

Le rang de Baire de la famille de toutes les fonctions avant la propriété (K)

par

Zbigniew Grande (Gdańsk)

Résumé. Etant donnée la famille F de fonctions réelles définies sur l'intervalle I=[0,1], désignons par $\alpha(F)$ le rang de Baire de cette famille; c'est-à-dire le plus petit nombre ordinal α tel que $B_{\alpha}(F) = B_{\alpha+1}(F)$, où $B_0(F) = F$ et $B_{\alpha}(F)$ désigne la famille de toutes les limites des suites convergentes de fonctions de la famille $\bigcup B_{\beta}(F)$.

Dans ce travail je démontre que $a(K) = \omega_1$, où K est la famille de toutes les fonctions ayant la propriété (K). (La propriété (K) a été introduite dans [1].)

En outre j'examine les relations entre le système de Baire de la classe K, le système de Baire de la classe \overline{K} de toutes les fonctions continués presque partout sur I et le système de Baire de la classe P de toutes les fonctions ponctuellement discontinues sur I.

Soit F une famille de fonctions réelles définies sur l'intervalle I = [0, 1].

On sait que le rang de Baire de la famille C de toutes les fonctions continues sur l'intervalle I est égal à ω_1 (le plus petit nombre ordinal indénombrable).

Dans le travail [4] K. Kuratowski a démontré que:

 1° Le rang de Baire $\alpha(P)$ de la famille P des fonctions ponctuellement discontinues sur l'intervalle I est égal à 1.

 2^0 $f \in B_1(P)$ si et seulement s'il existe un ensemble $A \subset I$ de première catégorie tel que la fonction partielle f/I - A est continue.

Remarque 1. Désignons par M la classe de toutes les fonctions réelles définies sur l'intervalle I et mesurables au sens de Lebesgue. Alors $B_1(P) \cap M = B_1(M \cap P)$ (voir [4], la démonstration du théorème IV), d'où il vient $\alpha(M \cap P) = 1$.

Dans le travail [6] C. Mauldin a démontré que:

 3° Le rang de Baire $\alpha(\overline{R})$ de la famille \overline{R} de toutes les fonctions continues presque partout sur l'intervalle I est égal à ω_1 .

 4^0 $f \in B_{\alpha}(\overline{R})(0 < \alpha < \omega_1)$ si et seulement s'il existe une fonction g de classe de Baire α telle que l'ensemble $D = \{x \in I; f(x) \neq g(x)\}$ est contenu dans un ensemble du type F_{σ} et de mesure lebesguienne zéro.

Dans mon travail [1] j'ai introduit la définition suivante:

10

DÉFINITION 1. On dit qu'une fonction $f: I \rightarrow R$ a la propriété (K) lorsque, quel que soit l'ensemble mesurable au sens de Lebesgue A, de mesure positive, la fonction f est ponctuellement discontinue sur la fermeture de l'ensemble de tous les points d'épaisseur de l'ensemble A.

Désignons par K la famille de toutes les fonctions ayant la propriété (K). Il résulte de la définition 1 que

$$B_1(C) \subset K$$
, $\overline{R} \subset K$ et $K \subset P \cap M$.

Dans le travail [1] j'ai montré un exemple de fonction ayant la propriété (K) qu n'est pas borelienne.

A l'aide de cette définition j'ai formulé une condition suffisante et une condition suffisante et nécessaire pour la mesurabilité des fonctions de deux variables (voir [1] et [2]).

Dans ce travail je vais montrer que le rang de Baire de la famille K est égale à ω_1 et j'examine les relations entre

$$\bigcup_{\alpha=0}^{\alpha(\overline{R})} B_{\alpha}(\overline{R}), \quad \bigcup_{\alpha=0}^{\alpha(R)} B_{\alpha}(K) \quad \text{ et } \quad \bigcup_{\alpha=0}^{\alpha(P\cap M)} B_{\alpha}(P\cap M) \ .$$

Dans la démonstration du théorème 2 je profiterai du théorème suivant qui a été démontré dans mon travail [3]:

THÉORÈME 1. Toute fonction $f: I \rightarrow R$ ayant la propriété (K) est la limite d'une suite convergente de fonctions continues presque partout.

Remarque 2. Il existe une fonction f ayant la propriété (K) telle que pour toute fonction g de première classe de Baire, la fermeture de l'ensemble $D = \{x \in I; f(x) \neq g(x)\}$ est de mesure lebesguienne positive.

EXEMPLE. Soit P_1 l'ensemble de Cantor. Le complémentaire $I-P_1$ est la somme de ses composantes. Dans chaque composante nous construisons un ensemble de Cantor (sans extrémités de la composante) et désignons leur somme par P_2 . Supposons que tous les ensembles P_i $(i=1,2,\ldots,n)$ soient définis. Le complémentaire $I-\bigcup_{i=1}^n P_i$ est la somme de ses composantes, car $\bigcup_{i=1}^n P_i$ est un ensemble fermé. Dans chacune de ces composantes nous construisons de nouveau un ensemble

de Cantor et désignons la somme de ces ensembles par P_{n+1} . Soit $A \subset \bigcup_{i=1}^{\infty} P_i$ un

ensemble non borelien, dense dans $\bigcup_{i=1}^{\infty} P_i$ et tel que $A \cap P_i$ n'est borelien pour i=1,2,... dans aucun intervalle ouvert $J \subset I$ pour lequel $J \cap A \cap P_i \neq \emptyset$. Posons

$$f_i(x) = \begin{cases} 1/i & \text{pour} & x \in A \cap P_i, \\ 0 & \text{pour} & x \in I - (A \cap P_i) \end{cases}$$

pour i = 1, 2, ... Soit

$$f(x) = \sum_{i=1}^{\infty} f_i(x)$$
 pour $x \in I$.

La fonction f a la propriété (K), car elle est continue presque partout sur I (en tout point $x \in I - \bigcup_{i=1}^{\infty} P_i$).

D'autre part, quelle que soit la fonction $g: I \rightarrow R$ de première classe de Baire, l'ensemble $D = \{x \in I; f(x) \neq g(x)\}$ est non borelien et dense dans I, donc sa fermeture n'est pas de mesure lebesguienne zéro.

Démontrons maintenant le théorème suivant:

THÉORÈME 2. Soit $1 \le \alpha < \omega_0$. Pour que la fonction $f \in B_\alpha(K)$, il faut et il suffit qu'il existe une fonction $g \colon I \to R$ de classe de Baire $\alpha + 1$ telle que l'ensemble $D = \{x \in I; f(x) \neq g(x)\}$ soit contenu dans un ensemble du type F_σ et de mesure lebesguienne zéro.

Démonstration. Démontrons que le théorème 2 est valable pour $\alpha=1$. Soit $f\in B_1(K)$. Il existe une suite de fonctions $f_n\colon I\to R$ ayant la propriété (K) qui converge ponctuellement vers la fonction f. D'après le théorème 1, on peut supposer, sans diminuer la généralité, qu'il existe pour toute fonction f_n une fonction g_n de première classe de Baire telle que l'ensemble $D_n=\{x\in I;\, f_n(x)\neq g_n(x)\}$ est contenu dans un ensemble E_n du type F_σ et de mesure lebesguienne zéro. Posons

$$h_n(x) = \begin{cases} g_n(x) & \text{pour} & x \in I - \bigcup_{k=1}^n \bigcup_{i=1}^n E_k^i, \\ 0 & \text{pour} & x \in \bigcup_{k=1}^n \bigcup_{i=1}^n E_k^i, \end{cases}$$

où les ensembles E_k^i (k, i = 1, 2, ...) sont fermés et tels que $E_k = \bigcup_{i=1}^{\infty} E_k^i$ pour tout k = 1, 2, ... Comme toute fonction h_n est de première classe de Baire, on a donc:

$$h(x) = \lim_{n \to \infty} h_n(x) = \begin{cases} f(x) & \text{pour} \quad x \in I - \bigcup_{k=1}^{\infty} E_k, \\ 0 & \text{pour} \quad x \in \bigcup_{k=1}^{\infty} E_k \end{cases}$$

est de classe de Baire 2 et l'ensemble

$$D = \{x \in I; f(x) \neq h(x)\} \subset \bigcup_{k=1}^{\infty} E_k.$$

Dans le cas $\alpha=1$, la condition du théorème 2 est donc nécessaire. Soit maintenant une fonction $f\colon I\to R$ telle qu'il existe une fonction $g\colon I\to R$ de deuxième classe de Baire pour laquelle l'ensemble $D=\{x\in I;\, f(x)\neq g(x)\}$ est contenu dans un ensemble E du type F_σ , de mesure lebesguienne zéro. Il existe donc une suite $\{g_n\}$ de fonctions de première classe de Baire telle que $\lim_{n\to\infty} g_n(x)=g(x)$ pour $x\in I$.

Posons $E = \bigcup_{n=0}^{\infty} E_n$, où tous les ensembles E_n sont fermés et posons

$$f_n(x) = \begin{cases} g_n(x) & \text{pour } x \in I - \bigcup_{i=1}^n E_i, \\ f(x) & \text{pour } x \in \bigcup_{i=1}^n E_i. \end{cases}$$

pour n=1,2,... Toutes les fonctions f_n ont la propriété (K). Comme $f(x)=\lim_{n\to\infty}f_n(x)$ pour $x \in I$, on a donc $f \in B_1(K)$ et la condition du théorème 1 est suffisante dans ce cas.

Supposons que le théorème 2 soit valable pour tout β ($1 \le \beta < \alpha < \omega_0$). Démontrons qu'il est valable également pour α . Soit $f \in B_{\alpha}(K)$. Il existe donc une suite $\{f_n\}$ de fonctions appartenant à $B_{\theta_n}(K)$, où $\beta_n < \alpha$, convergente vers f. Ainsi, il existe pour tout n une fonction g_n de classe de Baire β_n+1 telle que l'ensemble

$$D^{n} = \{x \in I; f_{n}(x) \neq g_{n}(x)\}$$

est contenu dans un ensemble E^n du type F_n , de mesure lebesguienne zéro. L'ensemble $E = \bigcup_{n=1}^{\infty} E^n$ est du type F_{σ} et de mesure lebesguienne zéro.

Posons $E = \bigcup_{k=1}^{\infty} F_k$, où tous les ensembles F_k sont fermés. Soit

$$\bar{g}_n(x) = \begin{cases} g_n(x) & \text{pour} \quad x \in I - \bigcup_{k=1}^n F_k, \\ 0 & \text{pour} \quad x \in \bigcup_{k=1}^n F_k \end{cases}$$

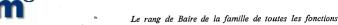
pour n = 1, 2, ... Comme toute fonction \bar{g}_n est de classe de Baire $\beta_n + 1$, on a donc

$$g(x) = \lim_{n \to \infty} \bar{g}_n(x) = \begin{cases} f(x) & \text{pour } x \in I - \bigcup_{k=1}^{\infty} F_k, \\ 0 & \text{pour } x \in \bigcup_{k=1}^{\infty} F_k \end{cases}$$

est de classe de Baire $\alpha+1$ et l'ensemble

$$D = \{x \in I; f(x) \neq g(x)\} \subset \bigcup_{k=1}^{\infty} F_k.$$

Démontrons encore que cette condition est suffisante dans ce cas. Etant données f: $I \rightarrow R$ et g: $I \rightarrow R$ telles que g est de classe de Baire $\alpha + 1$ et l'ensemble $D = \{x \in I; f(x) \neq g(x)\}$ est contenu dans un ensemble E du type F_{σ} , de mesure lebesguienne zéro, nous avons $g(x) = \lim_{n \to \infty} g_n(x)$, où toute fonction g_n est de classe



de Baire $\beta_n \leq \alpha$ et $E = \bigcup_{k=1}^n E_k$, où tout ensemble E_k est fermé. Alors, en posant pour n = 1, 2, ...

$$f_n(x) = \begin{cases} g_n(x) & \text{pour } x \in I - \bigcup_{i=1}^n E_i, \\ f(x) & \text{pour } x \in \bigcup_{i=1}^n E_i, \end{cases}$$

nous allons voir que $f_n \in B_{\beta_n}(K)$. Comme $\lim f_n(x) = f(x)$ pour $x \in I$, on a donc $f \in B_{\kappa}(K)$ et le théorème 2 est démontré.

D'après le théorème 2, 3° et 4° nous avons:

COROLLAIRE. On a

- (i) $f \in B_{\alpha}(K) \Leftrightarrow f \in B_{\alpha+1}(\overline{R}) \text{ pour } 1 \leq \alpha < \omega_0$
- (ii) $\alpha(K) = \omega_1$.

Je vais examiner les relations entre ces classes de fonctions. On voit facilement que:

$$C \subset \overline{R} \subset K \subset M \cap P \subset P$$
.

Remarque 2. $C \subseteq \overline{R} \subseteq K \subseteq P \cap M \subseteq \mathscr{P}$.

Démonstration. Soit

$$f(x) = \begin{cases} 1/q & \text{pour} \quad x \in I, \ x = p/q, \text{ où } p, q \text{ sont entiers et } (p, q) = 1, \\ 0 & \text{pour} \quad x \in I \text{ et } x \text{ irrationnel.} \end{cases}$$

Evidenment $f \in \overline{R}$ et $f \notin C$.

Soit $q: I \rightarrow R$ une fonction approximativement continue telle que q(x) = 0pour $x \in G$ ($G \subset I$ étant un ensemble dense dans I du type G_{δ} , de mesure lebesguienne zéro) et $0 < q(x) \le 1$ pour $x \in I - G$ (voir [8], lemme 11). Alors $q \in K$ et $q \notin \overline{R}$.

Soit $A \subset I$ un ensemble parfait, non-dense, de mesure lebesguienne positive dans tout intervalle ouvert $J \subset I$ pour lequel $J \cap A \neq \emptyset$. Soit $B \subset A$ un ensemble dense dans A, du type G_{δ} , de mesure lebesguienne zéro. Posons

$$h(x) = \begin{cases} 0 & \text{pour} & x \in B, \\ 1 & \text{pour} & x \in I - B. \end{cases}$$

Alors $h \in P \cap M$ et $h \notin K$. Comme la classe P contient aussi certaines fonctions non mesurables au sens de Lebesgue, on a donc $P \neq M \cap P$.

Il en résulte:

Remarque 3.

$$\bigcup_{\alpha=0}^{\alpha(C)} B_{\alpha}(C) \subset \bigcup_{\alpha=0}^{\alpha(\overline{R})} B_{\alpha}(\overline{R}) \subset \bigcup_{\alpha=0}^{\alpha(K)} B_{\alpha}(K) \subset \bigcup_{\alpha=0}^{\alpha(P \cap M)} B_{\alpha}(P \cap M) \subset \bigcup_{\alpha=0}^{\alpha(P)} B_{\alpha}(P) .$$

Démontrons encore:

THÉORÈME 3.

$$\bigcup_{\alpha=0}^{\alpha(C)} B_{\alpha}(C) \subsetneq \bigcup_{\alpha=0}^{\alpha(\overline{R})} B_{\alpha}(\overline{R}) = \bigcup_{\alpha=0}^{\alpha(K)} B_{\alpha}(K) \subsetneq \bigcup_{\alpha=0}^{\alpha(P) \cap M} B_{\alpha}(P \cap M) \subsetneq \bigcup_{\alpha=0}^{\alpha(P)} B_{\alpha}(P).$$

Démonstration. Soit $A \subset I$ l'ensemble de Cantor. Etant donné un ensemble non borelien $B \subset A$, posons

$$h(x) = \begin{cases} 0 & \text{pour } x \in B, \\ 1 & \text{pour } x \in I - B. \end{cases}$$

Evidenment $h \in \overline{R}$ et $h \notin \bigcup_{\alpha=0}^{\alpha(C)} B_{\alpha}(C)$. L'égalité

$$\bigcup_{\alpha=0}^{\alpha(\overline{K})} B_{\alpha}(\overline{K}) = \bigcup_{\alpha=0}^{\alpha(K)} B_{\alpha}(K)$$

résulte du théorème 2, de 3° et de 4°

Démontrons maintenant que

$$\bigcup_{\alpha=0}^{\alpha(K)} B_{\alpha}(K) \neq \bigcup_{\alpha=0}^{\alpha(P \cap M)} B_{\alpha}(P \cap M).$$

Soit $A \subset I$ un ensemble parfait, non-dense et ayant la propriété de Denjoy (c'est-à-dire; si $J \subset I$ est un intervalle ouvert et $J \cap A \neq \emptyset$, alors $J \cap A$ est de mesure le-besguienne positive). Soit $B \subset A$ un ensemble du type G_{δ} , dense dans A et de mesure le-besguienne zéro. Alors tout ensemble C contenant B, du type F_{σ} est de mesure le-besguienne positive. Evidemment, l'ensemble A - B est de première catégorie dans A. D'autre part, s'il existe un ensemble $C \supset B$, du type F_{σ} , de mesure le-besguienne zéro, alors (comme A a la propriété de Denjoy) le complémentaire A - C est un ensemble du type G_{δ} , dense dans A et par conséquent C est un ensemble de première catégorie dans A, ce qui est en contradiction avec les faits que A est un espace complet, $B \subset C$ et I - B est de première catégorie. Soit $k \colon I \to R$ une fonction telle que l'image de tout ensemble parfait, non vide, contenu dans I, est toute la droite R (voir [7]). Posons

$$l(x) = \begin{cases} k(x) & \text{pour} \quad x \in B, \\ 0 & \text{pour} \quad x \in I - B. \end{cases}$$

La fonction $I \in \bigcup_{\alpha=0}^{\alpha(P \cap M)} B_{\alpha}(P \cap M)$, car $l \in M$ et la fonction partielle l/I - A est continue.

Démontrons encore que $l \notin \bigcup_{\alpha=0}^{\alpha(K)} B_{\alpha}(K)$. Supposons, au contraire, que $l \in \bigcup_{\alpha=0}^{\alpha(K)} B_{\alpha}(K)$. Il existe donc un nombre ordinal $\alpha_0 < \omega_1$ tel que $l \in B_{\alpha_0}(K)$. D'après le théorème 2 il existe une fonction $m \colon I \to R$, de classe de Baire $\alpha_0 + 1$ telle que l'ensemble $D = \{x \in I; \ l(x) \neq m(x)\}$ est contenu dans un ensemble E du type F_{σ} , de mesure

lebesguienne zéro. On peut supposer, sans restreindre la généralité, que $E \subset B$. Donc l'ensemble B - E est du type G_* et il n'est pas dénombrable.

D'autre part il existe un intervalle borné $J \subset R$ tel que $l^{-1}(J) \cap (B-E) = H$, H n'est pas dénombrable. De plus l'ensemble $l^{-1}(J)$ est borelien et il contient un ensemble parfait $F \neq \emptyset$ (voir [5], p. 352, Corollaire 1), d'où il vient l(F) = R, ce qui est contraire au fait que $l(F) \subset J$. On a donc $l \notin \bigcup B_a(K)$.

Comme la classe P contient également certaines fonctions non-mesurables au sens de Lebesgue, on a donc

$$\bigcup_{\alpha=0}^{\alpha(P)} B_{\alpha}(P) \neq \bigcup_{\alpha=0}^{\alpha(M \cap P)} B_{\alpha}(M \cap P) ,$$

ce qui termine la démonstration du théorème 3.

Remarque 3.

$$\bigcup_{\alpha=0}^{\alpha(P\cap M)} B_{\alpha}(P\cap M) \neq M.$$

Ce fait a été signalé par K. Kuratowski dans son travail [4].

Bibliographie

- Z. Grande, Sur la mesurabilité des fonctions de deux variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), pp. 813-816.
- [2] On measurability of functions of two variables. Proc. Camb. Phil. Soc. (sous presse).
- [3] Sur le rang de Baire de certaine famille de fonctions, Demonstratio Mathematica 2 (1977) (sous presse).
- K. Kuratowski, Sur les fonctions représentables analytiquement et les ensembles de première catégorie, Fund. Math. 5 (1924), pp. 75-86.
- [5] Topologie I, Warszawa 1958.
- [6] R. D. Mauldin, The Baire order of the functions continuous almost everywhere, Proc. Amer. Math. Soc. 41 (1973), pp. 535-540.
- [7] I. Halperin, Discontinuous functions with the Darboux property, Amer. Math. Monthly 57 (1950), pp. 539-540.
- [8] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), pp. 1-54.

Accepté par la Rédaction le 9, 4, 1975