this paper are the construction of an example of semi-Boolean
algebras with infinite joins and meets which permit the construction of Kripke models for the
Heyting-Brouwer predicate calculus, and the proof of a representation theorem for those algebras.

The Heyting-Brouwer propositional logic is an extension of the intuitionistic
propositional logic with two additional operations = and [, which are dual to the
intuitionistic implication and negation, respectively. An algebraic study of this logic
is made in [3]. An important role in these considerations is played by so called semi-
Boolean.algebras. The role of those algebras is the same as that of Boolean algebras
for classical logic. In [4] semi-Boolean algebras with infinite joins and meets are
examined and a representation theorem — a weaker analogue of the Rasiowa—
Sikorski lemma — is proved. In proving that theorem the properties of Boolean al-
gebras are used, but that theorem is not sufficient to investigate the H-B predicate
calculus. However, those algebras appear to be so strong that using only the prop-
erties of semi-Boolean algebras we can prove the following representation
theorem:

For every semi-Boolean algebra there exist an order topology 0(G) and a mono-
morphism h from U to ©(G) preserving all infinite joins U a and meets () b,

aeAan beBzn+1
where ne o.

The main difficulty of the proof of this theorem is to find enough Q-filters
in the sense that the function assigning to every a € 4 the set of all Q-filters contain-
ing @ is injective and prescrves the semi-Boolean operations =, =, 71, [". This
is done in § 1 and §2. In § 3 we can find some notions which show applications of
the above results to the model theory of the Heyting-Brouwer predicate calculus.

§ 1. Semi-Boolean algebras. We shall say that an abstract algebra
A= (4, U, ", =, =) is a semi-Boolean algebra provided that
@) (4, u, N, =) is a relatively pseudo-complement lattice,
(i) = is a binary operation which satisfies the following condition:
a=~b<x if and only if a<bux for any a,b,xeAd.

The operation = will be called the pseudo-difference. This operation is dual to the
relative pseudo-complement =
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In [5] it was proved that the definition of a semi-Boolean algebra given above
is equivalent to the following one: An abstract algebra (4, v, n,=>, =, 71, 7)
will be called a semi-Boolean algebra provided that (4, U, N, =, 1) is a pseudo~
Boolean algebra [6] and (4; U, N, =, [T} is a Brouwerian algebra (2). A more detailed
exposition of the properties of semi-Boolean algebras is given in [3].

An example of a semi-Boolean algebra can be constructed in the following way.

By a quasi-ordered -set we mean an ordered pair ¢ = (G, €) — where G is
a non-empty set and < is a transitive and reflexive relation in G. Now, let B G,
We call B open if, whenever x € B and x<y, then ye B, -

For 0(%) we take the collection of all open subsets of ¢ and for the ordering
relation < we take set inclusion. We note that the algebra (0(%), U, M) — where
the operations U and n are the ordinary union and intersection, respectively — is
a distributive lattice with the unit element G and the zero element @ (& — the empty
set). Now, let =, = be two new operations in @(%) defined by the formulas:
(1) B=C={xeG: for every ye G if x<y and ye B then ye C},

(2) B=C = {xeG: there exists a ye G such that y<x and ye B and y¢C},
for every B, Ce 0(%).

By an easy verification we can prove the following:

L1. The dlgebra 0(%) = (0(9), U, N, =, =) — where 0(%) is the family of
all open sets of a quasi-ordered set 4, the operations U and n are the set-theoretical

union and intersection, respectively, the operations = and = are defined by (1) and (2),
respectively — is a complete semi-Boolean algebra.

Theorem 1.1 yields an important example of a semi-Boolean algebra. In the
sequel this algebra will be called an order topology. This example of semi-Boolean
algebra is typical because we have the following representation theorem:

THEOREM 1. For every semi-Boolean algebra U there exists an order topology 0(%)
and @ monomorphism h from A to 0(%).

Proof. We denote by G the set of all prime filters of a semi-Boolean algebra
and let & be defined as usual, namely

h(@)={VeG: aeV} foreveryacd.

It is obvious that the system (G, <> — where < is the set-theoretical inclusion —
is a gquasi-ordered set, and h(a) is open for every ae 4. We denote by 0(9) the
class of all open sets of (G, <). It is well known that  preserves the join U and
the meet ~ and, for every Ve G, a,be d,

(B) a=beViff for every ¥, €G if V<V, and ae VP, then be .
The proof of this condition may be found in [1] and it says that
@ h(a=b) = h(a) = h(b),

where the sign = on the right side of (4) is defined by (1). To show that # is the
required monomorphism it is sufficient to prove that k preserves -,
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For this purpose we denote by G the class of all prime ideals of the semi-Boolean
algebra . It is obvious that

(3 VeG iff de@, where 4 =24d-V.

‘We can prove, using the same method as in proving (3), that for every Ade G

©

On account of (6) and (5) we infer that for any Ve G and for every a, be A,

a~bediff for every 4, e Gif A=A, and be 4, then ae 4, for any a, be 4.

(7) a+beViff there exists a V; € G such that V;cV, aeV; and be V.
Condition (7) proves that
8 h(a=b) = h(a)=h(b),

where the sign = on the right side of (8) is defined by (2). This completes the proof
of Theorem 1.

The following statement follows from Theorem 1 and [1]

1.2. For every pseudo-Boolean algebra U there exisis a complete semi-Boolean
algebra W and @ monomorphism g from U to W'

1.3. For every Brouwerian algebra U there exists a complete semi-Boolean
algebra W' and a monomorphism h from A to A'.

The proof of 1.3 is similar to the proof of 1.2. In this case the notion of prime
filters is replaced by the notion of prime ideals. It was proved in [3] that

1.4. Given a semi-Boolean algebra U = (4, U, n, =, =) if the infinite join

Ua, exists in W, then for every a,bed the joins U a, N a, UT(a,;a)
teT te

and U (CRY AR ) exist and the meets ﬂ (a,=~a) and ﬂ (X a)=>a) also exist and

) an Ua= Ua,na,
teT teT
(10) ( tl;)Ta,) =0 = :Dr (a,=a),
(11 (VUa)=a= | (a+a),
tel teT
(12) (&n UTa,) =>a= 'eﬂT (6 na)-a),
(13) ®n U a)+a = tk% (CRYARDE

and if the infinite meet ﬂ b, exists in U, then for every a, b € A the joins U (b+a,)
and U (b=(a, v @) exlst and the meets n (au by, ﬂ (a=>b,) and ﬂ ((a=>(b U b))

also exi.s't and
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(14) au Nb = N@ub),

teT teT
s a= b = [ (a=b),

teT teT
16) a~ Nb, = U (+ay,

teT teT
an a=( N b,ub) = () (a=(b, v b)),

teT te T
(18) a=( met ub) = U (a=(, v b). ,

te teT

By DPBA [4] we denote a pseudo-Boolean algebra such that condition (14) is
satisfied and by DBA we denote a Brouwerian algebra such that condition (9) is
fulfilled. By 1.4 we infer that

1.5. Every semi-Boolean algebra is a DPBA.
1.6. Every semi-Boolean algebra is a DBA.

§ 2. Q-filters and Q-ideals in semi-Beolean algebras. Let 2 = (4, U, n, =, =)
be a semi-Boolean algebra and let (Q) be a set of infinite joins and meets in A

= U a (new),

@ cean
bysr= N b (new.

beBan+y

A prime filter ¥ is said to be a Q-filter provided that

(f;) for every new, if a,,eV then 4,, "V # O,

(t,) for every new, if By,p;c=V then by, .y €V.

Sometimes we say that V preserves joins and meets in' Q if it satisfies (f;) and (f,).
A prime ideal 4 is said to be a Q-ideal provided that

(i) for every new, if A,,c4 then a,, € 4,

(i,) for every new, if b,,.; €4 then By, .y N4 # O.

Sometimes we say that A preserves joins and meets in (Q) if it satisfies (i;) and (i,).
We denote by (x] ([x)) the set of all elements y € 4 such that y<x (x<y), Le,
] ={yed: y<x},

[) = {yed: x<y}.

The next theorem is analogous to the Rasiowa-Sikorski lemma:

THEOREM 2. Let W= (4, U, n, =, =) be a semi-Boolean algebra and let the
set (Q) be defined as above. Let x, y be the elements of A such that the relation x<y

does not hold. Then there exists a Q-filter (a Q-ideal) such that xe V and y ¢V,
(x¢d and ye A).
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Proof. The proof of this theorem is preceded by the following remark:

(R) In every semi-Boolean algebra 2 = (4, U, n, =, =) for any 4, be A,
a<b iff there exists a ce A such that a=be(c] and a=-be o).

The proof of (R) is by an easy verification. ‘ )

Now, we define two sequences <o, new) and {f,: ne wy of the elements
of A4 such that

(@) g =¥, Bo =,

(i) oy— 1<, and B, =, for n>0,

(iif) either fa,415D2ps1 or there exists a b&By,,; such that b<dy,q, for
every ne w, either there exists an a e Ay, such that B,,<a or a,,<a,, for every
neaw, )

(iv) the relation f,<a, does not hold for any n € w.

Suppose that, for /cecd, Ops vees g ANd Bo, s Bay are constructed so that
(@)-(v) are fulfilled. On account of (iv) we infer that the relation By, <oy, does not
hold. By (R) we infer that for every ced

either * Pap=ug & (el or  Su= Ao ¢lo).

Putting ¢ = byy.q, We infer that

either Bo=0n, ¢ (bagrs]  OF  Pay= o ¢ [bais 1) -

Suppose that B 0ay & (Dags1l- The, condition o=y € (Par+1] 18 equal to the
following one: for every b & Byeuq, Bau™%a€ (b]. Thus, by our assumption we
conclude that there exists a b € Byy4q such that Bo,—=on ¢ (b]. In this case we put
Bawss = Bax and agpyy = O Y b. Tt is not difficult to check that B2k+{ apd Ologt1
defined in way satisfy (ii)-(iv)-

Now, suppose that fay = oy ¢ [bax+1)- In this case we put Bors1=bags1 N ﬁ;k
and gy q = Oz Then (ii)-Gv) clearly hold for n = 2k+1.

We construct faj4o and dgerpina similar way. By condition (iv) we infer that
the relation Bags1 S+q does not hold. Using (R), we can. assume that, for every
ced,

cither  foy+1~tzpss & (c]  or  Paper= okt ¢lo) .

Assume that ¢ = dgy., and that the first case is true, i.e., that
Barr1= et # (Gapsal -

Then faprz = Poxsr a0d Oppyz = Ozpr1 Y Gak+2 satisfy (i)-(iv)-

Now, we observe that the condition Pog+1=%ak+1 € [ags2) is equal to. T.he
following one: for every a€ A2 Bais1=0zi+1 € [@). Thus. the condition
Boss 1=t & [dgp+2) shows that there exists an @€ Ay, such that vﬁlk.ﬂ
=041 ¢ [0). Putting Bogrz = an Bairq and Ogpyn = %air1s WO find that (ii)-(iv)
hold for n = 2k+2. Thus o, and B, are defined for all ne o. .
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Let I be the ideal generated by the sequence {a,: n € w) and let F be the filter
generated by {B,: new). Then by (iv) I and F are disjoint and

(v) either by,4, € F or there exists a be By, such that bel, for ne o,

(vi) either there exists an a € 4,, such that aeF or ay, €l for any new.

It is well known that, in a distributive lattice, every filter can be separated from
an ideal disjoint from it by a prime filter, and every ideal can be separated. from
a filter disjoint from it by a prime ideal. Let ¥ be a prime filter containing F such
that V is disjoint from I, Similarly, let 4 be a prime ideal such that 4 contains I
and 4 is disjoint from V. It is obvious that xe V, ye V as well as x ¢ 4 and ye 4.
By (v) and (vi) V is the required Q-filter and 4 is the required Q-ideal, which. com-
pletes the proof of Theorem, 2.

Now, we observe that by the definition of (Q) if, for every new, a;, = | «

agdan

and b, = [) bexistin 2 then they belong to (Q). Thus and from Lemma 1.4,

beBan+1

we infer that the joins

U+a, U@dna=c)),

(*) asdan acdan )
¢=b), -
bEBE:]-i-l( bsBzU,.“(c (b v d))

exist for every ne o and ¢, d € 4 but they need not be in (Q). Similarly, the meets

N (a=9), N (@n)=c),

(**) acdan - aedan
N (c=>b), b
bean-H( ) beBQH(C»( v a))

exist for every new and ¢, de 4 but they need not be in (Q).

We will impose some properties on the set 4,,, B,;; such that if a prime
filter ¥V (a prime ideal A) preserves a,,, by, then, for any ¢, de 4, it preserves
infinite joins and meets given in (¥) ((xx)).

First we note that the following two statements result from [5] and Theorem 1.

2.1. Let A = (4, U, n, =, 7)) be a DPBA. For every n € o, take A,,, By, < A,
such that

() azo = Uaand byypy = () b exist,

acdan beBany1

(ii) for any ce A
{a=>c| ae Ay} e {Byess] kew}, {c=b| beB,,, }e {Baur1l ke o},
(ili) for any c,de A
{e=@uUad) be By, }e{Bysyl ke o} .

Then there exists a complete semi-Boolean algebra W' and a monomorphism h
from U to W preserving all infinite joins a,, and meets by, ., ,, ne w.
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22. Let WA =(4,u, n, =, ) a DBA, and suppose that, for every ne w,
A2n: B2n+1CA and

@ doy= U @and by,yy = [ b exist,
aedan beBan+1
(iv) for any ce€ 4,
{axcl acdy}e{dyl kew), {c=bl beBy,uite {4y} ke w},
() for any ¢,de 4
{e=(dud)| beBy, }e{dul ke o} .

Then there exists a complete semi-Boolean algebra W' and a monomorphism h

from U to W' preserving all infinite joins and meets in (Q).

2.3, Let A = (4,u, 0, =, =) be a semi-Boolean algebra. For every ne
suppose that we have Ay, By = A such that conditions @)~(v) from 2.1 and 2.2 are
satisfied. )

Then for every Q-filter V in A such that a=-b ¢V there exists a Q-filter V' such
that aeV', b¢ V' and V<V,

Let % = (4, U, N, =, ~) be a semi-Boolean algebra and let be a Q-filter
such that a= b ¢ V. We take the qilotient algebra 2/V. On account of 2.7 [3] the
algebra 2/ need not be a semi-Boolean algebra but it is a DPBA [5] and, for every
new, cedleu N 1Bl= N (¢ vlb). By 2.1 this algebra can be extended

beBan+1 beBan+1 A R
to a semi-Boolean algebra ', More precisely : there exist a semi-Boolean algebra 2

and a monomorphism A from 9/ to 9’ preserving all infinite joins and meets in (Q).
Now, we note that the relation A(ja])<h(|b]) does not hold. This follows from
the fact that @ = b ¢ V. By Theorem 2 there exists a Q-filter ¥ such that k(lal) e V
and h(jb]) ¢ V. Let us set ‘
V' = {xed: h(x)eV}.

1t is obvious that 7 is a filter. Moreover, V' is a Q-filter as ¥ is a Q-filter and A
preserves all infinite joins and meets in (Q). We observe that ae V" and b ¢ V'. Now,
let x &, then |x| = Vi and 2(x}) = Vy. Thus 2(|x]) € V and this gives xeV,
which proves that F=F, i.e., V' is the required Q-filter,

In the sequel we assume that Ay, Baysy 8lWays satisfy ()-(v) of 2.1 and 2.2.
‘We denote by G the set of all Q-filters of a semi-Boolean algebra 2. We take Ve G.

2.4. a=b e V iff, for every V'€ G such that V< V', if ae V' then beV'.

If g=b e V then the lemma is obvious. On the other hand, suppose thata=-b & V.
On account of 2,3 we car construct a Q-filter 7' such that ae V' and be V' and
VeV

Using analogous methods to those used in the proof of 2.3, we can prove the
following lemma: )

2.5, Let 9 be a semi-Boolean algebra and let A be a Q-ideal such that a=b ¢ 4.
Then there exists a Q-ideal A' such tha aé¢d, bed and A=A,
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The proof of 2.5 is analogous to the proof of 2.3, but in this case the quotient
algebra /4 is a DBA. On account of 2.2 the algebra 20/4 can be extended to a semi-
Boolean algebra U'. We take for the required Q-ideal A’ the set

{xed: h(x|)ea},
where A’ is a Q-ideal such that A(|a]) ¢ 4 and h(b[) e 4 and A is a function em-
bedding /4 in U’ preserving all infinite joins and meets in (Q).

We denote by G the set of all Q-ideals of a semi-Boolcan algebra 2 and let
Ae 6. It follows from the above theorem that

2.6. a~b e 4 iff for every A, € G such that A< 4, szeA1 then a € 4,.

We observe that if Vis a Q-filter in a semi-Boolean algebra 2 then A V is
a Q-ideal and
(] VeG iff A-V=14e0.

Let VeG. ’

2.7. a=beV iff there exists a V, € G such that Vi<V, aeVy, and b¢V,.

Indeed, suppose that a=be V. By (1) a~b ¢ 4. Using 2.5 we infer that there
exists a 4, € G such that A=Ay, be 4, and a ¢ 4,. On account of (1) we infer that
there exists a V; = A—4, such that VeV = A—4 and b¢ V, and ael. .
the other hand, the proof is similar.

THEOREM 3. Let U be a semi-Boolean algebra and let the set (Q) be defined as
usual, and assume that A,, and By, ., safisfy (1)-(v) of 2.1 and 2.2. Then there exists
a monomorphism h from W to an order ‘topology preserving all mﬁmte Jjoins-and meets
in (Q-

This theorem follows from 1.1, Theorem 2, 2.4 and 2.7.

§ 3. Notes on semantic models for the Heyting-Brouwer predicate calculus.
Let & = {L, C} be the Heyting-Brouwer predicate calculus (biiefly H-BPC) de-
scribed in [3]. By a semantic model structure (H-B s.m.s) we will understand a triple
(%, D, Y — wheré ¢ is a quasi-ordered set, D # @ and | is a relation which
satisfies the conditions (Qg)-(Q4) from [1] and the following ones:

(Qs) x Ik (x=p) iff there existsa y € G, such that y<x and y I+ « and ynot | §,
v v v !
(Qs) x I+ 7o iff there exists a y € G such that y<x and y not I a,
v v

(Qi0) x I VEB/E) iff for every ce D, x| f(), where the valuation o' is

defined as follows:
o) = { v{u) 1.f uaéu’,
if wu=u".

Conditions (Qs) and (Qy) give an intuitive interpretation for the new logical
operations = and ™. Namely, let (4, D, |)> be 2 H-B s.m.s. The set G is intended
to be a collection of states of our knowledge. Thus x € @ may be considered as
a collection of physical facts krown at a particular time. If we have enough infor-
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mation to prove a formula « at the point of time x, we say that x forces «. So, con-
dition (Qg) says: to assert (x=f) at a point of time x we need to know that there
exists an earlier time y such that our information or state of knowledge at that time
is not sufficient to assert that

if we get a proof of o we can also get a proof of B.

By (Qg) this means that at every time earlier than y we can perhaps get a proof of o but
we can get no proof of .

In the same way we interpret condition (Qg). To assert "« at a point of time x
we need to know that there exists an earlier point of time y such that

our information about o is not sufficient to prove o at the time y.

This means that at no time carlier than y can we get a proof of a.

The notions of an aigebraic model (4-model) and semantic model (S-model)
we introduce in usual way.

On account of 1.1, Theorem 2 and conditions (Qp)- (Qlo) it is not difficult to
prove the following theorems:

THEOREM 4, Let M, = {G, D, ) be a H-B s.m.s. Then there exists an algebraic
model M, such that, for every o€ F, M, is a semantic model for « if and only if M, is
an algebraic model for «.

THEOREM 5. Let M, be an algebraic model. Then there exists a semantic model M
such that, for every o & F, M, is a semantic model for « if and only if M, is an algebraic
model for . :

Now, by Theorem 4, Theorem 5, Theorem 3 and appropriate definitions we
have:

3.1. The following conditions are equivalent for any H-B theory 7
(i) 7 is consistent,

(i) there exists an A-model for T,

(iii) there exists an S-model for T .
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