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The equivalence of absolute almost continuous
retracts and g-absolute retracts

by

Kenneth R. Kellum * (Birmingham, Ala.)

Abstract. In this paper we are concerned with types of generalized retracts and &-retracts
in which the retraction function may or may not be continuous. We first consider a generalized type
of retract in which the retraction function belongs to an arbitrary class of functions which is assumed
1o be closed under composition with continuous functions. Theorems are proved which are generaliz~
ations of well-known theorems about AR’s and eAR’s. These theorems hold if the class in question
is the class of the continuous functions, the class of the almost continuous functions, or a new class
of functions which we call weakly continuous. These results, together with the proof of the propo-

sition which is our title, lead to a number of other equivalences.

1, Tntroduction. In {111 T reported that an almost continuous retract of an-n-cube
need mot be compact. These spaces are of interest because they must posses the
fixed point property. The present paper is the result of studying the special case of
those almost continuous retracts which do happen to be compact. The main result
implies that a compact subset ¥ of an n-cube X is an almost continuous rettact

of X it and only if ¥ is an &-retract of X.

Suppose Y= X. That Y is-a retract of X means that there exists a continuous
function (called a retraction) r: X— ¥ such that x = r (%) for each x e Y. This import-
ant concept is due to Borsuk and has been studied extensively (see [1] and [9]).
Recently the notion of a retract has been generalized in two seemingly different ways.
First, Noguchi [16] and later Gmurczyk [4], [5] and Granas [6] studied &- (or. approxi-
mative) retracts in which the requirement that x = r(x) is weakened. Second, motiv-
ated by question 10 of Stallings [17], several authors have studied connectivity
and almost continuous retracts in which the requirement that the retraction function
be continuous is weakened (see [2], [3], [7], [10], [vll]‘and [12]). Here we show that

these two lines of research are in fact closely related.

We adopt the following conventions. All spaces, except the function spaces
considered below, are assumed to be separable metric. If x and y are' points of

a space X, d(x,y) denotes the distance from x to. y. I xe X, then

N(x, 8 = {yeX: d(x,y)<e}

* Author supported in part'by NSF Grant GY-10729.
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‘We regard a function as being identical with its graph. By a map we mean a con-
tinuous function. The Hilbert cube is denoted by the letter Q.

2. Definitions. Suppose f: X— Y. That f is almost continuous means that if
f< D, where D is an open subset of X x ¥, then there exists a map g: X— Y such that
g<D. Now, denote by Fthe set of all functions from Xinto Y and let T'be a topology
for F. We say that fe F is almost continuous relative to T il whenever feUeT,
then U contains a continuous function in F. In this terminology, an almost continu~
ous function is one which is almost continuous relative to the graph topology intro-
duced by Naimpally [14]. For convenience, we call a function weakly continuous
if it is almost continuous relative to the compact-open topology. In case X is compact,
weak continuity is the same as I';-almost continuity as defined by Naimpally and.
Pareek [15]. Note that an almost continuous function is weakly continuous.

Since we are interested in types of retracts in which the retraction function may
belong to several different classes of functions, in Section 3 we generalize some stan-
dard results of retract theory to retracts involving an unspecified class of functions.
This motivates the following definitions. Suppose P is a class of functions. We say
that fis a P function if f belongs to P. That a subset ¥ of a space X is a P retract
of X means that there exists a P function r; X— ¥ such that x = r(x) foreach x € Y.
That Y is an e-P retract of X means that for each £>0 there is a P function r: X— Y
such that d(x, r(x))<s for each x € Y. That Y is an absolute P retract (resp. absolute.
&P retract) means that ¥ is a compactum (compact metric space) and that when-~
ever Y is homeomorphic to a closed subset ¥ of a space X, then Y’ is a P retract
(resp. an &-P retract) of X.

3. P retracts. Suppose P is a class of functions. We say that P is O. K. if
fgh: X—X, is a P function whenever f: X;—X, and h: X;—X, are continuous
and g: X,-X; is a P function, where X,, X;, and X, are compact.

For the remainder of this section, we use the abbreviations APR and ¢APR
for the terms absolute P retract and g-absolute P retract, respectively.

THEOREM 3.1. Let P be an O. K. class of functions. That Y be an ¢APR ()'esp.
APR) it is necessary and sufficient that Y be homeomorphic to a closed e-P retract
(resp. P retract of Q).

Proof. We give only the proof for the &P retract case.

Necessity. This follows easily from the fact that ¥ can be imbedded in Q'
([11], p. 241).

Sufficiency. Suppose #: ¥Y—»Y' is a homeomorphism, where Y’ is a closed ¢-P
retract of Q. Let k: Y—Y" be a homeomorphism, where ¥’ is a closed subset of
the space X. Let £>0. By the generalized Tietze’s extension theorem ({11], p. 251),.

the map hk™1: Y"'— Y’ has a continuous extension f over X relative to Q. By the
uniform continuity of kA™*: ¥'—¥", there exist >0 such that if d(p;,¥,)<8,
then

k™ (y,), Kb~ (y)) <e .
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Let r: Q—Y’ be a P function such that d(y,r(»))<d for each ye Y. Then
kh~trf: X—Y" is a P function. Finally, if ye ¥", f(y) = kk~*(y), so

d(Re™() = (), () <6
and
d(kh™ Bk () = », bk~ f(9)) <s .
Thus, Y is an &P retract of X and the proof is completed.

TueorEM 3.2. Let P be an O. XK. class of functions. A necessary and sufficient
condition that a compactum Y be an APR (resp. an eAPR) is that if f': X' Y is-
continuous, where X" is a closed subset of a space X, then there exists a P function
f: X—Y such that f(x) = f'(x) for each x €X' (resp. for each £>0, there exists
a P function f: X—=Y such that d(f(x),f'(x))<e for each xeX).

Proof. Again, we give only the proof for the &-P retract case.

Necessity. This follows easily from Theorem 3.1.

Sufficiency.Leth: Y—Y’< Q be a homeomorphism. Lete>0. By the umform
continuity of & there exists §>0 such that if d(xy, x,)<8, then d(h(x1), h(x2))<e.
By hypothesis, there exists a P function f: Q— Y such that d (), A~ (%)) < for
each xe Y. Then Af: Q—Y’ is a P function and the proof is completed.

COROLLARY 3.3, Let P be an O. K. class of functions. A closed subset Y of
an APR (resp. eAPR) X is an APR (resp. eAPR) if and only if Y is a refract (resp.
g-retract) of X.

COROLLARY 3.4. Let P be an O. K. class of functions. A closed subset Y of an AR.
(resp. eAR) X is an APR (resp. eéAPR) if and only if Y is a P retract (resp. &-P retract)
of X.

4. The weakly continouus functions are O. K. Two examples of O. K. classes of
functions are the continuous functions and the Darboux functions. That the almost’
continuous functions are O. K. follows from Propositions 1 and 4 of [17]. This
brief section is devoted to showing that the weakly continuous functions also form
an 0. K. class. The assumption that all spaces are separable metric is not needed in
the next two theorems. '

TaroREM 4.1. Let f: X—Y be weakly continuous and g: Y—Z continuous.
Then gf: X—Z is weakly continuous.

Proof. For 1<i<n, let U, be a compact subset of X and ¥; an open subset.
of Z such that gf (U,)c Vi. Then

= {h: X=Z: h(U)<=Vy; 1<z<n}
is a basic open nelghborhood of gf in the compact-open topology. Now, since
= (b X ¥: h(U) g~ (¥D; 1<i<n}

is a neighborhood of £, D’ contains a ‘continuous function, #: X Y Clearly, gh e D,

" and the proof is completed.
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We omit the proof of the following theorem because it is similar to that of
‘Theorem 4.1.

TaEOREM 4.2. Let f: X—Y be coniinuous and g. Y—Z weakly contimious,
where X is a compact Hausdor|f space and Y is Hausdorff. Then gfs X—Z is weakly
continuous.

5. The main results.

THEOREM 5.1. Suppose Y is a compact e-weakly continuous retract of a space X,
Then Y is an e-retract of X.

Proof. Let &>0. Since Y is compact there exist points x;, x,, ..., x, of ¥ such
that {N(x;,4e): 1<i<n} covers Y. Let. D be the set of all functions #: X—Y
such that .

h(cl(N(x;,38) n Y)Y —N(x;, %)

for each 1<<i<n. There exists a weakly continuous function r: X-Y such that
d(x, r(x))<}e for each x e Y. Since, as is easily verified, re D, and. D is open in
the compact-open topology, .D contains a continuous function g. But then
d(x, g(x))<e for each x e ¥, as required.

Suppose that f: X—Y is not almost continuous. We say that K is a minimal
blocking set (MBS) of fif K'is a closed subset of XX Y, fn K =@, 9 nK £ & if
g: X—Y is a map, and no proper subset of X has the preceeding properties.

THEOREM 5.2. Suppose f: XY is not almost continuous, where X is compact
and Y is an eAR. There exists a MBS K of fand p(K) is a non-degenemte continuum,
where p: Xx Y—X is the natural projection.

Proof. That X exists follows from Theorem 2 of [11]. Also, p(K) is non-de-
generate bécause K meets every constant map from X into Y. Assume p(K) is not

a continmum. Then p(K) = 4 U B, where 4 and B are closed non-empty and dis-
joint. Now,

Ky =K—(Knp™*B) and K,= K—(Knp(4)

-are closed, proper subsets of K, so, by the minimality of X, there exist mapsgy: X—Y
and g,: X—Y such that g; N K; = & and g, n K, = @. Thus, p(g, n K)=4
and p(g, n K)=B. Let g = g1|B U g,|4. Then g: p(K)—Y is continnous, and ¢
-and K are closed, disjoint subsets of the compact space X'x Y. Let ¢ = d(g, K). By
‘Theorem 4.2, there exists a map g’: X—Y such that d(g(x), g'(x))<¢ for each
x e p(K). But then g’ n K = @, a contradiction. This completes the proof.

We now extend the custom of abbreviating the terms absolute retract and
g-absolute retract by AR and eAR in a natural way. The terms absolute almost
‘continuous retract, é-absolute almost continuous retract, absolute weakly continu-
ous retract and e-absolute weakly continuous retract are  abbreviated by AACR,
<3AACR AWCR, and sAWCR, respectively.

icm
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TueorEM 5.3. Let Y be a compactum. The following statements are equivalent
to each other.

(1) Y is an AACR.

(2) Y is an AWCR.

(3) Y is an eAWCR.

(4) Y is an eAACR.

" (5) Y is an eAR.

Proof. The implications (1)—(2), (2)—(3), (5~ (4), and (4)~(3) are allimmediate.
That (3)—(5) follows from Theorem 5.1. We will establish the equivalence of the
five statements by proving that (5)-(1). )

Let ¥ be an séAR. By Theorem 4.1, we may assume that Y« 0. Denote by © the
set of all closed subsets S of Q x ¥ such that p(S) contains c-many points not in Y.
Using transfinite induction we may define a function r:- Q- Y such that if xe Y,
then x = r(x) and if Se @, then rn S # @. (For more detail on the construction
of r see the proof of Theorem 1 of [10].) We complete the proof by showing that r is
almost continuous. Assume that it is not. Then, by Theorem 5.2, there exists a MBS X
of r and p(K) is a non-degenerate continuum. By the construction of r, we must
have that p(K)< Y. Let ¢ = d(K,r|Y = Y?). There exists a map f: Q—Y such
that d(x, f(x))<e for each x e Y. But then f n K = @. This contradiction com-
pletes the proof. "

The following two corollaries are consequences of Theorems 3.1, 3.2 and 5.3.

COROLLARY 5.4. Let Y be a compactum. The following statements are equiv-
alent to each other.

(1) Y is an AACR.

@) If f': X'— Y is continuous where X' is a closed subset of a space X, there
exists an almost continuous function f: X— Y such that f(x) = f'(x) rfor each x € X',

(3) If f': X'—Y is continuous where X' is a closed subset of a space X, for
each >0 there exists an almost continuous furiction f: X— Y such that d (F). 1 x)<e
for each xe X'

(4) Y is homeomorphic to a closed almost continuous retract of O.

(3) Y is homeomorphic to a closed e-almost continuous retract of Q.

COROLLARY 5.5 Corollary 5.4 holds if “almost contimuous” is replaced by “weakly
continuwous” throughout.

It is natural to ask if the requirement that the function f* in parts (2) and (3} of
Corollary 5.4 be continuous can be replaced by the requirement that f/ be almost
continuous. We now show thar this is the case, obtaining a cute analogy to a standard
theorem of retract theory.

THEOREM 5.6. Let Y be a compactum. The following statements are equivalent

to each other.
(1) Y is an AACR.
() Iff': X'= Y is almost continuous, where X' 'is a closed subset of a space X,
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there exists an almost continuous function f: X— Y such that J(x) = f'(x) for each
xe X’

() I'f': X' Y is almost continuous where X" is a closed subset of a space X,
Jor each e>0. there exists an almost continuous function fi X=Y such that
A(f(X), f'(x))<e for each xe X':

Proof. Clearly (2)—(3) and (3) implies statement (3) of Corollary 5.4, so we
need only prove that (1)—(2).

Let h: X~Z<=( be a homeomorphism and let Z' = A(X"). We may define
a function g: Q— ¥ such that if K is a closed subset of O x ¥ such that p(K) has
c-many points not in Z’, then g n K # @ and such that g(x) = f’A~!(x) for each
x€Z'. Now we show that g is almost continuous. Assume that it is not and let K
be a MBS of g. By Theorem 5.2 and the definition of g, we have that p(K)=Z".
Now, f'h"YZ’: Z'> Y is almost continuous by Propositions 4 and 2 of [15]. Since
Knfh™*|Z" = @, there exists a map j': Z'~ Y such that j' » K = @, Since ¥ is
an AACR, there exists an almost continuous function j: Q- Y such that J&x) =Jj'(x)
for each x € Z'. But then j n K = @, leading to a contradiction. Thus g is almost
continuous. Let f'= gh: X— ¥, and the proof is complete_d.

6. Questions and remarks.

1. Since an n-cube is an AR, by Corollary 3.4 and Theorem 5.3, the compact
almost continuous retracts of an n-cube are precisely its compact &-retracts. The
problem of characterizing the non-compact almost continuous retracts of an n-cube
remains open.’ Since an open interval is an e-retract of its closure, it is clear that the
methods of this paper will not work in the non-compact case.

2. I conjecture that the analogue for Theorem 5.3 holds for neighborhood re-
tracts. The implications

D->Q)=B)=@(5)
will all hold in much the same way, but I have not found a proof for (5)—(1). By
further restricting the class P, results similar to those of Section 3 can be obtained for
neighborhood retracts. :

3. Under what circumstances is the composition of two weakly continuous
functions weakly continuous?

4. A function f: X— Yis said to be a connectivity function if £|C is a connected
subset of X'x ¥ wherever C is a connected subset of X. We use the abbreviation
“ACR” for “absolute connectivity retract”, In light of Theorem 3 of [2] and the
results of this paper, I conjecture that an ACR is an AR and that an sACR is an eAR.
The connectivity functions are not an O. K. class of functions. I do not know to
what extent the theorems of Ssction 4 will hold for connectivity retracts.

5. One consequence of Theorem 6.3 is that a compact weakly continuous re-
tract of an 7-cell has the fixed point property. In [91 an example is given of a weakly
continuous function on the unit interval which fails to have a fixed point. I do not
know whether a non-compact weakly continuous retract of an n-cell must have
the fixed point property.
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6. In [10] X asked if an almost continuous retract of an almost continuous retract
of an n-cell X is an almost continuous retract of X. By Theorem 5.3, the answer to
this question is “yes”, if the retracts are assumed to be compact. The question is still
open for the non-compact case.

References

[11 K. Borsuk, Theory of Retracts, Warszawa 1967. )

[2]1 T. L. Cornette, Connectivity functions and images of Peano continua, Fund. Math. 75 (1966),
pp. 184-192.

[3] — and J. B, Girolo, Connectivity retracts of finitely coherent Peano continua, Fund, Math.
61 (1967), pp. 177-182.

[4] A. Gmurczyk, Approximative retracts and fundamental rerracts, Collog. Math, 23 (1971),
pp. 61-63,

[5] — On approximative retracts, Bull. Acad. Polon. Sci, Sér. Sci. Math. Astronom. Phys. 16
(1968), pp. 9-14. -

[6] A. Granas, Fixed point theorems for the approximative ANR-s, ibid. pp. 15-19.

[7]1 S.K.Hildebrandand D. E. Sanderson, Connectivity functions and retracts, Fund. Math, 57
(1965), pp. 237-245,

[8] . B. Hoyle, ITI, Connectivity maps and almost continuous functions, Duke Math, J. 37 (1970),
pp. 671-680. S .

[9]1 S.T. Hu, Theory of Retracts, Wayne State University Press, Detroit 1965.

[10] K.R. Kellum, On a gquestion of Borsuk concerning non-continuous retracts I, Fund. Math.
87 (1975), pp. 89-92. .

[11]1 = Omn a question of Borsuk concerning non-continuous retracts II, Fund. Math. 92 (1976),
pp. 135-140. .

[12] — Non-continuous retracts, Studies in Topology, pp. 255-261, Academic Press, New York
1975.

[13] K. Kuratowski, Topology, vol. I, Academic Press-Polish Scientific Publishers, New York-
London-Warszawa 1966.

[14]1 S. A. Naimpally, Graph topology for function spaces, Trans. Amer. Math. Soc. 123 (1966),
pp. 267-272; )

[15] — and C. M. Pareek, Graph topologies for function spaces, 11, Prace Mat. 13 (1970),
pp. 221-231. . .

[16] H. Noguchi, 4 generalization of absolute neighborhood retracts, Kodai Math. Sem, Rep.
(1953), pp. 20-22. : )

[171 1. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), pp. 249-263.

DEPARTMENT OF MATHEMATICS
MILES COLLEGE
Birmingham, Alabama

Accepté par la Rédaction le 25. 8. 1975



GUEST




