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Boolean matrices, subalgebras and automorphisms
of complete Boolean algebras

by

Bohuslav Balcar and Petr Stépanek (Prague)

Abstract. We shall prove several theorems on complete Boolean algebras motivated by the
theory of Boolean valued models. Section 1 deals with Boolean matrices that correspond to collapsing
mappings in Boolean extensions of the universe. An analogue of Cantor-Bernstein theorem for
Boolean matrices is proved. The notion of maximal subalgebras is introduced in Section 2. It is
shown that a complete Boolean algebra is rigid iff it does not contain any proper maximal subal-
gebra. The last Section is devoted to the problem of existence of rigid (non-complete) Boolean
algebras of power &;. It is shown that such algebras can exist independently on the Continuum
hypothesis (CH). Namely, the statement “1CH+there is a rigid Boolean algebra of power ¥, the
completion of which is rigid as well” is consistent relatively to ZFC. Only the proof of Lemma 3
Section 3 makes use of Boolean valued models explicitly, the other proofs are algebraical.

§ 0. Preliminaries. Standard set theoretical notation and terminology is used
through the paper. Ordinal numbers are denoted o, B, 7, ... and an ordinal coincides
with the set of all smaller ordinals. Infinite cardinals are denoted by x, 4, ... and are
identified with initial ordinals. The cardinality of a set x is denoted by |x|. A Boolean
algebra b is the structure (b, v, A, —, 0, 1) satisfying the usual axioms. We use
bold face letters to distinguish Boolean algebras from their universes. Every Boolean
algebra is partially ordered by < and 1 is the greatest and 0 the least element. It
should be noted that the operations are definable in terms of < and vice versa. We
say that b is a complete Boolean algebra if the operations v and A corresppnding
to supremum and infimum with respect to < can be extended to any subset of b.
As customary, these infinite operations are then denoted by \/, /\: For any Boolean
algebra b, let Spb denote the set of all subsets a of b such that supa exists. Thus b is
a complete Boolean algebra iff Sp b = P(b) (the power set of b).

Let b be a complete Boolean algebra. We say that b, is a (complete) subalgebra
of b if by is closed under infinite operations and under —. For any u € b define ,, ()
as follows

my, () = N\ {vebi;ozu}.
For any u € b, let b|u denote the partial algebra with the universe blu = {v & b; v<u}
and operations —,v =u—v, \/,a=una\/a, \,a=/\a for any veblu and
asb|u. Clearly, b|u is a complete Boolean algebra.
-
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‘We say that a subset a of b is dense if for every non-zero ue b, there isa v e @,
v # 0 such that v<<u. Two elements u, ve b are disjoint if unv = 0. A set a<h is
a partition of b if the elements of a are parwise disjoint and if \/a = 1. We say that ais
a partition of ueb if instead \/a = u. A partition a, is finer than a partition a; if
every element of a, is partitioned by a subset of a,. We say that g, is strictly finer
than a, if any element of 4, is partitioned by a, at least to two non-zero elements,

The celularity 11(B) of the algebra b is the least cardinal greater than all cardinal-
ities of sets of pairwise disjoint elemznts of 5. We say that b satisfies the countable
chain condition if p(b) = sy, i.e., if any set of pairwise disjoint elements of b is at
most countable. An element a is an atom if ¢ # 0 and if there is no x € b, 0<x<a.
We say that b is atomless if it has no atoms. We say that a complete Boolean algebra b
is rigid if identity is the only automorphism of 4.

§ 1. Boolean matrices.

DEFINITION. Let 4 be a complete Boolean algebra, %, A infinite cardinals.
A family
(1) Qdggs a<ie, <A

of elements of b is called (5, A)-Boolean matrix provided that for any o< x the follow-
ing conditions are satisfied

0 Vug =1,
B<a
(ii) ﬁ1<.52<}‘_’uuﬂ1/\uaﬁz =0.
‘We say that (1) is (¢, A)-matrix if it satisfies (@, (i) and
(i) \/ 4, =1 for any <.

a<x

We say that (1) is (¢, 1) matrix if it satisfies (i), (ii) and

({iv) ay<a, <UUp g Atlyp = 0 for any f<i!

If (1) satisfies all four conditions we say that it is a (s, A),-matrix. .

It can be easily seen that if there is a generic ultrafilter on b then (¢, A)-matrices
determine mappings from x to A in the Boolean extension of the universe. Particularly,
%, Ne-matrices determine surjective, (%, A);-matrices injective and (e, A)y-matrices
bijective mappings of x to A. Keeping this motivation in mind, we introduce an
operation for matrices similar to multiplication of ordinary matrices.

If v is a cardinal and
[0} (vm,; B<d,y<vy
is a Boolean (1,v)-matrix on 5, for any a<x, y<y define

Wey = \/ (“uﬂ/\ Up)
p<a

and call the family
3) oyt 0 <3, p <)

the product of matrices (1) and (2). Given a generic ultrafilter on b, assume that (1)
and (2) determine mappings f from » to 4 and g from Ato v respectively. Then (3) cor-
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responds to their composition g of, in other words (3) satisfies (i), (ii). Moreover,
if both (1) and (2) are (, 1),-matrices (Ge, A); or (22, A);-matrices) then the same holds
for (3). Algebraical proofs are straightforward.

Boolean matrices can be localised. If (1) is a (%, A)-matrix on & and u ebis
non-empty, then (uA u,y; <z, f<i) is a (x, A)-matrix on the partial subalgebra
blu. Conversely, a (3, 2)-matrix on b can be glued together from (s, A)-matrices
on partial subalgebras. More precisely, if the set of elements u of & with the property
that there exists a (%, A)-matrix on blu is dense in b, then there is a (3¢, 2)-matrix
on b.-Other types of matrices have the same local properties.

As to the existence of Boolean matrices on an algebra b, the following cases are
trivial:

For %) there exists always a (x, 1)-matrix and a (4, %);-matrix on &. It
suffices to put u,, = 1 for a<sx and Uyg = 0 otherwise. On the other hand, if %<1
and there is a (¥, A), or (A, x)-matrix on b then & is not (%, A)-distributive and
A<u(b) (see e.g, [12], [14]). Thus the existence of such matrices for < 1 is not trivial.

LemMa 1. There is a (x, A)-matrix on an algebra b iff there is a (1, %)matrix
on b,

Proof. a) Assume that (1) is a (x, Ag-matrix on b. If we put
Vg = Uop— \/ 1, for any B<i, a<x
y<p

then -
@ $Opas f<A, a<n)y
is a (4, %)~matrix on b.

b) If (4) is a (1, %)-matrix on b, put

v = 108 for a<x%, 0 # f<i,

P oV (= /v for a<x, §=0.
<2

LemMa 2. Let x <, let there be a (x, X)c-matrix on b. Then Sor any two cardi-
nals wy, Ay, w<wy <Ay <A there is a (uy, A)-matrix on b.

Proof. Assume that (1) is a (x, A),-matrix. If we put

Unp it a<x, B +#0,

_ UV \ {thyys A Sp<A} i a<n, B =0,

Y =1 it x<a<un, f=0,
0 oy <wug, 0# f<i,y

then {iyy; o<y, f<A;> has the desired property. :
The following lemma is an analogue of Cantor-Bernstein theorem for Boolean
matrices. .

LemMA 3, Let x> and let there exists a (x, A)rmatrix ont b, then there is
a (%, A)y-matrix on b.
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Proof. Let {u,; a<x, f<4) is a (x, 4)-matrix on b. By induction on n<w,
define v,y for a<x, f<i as follows
6) Vg = Vg, g t= V (W5, A Oyp) -
. y<i B
It follows by induction on » from (5) and (iv) that for any y<x, «<2i and n<w

() Uy Ay, =0  whenever o 7y.

Now define 1,5, a<x, f<A in the following way

Vup it axl,
- v, if a=p<i,
(7) uuli = As\y/<xn§/m ’
i ]um,,/\ V Vil it a+#pand a<i
ASy<x n<o

‘We shall show that (1) is a (x, A),-matrix. Conditions (i), (ii) are satisfied for a1,
If <4, we have v,,<u, from (6) and (i), (ii) follows from ™.
To prove (iii), we start with the formula

®) : Vg = ugpV (Vg \/ ).
a<x ::z. A$“<’f
It follows from (5), (6) and (7) that

©) Vig=\(gn V Vo )=\ \ it
::;. ASy<xn<o

a<i n<wA<y<x

Since u,; = v for any y, A<y<w, we have

V ”;'I?LIV“\/ =\ \/ = Uy

n<o ASy<x A<y <x n<o ASy<y
and (i) follows from (8) and (9).

The proof of (iv) must be considered for several cases. If «;, # B and a, # B
(iv) follows from the fact that Upp<Vyp for i =1,2 and from our assumption
that v,y’s-are elements of a (x, 1)-matrix. If o <f = 0y <i then

Ugag S\ (Vagp A Vygy) = -
24 \aXl( waf Aﬁ\}\’/<xn>{> ? 2) l$\v/<x nyo bw A “/iﬁ
according to (7) and (5). Similar argument applies to the case ¢; = B<a,<d. If
g = B<i<a,, (iv) follows directly from (7). This completes the proof of the lemma.

Combining Lemmas 1-3, we get

THEOREM 4. Let x, A be cardinals x> ). Let there exist a (%, 2); or a (A, %)-matrix
on a complete Boolean algebra b. Then Sor any two cardinals x,, Ay such that
w2n1Z A 22 there exists a (uy, A)y-matrix on b.

Remark. A special case of the theéorem was proved in [12] with the use of generic
ultrafilters. Boolean matrices are motivated by Boolean valued models, but they
ha‘ve interesting-applications to algebra and topology. With the use of Boolean ma-
trices, the well-known Kripke’s embedding theorem can be reformulated as follows.
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TueoreM (Kripke [6]). Let b be a complete Boolean algebra, let
(10) s m<0, a<iy

be an (8o, As-matrix on b for A uncountable.

Then for any Boolean algebra b, such that
(11) [Sp(b)l<a
there is an embedding of b, inco b preserving all the suprema. If in addition (10) is dense
in B, the conclusion of the theorem holds if (11) is replaced by |b,|<A.

Boolean matrices built up from régular open sets of a topological space were
used in [12] to decompose the space into nowhere dense sets. There are also other
types of Boolean matrices e.g. matrices corresponding to mappings that change
cofinality in Boolean extensions. Properties of such matrices are investigated [14].

§ 2. Maximal subalgebras. To motivate the concept of maximal subalgebras,
we shall consider an equivalence relation on the set of all complete subalgebras
of a complete Boolean algebra. We shall first introduce some notation and termin-.
ology. Let b be a complete Boolean algebra. For any set a of elements of & and for
any ueb, let un Aa denote the set

uA na={wAu; wea}.
For any two subalgebras by, b, of &, let I(b,, b,) is defined by
(12) I(by, by) = {ueb; un Aby, = un Ab,}.
‘We shall write b;~b, if I(b,, b,) is a dense set in b.
Tt follows from the definition that ~ is an equivalence relation on the set of all

subalgebras of b. Reflexivity and symmetry are clear and transitivity follows from
the fact that for any veb, v<u we have

UA Aby = uA Aby—»vA Ab, = 0A AD,.

Relation ~ refllects some simple properties of subalgebras e.g. if b,~b, and b, is
atomless then so is b,. )
" DERINITION. A subalgebra b, of a complete Boolean algebra b is called maximal
if b ~b. .
It follows from the deﬁnitioﬁ that b, is a maximal subalgebra of b iff
{ueb;un ab; = blu} is dense. Consequently, b, has the following local maxi-
mality property: for any subalgebra b, of b and any non-zero v € b, there is a non-
zero w, w<v such that wA Ab,SwA AD,.

Lemma 1. Let uel(hy, by), w, = my(u) for i = 1,2. Then partial subalgebras
byluy, by|u, are isomorphic.

Proof. It suffices to put

J@) = m,(0An)

for ve by |u,. Then f is the desired isomorphism.
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Levma 2. (Mc Aloon [8]). For any ue I(by, by), there is a ve I(by, by), vu
and maximal with respect to <.

Proof. It suffices to show that I(B,, b,) satisfies the assumption of Kuratowski-
Zorn. Maximum principle. Let a <l (bi,_ b,) be linearly ordered by <. Letu = \/q.
‘We shall show that u e I(by, b,), i.e., that for any ve b, there is we b, such that
uAp = uAw. We can assume that v<<m, (1) without any loss of generality. It follows
from our assumptions on a that :

unv =\ (trv) = \/ (tAm,(tAD))

tea tea
= V1A m,(fA0) = uam,(uav).
teg tea

This completes the proof.
Lemma 3. Let b ~b,. For any maximal u, ueI(by, b,), we have
(13) Ty (W) V Ty, (1) = 1.

Proof. Suppose that (13) does not hold. There is a non-zero v, v € I(h,, b,}
such that v A (75, (1) v 7,(u)) = 0, for I(By, b,) is dense in b. Since u, ve I(by, b,),
for any w; € by, there exist 5, £€b, such that wyAu ==sAu and wiAv = tAD.
I we put

Wy = (SAT,))V (E~mp,()), then w,eb,
and
wiA@VY) = woAvo),

Then uvve (b, b,) which contradicts to the maximality of u.

COROLLARY 4. Let b, be a maximal subalgebra of a complete Boolean algebra b.
Let u be a maximal element of I(b,, B), then m, (i) = 1 and b, is isomorphic to partial
subalgebra b|u.

THEOREM 5. 4 complete Boolean algebra b is rigid iff there is no proper maximal
subalgebra of b.

Proof, a) Let b, be a proper maximal subalgebra of b, Take u a maximal element
of I(b,, B). According to Corollary 4, b, is isomorphic to partial subalgebra b|u.
Since by is a proper subalgebra of b, u # 1 and there exists a maximal element
vel(by, b), v # u. By the same argument as for u, we get b, isomorphic to b|v and,
consequently, b]u isomorphic to b|v. The isomorphism of partial subalgebras
blu, b|v can be extended to a non-trivial automorphism of 5.

b) Suppose that b is not rigid. Let f be a non-trivial automorphism of 4. Then

there are two disjoint non-zero elements , v € b such that fw) = v. It can be easily
verified that

by = {WiVWaVwat Wi, Wy, Waeb& Wy A(uvy) =0 & w,<u w, = flwy)}

is closed under infinite Boolean operations and under —, The corresponding subal-

gebra is maximal, since #A Aby = blu and vA A D, = blv. It is a proper subal-
gebra, for u¢b,.
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DEFINITION. (i) An atomless complete Boolean' algebra b is minimal if -any
atomless subalgebra of b is maximal. ,

(if) An atomless complete Boolean algebra is simple if it has no proper atomless.
subalgebra. :

The concept of minimal Boolean algebras was introduced by McAloon in [81.
He showed that any complete Boolean algebra is simple iff it is rigid and minimal.
The concept of maximal subalgebras was implicit both in the definition of minimality
and in the proof of his theorem. Using the method of [8], we have proved Theorem 5
which is, in our opinion, the heart of McAllon’s result. The character‘ization_ of
simple Boolean algebras is an easy consequence of it. Our original version of the
proof of Theorem 5 was motivated by the following result. .

TueoREM (Yech [2]). Let a complete Boolean algebra b contain a proper complete
subalgebra by. Then there is a subalgebra b, of b which is not rigid. If by is atomless,
'the same holds for b,.

We shall give here an alternative proof based on the notion of maximality. Let u
be an element of b which does not belong to by. Put

byu] = {(xAWV(yA —u); x,y€ b}
Then b,[1] is closed under Boolean operations. Let b, denote the corresponding.

complete subalgebra. Then by is a maximal subalgebra of b, since wA Aby = by|w,
w = u, —u. It follows from Theorem 5 that b, is not rigid. If we put

¢t o () AU, ¢ = mA - = ctve,

it should be noted that c e b, and ¢*, ¢” are maximal elements of I(bylc, b,| ).
Consequently, there is an automorphism f of b, with fleH) =c¢".

DerNrrioN. For a complete Boolean algebra b, let by, denote the subalgebra
of all elements of b that are left fived by any automorphism of b.

PROPOSITION 6. Assume that by is @ maximal subalgebra of a complete Boolean
algebra b. Then ‘

(i) {u, blu is rigid} is dense in b,

ii) by is rigid. ‘ '

i’: 0 or;if (i) We shall show that for arbitrary u € I(b, byg) the partial a%g‘.:bm blu
is rigid. Suppose on the contrary that there is u e I ('b, by,) and 2 non-trivial ailto-
morphism fof b|u. Let v, w<u be two non-zero d1530{n? elements suc}% that f(v) 1; w,)
Extending f by identity outside of u we get a non-trivial automorphism of b. If we
put & = =, (v), we haye v<7D & by, and

14 w=f)<fE) =10.
Tt follows from our assumption on u and from v<u that v = uAd, Bm,:, acco(rdmg

to (14), we have vvwSuvi—a contradiction. o :
(ii) It suffices to take a maximal u € I(b, b,y and b‘f‘“ is isomorphic to blu
according to Corollary 4. The conclusion follows from (i).
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The following example shows that the maximality of b,;; need not imply that b is
rigid.

Let b, be a rigid complete Boolean algebra. Let b be the summ of two copies
«of by, i.¢., the elements of b are of the form (v, w), v, w & by and (v, w1 >< vy, W,
iff v; <v, and wy<w,. Then b,;, consists of all elements (v, v, ve b,. It can be
verified that b, is maximal in b. If we put f({v, w)) = {w, v) for any (v, w) €b,
‘then f is a non-trivial automorphism of b.

§ 3. Rigid Boolean algebras of power &, and CH. The problem of powers of rigid
‘(non-complete) Boolean algebras has been solved under Generalized Continuum
hypothesis. Chronologically, Katétov [S] constructed a rigid Boolean algebra of
‘power 2%, Lozier [7] has shown that for any infinite cardinals, there is a rigid Boolean
algebra of power 2*. McKenzie and Monk [9] extended this result and proved
that for any strong limit cardinal » there is a rigid Boolean algebra of power s, so
under GCH, there is a rigid Boolean algebra of power » for any uncountable x.

The question remains open whether the same can be proved without GCH,
or particularly, whether the existence of a rigid Boolean algebra of power 8, can
be proved without the Continuum hypothesis. Our result gives a partial solution to
the latter problem, namely we shall show that “2%°>x, 4 there is a Boolean algebra b
-of power 8, such that both b and the completion of b are rigid” is consistent relatively
to ZFC. Our consistency proof is based on a result of Jensen [4] who constructed
-a Suslin tree with particular properties in the constructible universe L.

Let us recall some terminology concerning trees. A. tree is a partially ordered
set z, <) such that for any x e £ the set {y; y<x} is well-ordered. The order type
-of this set is denoted by |[x|] and called the order of x. The set of all x & 7 of order o is
«called the a-th level of t. A branch is a linearly ordered subset of z containing with
-any x €z the set of all its predecessors. The length of a branch is the supremum of
the orders of all its elements. An antichain is a set of pairwise incompatible elements
-of . We say that {z, <) is a normal w,-tree if t has exactly w, levels and if

(i) every point has at least two immediate successors,

(i) for each x et and each o> |x]|, there is ye ¢, [I7]l = « such that y>ux,

(iii) every level of ¢ is at most countable.

A normal ,-tree is called"Suslin free if in addition, every antichain is at most
-countable.

Lemma 1. Let {t, <) be a normal w,-tree. Let ¢ be a mapping from t to the set
«of real numbers with the following property

(15) x<y-e(x)<e(y) . for any x,yet.
Then {t, <) is not a Suslin tree, -

Proof. We shall show that there is‘an uncountable antichain in f. For any
et with a nop-limit order |[y|| = a+1, let d(y) be a rational number such that
-€(y7)<d(¥)<e(»), where y~ is the only element such that Yy <yand |[y7|| = o

Having defined d, we can assign a function f, to any x € 7 such that f, maps ||x|| to
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lm“ t of rational numbers. For any f<|lx|], put £,(8) = d(»), where y is the only

element of £ with {[y]| = B-+1 and y<x. It follows from the definition and from (15)
that all f, are strongly increasing functions and that fyg e w.hene\./er XK.

We say that functions f.,f,, x,» &t are incompatible if néxther £/, mor
£,&f,. Clearly, if fi., [, are incompatible functions, then y, x are m?ompatlble el-
eymcnts of t. To complete the proof, it suffices to show that there exist ; mutually
incompatible functions in the set {f,; xef}. We have

(16) U{D(f); xet} = o,

since ¢ is an o -tree. For any rational number g, let

U, = {aeow; Axe (Sl =)}

It follows from (16) that there exists a rational number g, such that Uy, is uncoun-
table. For any o & i, take an x, € ¢ such that £, (@) = go. Then the set {frs e ug}
has the desired property. '

Our consistency result is based on a construction due to Jensen [4] of a Suslin
o,-tree in the constructible universe L. . o .

TeeoreM (Yensen). There exists a normal «-tree t in L with the Sollowing
properties

@) V = L—t is Suslin,

(i) ©f = w,—t has at most one w-branch. '

We remember only some facts on the tree, the reader is re'fejrred t9 [4] for more
detail. The elements of # are certain countable s.et.luences of positive rational numbers
satisfying (among others) the following conditions:

for any two sequences X = (Hyp PO, Y = s y<BYs o, B<oy

= X, =P, <00
an o(e,0) = L Il

(18) if o is Limit, a<p and x,y are incompatible then

T |x,—p>0 for any d<a.
ﬁ<7<y .

It b = wy, it follows from (18) that the cx?stence 'of two o i-bralzcheslm f, ch)):j:l
imply that there exists an. uncountable strongly 1noreas1‘ng sequence c; rear [:ai ‘Susmi
Tn what follows (except for Lemma 3), let t = {1, < denotu_stle no el Suslin
w,~tree in L from the proof of Jensen’s theorem. Let <, be the .mbversebodde gimo
dering <2 x5,y iff y<, X, The partially ordered set {t, <, C;,m <e ;nsxuzh lod into
a unique (up to isomorphism) complete Bool_@fmf algebra b, = t,,b <y the‘cemmty
dense in b,. Incompatible elements of tare dlspmt as el'ements ob t;)sothe Sotularity
of b, is determined by the cardinalities 015 anm(c]h:u;l:v?t;ei?m ; _p :Wer sk ot
balgebra of b, containing ;. bo and 7 he same It )
;;?giettim:r ?ﬁegcxistence c;f a non-trivial automorphlsml of ¢ implies n;n—ggelildzzt:o

mérphisms of both b, and b, and that any automorphism of by can be
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an automorphism of b,. Hence, to show that b, is rigid,‘it suffices to prove that b,
has no non-trivial automorphism.

TaeoreM 2. Let t = (t, <) be as above. If t is a Suslin w,-tree (in the uni-
verse V), then the complete Boolean algebra b, is rigid.

Proof. Instead of £, we shall deal with the subset s<#, consisting of all sequences
of limit length. It is clear that s is a cofinal subset of # with respect to <, since £ is

normal. Consequently, 5 is dense in b,. For any xy, x,, ¥, y, € s such that T
are incompatible, we have

1% (1 <y %y &y, < 72)20<a(xy, pi) <o (xy, ¥,)

according to (17) and (18). -

Suppose that there is a non-trivial automorphism 4 of 5,. Using Lemma 1 we
shall show that this assumption is contradictory. Let uy, 4y be two disjoint non-zero
elements of b, such that A(u;) = u,. Let < denote the partial ordering of the complete
Boolean algebra b,. For i = 1, 2, let s|u; be the set of all xe s, x<u;. Then s|u;
is dense in the partial algebra b,]u; for i =1,2 and, consequently, 27" (s]uy)
is a dense subset of &,|u,.

By induction on a<w,, we shall construct subtrees 11, 2. of s|uy, slu, respect-
ively, 7] being the ath level of £. To begin with, take arbitrary x, € §|uy and
Yo.€5|uy, ¥o<h(x,) and put

1= {x}, #= {»}.

Having constructed #}, i = 1, 2 for any f<azt+1, let fe41S5|uy be a partition of y,
strictly finer than 4z; and #L,,=5|u, be a partition strictly finer than A~ 2,

For o limit, let 7; be a refinement of all partitions 1, B<« (such a refinement
exists, since ¢ is a normal w,-tree). Let 2% be a refinement of the partition A2,
Fori=1,2weset## = |J . We shall show that for t', there is a mapping e which

a<oy

satisfies the assumptions of Lemma 1. For any a<o;, X €1, the partition e
of yg is finer than 2. Put e(x) = o (x, (%)), where y(x) is the only element of > such
that y(x)=h(x).

Since u,, u, are disjoint, x, y(x) are incompatible in 2. It follows from the con-
struction of #', #* that for any x,, x, € !, we have
Xy <Xy (%) <y(xy) .

But the restriction of the partial ordering <

to the set # is the inverse of the order-
ing <,. Thus according to (19), we have

X1 <xp-re(x)<e(x,)
for any x,, x, € t*. This completes the proof of the Theorem since from Lemma 1 we
get that ' is not Suslin and this contradicts to our assumption on #.

To get the consistency result, we take a Boolean extension of L in which the
assumptions of Theorem 2 are satisfied but the Continuum hypothesis fails.
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Let Cant(¥y, 82) denote the complete Boolean algebra of all regular open sets
of the product “*{0, 1} in L endowed with the normal product tg’pologz': ;‘ gr any
mapping A from a finite subset of w;, to {0, 1} 'the. set uy = {fe‘ -.{0,.11 ,Itz‘_f}llls
faguiar open and the set ¢ of all subsets uy, & finite is dense in (;am(sm Ny). 1‘15 \;le. -
known that the just described complete Boolean algebra satisfies coun‘cab.e (1: ain
condition. Let Z be a L-generic ultrafilter on Cant(sy, 8,), then all cardllnlzz s are
preserved and 2% = &, in the Boolean extension L[Z]. These facts are we I-known
(proof can be found e.g. in [10], [14]). b

LemumA 3. Let ¢ = {t, <) be a Suslin w,-tree in L. Let Z be uas above,
then t is a Suslin w~tree in L{Z]. o ' -

Proof. Suppose that ¢S ¢ is an uncountable antichain in L[Z'v]., .Sln?e Z is
a L-generic ultrafilter, we can assume (see [14‘], 4219) that there is a disjoint 1e1m1]fn
rel, retxCant(sy, 8p) (e. ™! is a mapping from ¢ to Cant(so, 8,)) such that
¢ =r"Z

Put f=r"" and define

(20) £ =FfW=V {f(); » # x, x,y are compatible} .
Then for any x,y&t, x # ¥, we have
1) x,y are compatible or fi(x), fi(y) are disjoint.

If we put r, = fi" !, we have
(22) c=rZ=1"2Z.

Since f,(x)<f(x) for any x &, we have ryZer"Z. The reverse inclusion ;
due to ths fact that ¢ is an antichain in £: if there were y € ' Z —ry Z, then f () €
and f,(y) ¢ Z. Then it would follow from (20) that

\ L) wap wyare compatible} € Z

and, "consequently, f(w) e Z for some w compatible with y. So, there would be two

i f tradiction.

compatible elements of ¢—a contradic o

lIn the rest of the proof, we shall restrict ourselves to t1.1§ d-ense subset ¢ des;rltlfat
above. Far any xet, let v,Sq be a set of pairwise disjoint elements suc

. a t, =

\/ Uy = /1("“)

Put ]

go= {(x,uy; usv, & xety.

i / r ¢ s, we have
Then s L and has similar propertics as fy. For any Ly, ud, {p,vyes,
(23)  x, 0 # {p,v)—x, y are compatible or ¥, v are disjoint.

"Z=r'Z= ot g is naturally
But Z is L-generic over Cant (8o, ¥z), thus sr y4 l—;l|r~Zn} Sai.n'(l:‘:easis imoumable
artitioned into subsets ¢,, n<w where g, = (#; |4l = 7. avle
?n L[Z1, it follows that l’i’;/(s)l > 8. Then there is a '1‘1atur'al number 1 such
1" g,| = |s} g,| = 8. The rest of the proof goes entirely in L.
ol = |
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‘We shall apply the partition theorem (see [1])
(249 8= (8, 8o)
to the set

[t @) = {{x.5}; {x,yestq,&x #y}}.
Let

a; = {{x,ud, (p, D} elsh g,]%; x, p are incompatible in ¢},
a = Is} g’ ~a, .

According to (24) there exist either a subset wiSstg,, |w| =8 and wPca,
or a subset w, S5} g, [wa] = 8o, [W,]*Sa,. But both possibilities are contradictory:
the existence of w, implies that W(w,)<7 is an uncountable antichain in Z and the
existence of w, and (23) implies that there is a countable set of pairwise disjoint
elements of g,. It can be shown by induction on 7 that any subset of g, consisting of
pairwise disjoint elements is finite (having cardinality 2" at most). Thus we have
shown that if there is an uncountable antichain in L[Z], then ¢ has an antichain of
the same power in L. This completes the proof.

Let ¢ be the normal Suslin w,-tree in L constructed by Jensen, let Z be as above.
It follows from Lemma 3 and the fact that all cardinals are preserved in L[Z] that ¢
remains the Suslin w-tree in L[Z]. According to Theorem 2, the complete Boolean
algebra b, constructed from #is rigid in L[Z]. The least subalgebra by of b, contain-
ing ¢ has power &, and is rigid, too. This proves the following

THEOREM 4. Con(ZFC)— Con(ZFC -{—2“">N1 + “there exists a rigid Boolean
algebra of power s, the completion of which is rigid as well”).

‘We shall finish with the following observation.

PROPOSITION. Let b, be as above, let b be the product of two copies of b, (see [11]).
If o} = w,, then there exists a (8o, Ny),-matrix on b.

Proof. Let Z be a generic ultrafilter on b. It follows from the well-known prod-
uct lemma that Z = Z, x Z,, where Zy, Z, are generic ultrafilters on b, Z, + Z,.
Then ;= Z, nt,i=1,2 are two different ,-branches in ¢ in the generic exten-
sion determined by Z. According to (ii) from Jensen’s theorem, &, must be collapsed

in the generic extension, the last condition being equivalent to the conclusion of the
proposition.

Added in proof. The consistency result of the last section was announced in Notices AMS
21 (1974), ASF)O. Since then, S. Shelah has proved in ZFC that for every uncountable cardinal
% there is a rigid Boolean algebra of power » with the rigid completion.
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