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On pure global dimension of locally finitely presented
Grothendieck categories
by

Daniel Simson (Toruf)

Abstract. In the paper we define and investigate a pure global dimension of any locally finitely
presented Grothendieck category. The problem of the computation of the pure global dimension
is reduced to computation of the supremum of projective dimensions of flat objects in a certain
functor category. Categories having the pure global dimension zero are characterized. Finally,
a characterization of perfect functor categories is given.

In [13] Griffith defines the left pure global dimension for any ring R and, among
other things, characterizes commutative rings R with P.gl.dimR = 0 as artinian
principal ideal rings or, equivalently, as rings R for which every R-module is a direct
sum of cyclic modules. Pure global dimension of rings has also been investigated
by Gruson and Jensen [14], and by Kielpiniski and Simson [18].

In the present paper pure global dimension P.gl.dim o/ is defined and investi-
gated for an arbitrary locally finitely presented Grothendieck category . Conditions
which reflect finiteness of P.gl.dim .o/ are given. One of the main results is a charac-
terization of locally finitely presented Grothendieck categories & with P.gl.dim &/ =0
(see Theorem 6.3 and [31]) which asserts for instance that P.gl.dim«/ = 0 if and
only if & is pure-perfect, or equivalently, if o is locally noetherian and every its
object is a direct sum of finitely generated subobjects. Moreover, it is shown
that 1.P.gl.dimR = 0 if and only if the natural homomorphism

(HQ:) ®RM“’]_[(Q1 ®RM)

is injective for any family {Q,} of right R-modules and any left R-module M.

Recently Gruson and Jensen have proved that LP.gl.dimR = 0 = r.P.gl.dim R
if and only if R is left artinian and there are only finitely many isomorphy classes
of finitely generated indecomposable left R-modules. Using this interesting result,
we prove the following conjecture of Brauer—Thrall, proved in [27]: Let 4 be a finite-
dimensional algebra over a field k, and suppose that there are infinitely many iso-
morphy classes of finite-dimensional indecomposable 4-modules. Then, for any
natural number #, there are indecomposable 4-modules of finite dimension =n.

The main method applied in the paper is the following, Let L(s7) be the category
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of all additive contravariant functors from the category fp (&) of all finitely presented
objects of & to the category Ab of abelian groups, and let i.: o/ —L (&) be the natural
extension of the Yoneda functor. It is observed that there are natural equivalences

Pextly(—, ?7) = Extiunh-, h), n=0,

and therefore &/ is equivalent to the full subcategory of L(&f) consisting of all flat
objects. Then it follows that P.gl.dim&/=0 if and only if every flat object in L(s?)
is projective, ie., L(&?) is a perfect category (see [3], [19] and [39]).

The organization of the paper is as follows. The first two sections contain preli-
minary results about categories, purity and pure dimensions. Ssction 3 is devoted
to the study of stable and factorizable systems. In particular, a characterization of

Mittag-Leffler objects is given (cf. [26]). In Section 4 we prove that any locally

finitely presented Grothendieck category has sufficiently many pure-injective objects.
Section 5 contains a characterization of coperfect and perfect functor categories.
Section 6 is devoted to the study of categories o/ with P.gl.dim.seZ=0. The last
Section 7 contains some examples. '
The paper is partially based on [33]. Some results were announced in [32].
The author would like to thank R. Kielpinski for many discussions during the
preparation of this paper.

§ 1. Preliminaries. A Grothendieck category is an abelian category « which has
a set of generators and admits colimits that are exact when taken over directed sets
(cf. [6], [9] and [25]).

Let o/ be a Grothendieck category. An object M of o is of finite type if for each
directed increasing family of its subobjects M; with M = () M; there is an j with
M = M;. M is finitely presented if it is of finite type and if, for each epimor-
phism f: N-»M with N of finite type, the kernel of f is also of finite type. M is noe-
therian (resp. artinian) if the class of subobjects of M satisfies the ascending (resp.
descending) chain condition. Finally, M is finiteif it is both artinian and noetherian.
& is locally finitely presented (resp. locally of finite type, ...)if it has a family of fini-
tely presented (resp. finite type, ...) generators.

By an additive category we shall mean a category together with an abelian group
structure on each of its Hom sets such that composition is bilinear (cf. [22]).

Let € be a small additive category. A €-module is a covariant additive functor
from & to the category of abelian groups. The category of all %¥-modules together
with natural transformations of functors as morphisms will be denoted by %-Mod.
This is a natural generalization of the notion of module over a ring. ¥-Mod is a lo-
cally finitely presented Grothendieck category and #-modules of the form

B = Homg(X, —), Xe€,
form a set of its finitely presented projective generators. A #-module M is Sree if
it is isomorphic with a direct sum of modules /¥, M is finitely generated (resp. cyclic)
if it is an epimorphic image of a finite direct sum of the modules /* (resp. of
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a module 1¥). A left ideal in the category 4 is a ¥ -submodule of K* for some X &€,
a right ideal in % is a submodule of a %°*-module hy = Homg(—, X), X €¥.

A two-sided ideal in % is a subfunctor of the functor
Homg: € x%—Ab.
If I is a two-sided ideal in % and M is a #-module IM is a ¥-submodule of M
such that IM(X), X e %, is a subgroup of M(X) generated by all elements of the
form M(f)y with y e M(Y) and feI(Y, X) for some Y e®. It is clear that the

quotient #-module M/IM is, in a natural way, a %/I-module, where the quotient
category %/I has the same objects as % and

Homg, (X, ¥) = Homy(X, Y)/I(X, ).

The Jacobson radical of an additive category % is a two-sided ideal J(%) de-
fined by

J(@)(4, B) = { fe Homg(d, i?), 1,-gf has a two-sided inverse for every g}

(see [22]). It is not difficult to check that J(%/J(%)) = 0 and that J(¥)(X, X) is
the Jacobson radical of the endomorphism ring

End,X = Homg (X, X)
for every object X from %. Morecover, one can prove the following
n
Lemva L1 Let M = @ M, and let f=(f;): M—M where fi2 M;—M;.
i=1 .

Then fe J(EndeM) if and only if fi; € J(8)(M;, M) for all i and j.

A small additive category ¥ is semi-simple if each %-module W, X4, is
a coproduct of simple left ideals. % is regular in the sense of von Neumann if for
each of its morphisms f there exists a g such that f = fgf.

PrOPOSITION 1.2. Let € be a small additive category. The following conditions
are equivalent:

() € is semi-simple.

(b) ¥ is regular in the sense of von Neumann and the ring Ende X is semi-simple
for every Xe@.

(c) The endomorphism ring of any finitely generated free €-module is semi-simple.

Proof. The implication (a)->(c) is obvious. ]

(©)—=(b). Let f: X— Y be a morphism in %. Consider the element

s = (’?f g) €S = Endg poah” @ B .
Since S is semi-simple, there exists a ze€ S such that s = sts. Hence f' = faf for
some g and (b) follows.

Observe that, for every X e %, there is a one-to-one correspondence between
leftideals in E = End, X generated by idempotents and direct summands of K¥ which
is given by Eg ~ImM?. Therefore (b)—(a) and the proof is complete.
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COROLLARY 1.3, (2) ¥ is semi-simple iff 4°° is semi-simple.

(b) If € has finite coproducts, then it is semi-simple if and only if End, X is semi-
simple for each X € €.

Recall that the tensor product functor

®¢: €°-Mod x ¥-Mod—Ab
is defined by
N@yM=0NX®, MX,Xe¥?)/U,
where U is. a subgroup of @ (NX ®, MX, X € %) generated by all elements
N()y@x—y@M(f)x, where fe Homy(X, Y), xe MX, y € NX (see [8] and [22]).
It is well known that there is a natural isomorphism
Homz(N Q¢ M, L) = Homyor_yroa(N, Homz(M(?), L))
for any abelian grou'p L. It follows that N ®¢? and ? ®g M are right exact functors
which commute with arbitrary coproducts and direct limits. Moreover, the
following isomorphisms hold:
hy ®¢ M = M(X),
(hxlhxl) ®¢ M = M(X)/IM(X)

for each X e % and every two-sided ideal I in %.

A %-module M is flat if the functor ? ®, M is exact. An easy generalization
of the well-known module-theoretic arguments gives the following result:

THEOREM 1.4. 4 small additive category % is regular in the sense of von Neumann
if and only if every €-module is flat.

) Following B. Mitchell, we say that an object M is a continuous well-ordered
union .of subobjects My, £<y, where y is an ordinal number if M, = 0, MM,
for {<t and M, = |J M, whenever # is a limit ordinal number.

<

n
The following lemma is well known (see for instance [16], Lemma 1.4):

Lemma 1.5. Every infinite directed set I is a continuous well-ordered union of its
subobjects I, with |I<|I]. )

Now we formulate a result which is repeatedly used in the paper and which may
be proved as Theorem 4.2 in [16].

THEOREM 1.6 (Roos). For any direct system {M;} in a Grothendieck category s

and every object A there exists a spectral sequence

E% = limPExt4, (M, 4) = Ext" (colim M;, A)
14

where Uim® is the p-th right derived functor of lim (see [16]).

Throughout the paper « denotes a locally finitely presented Grothendieck
category, % denotes a skeletally small additive category and R is an associative ring
with identity. The symbols lim and colim denote the limit and colimit functor.
respectively. The cardinality of a set I is denoted by |I| and 8_; denotes any ﬁnit(;
cardinal number. A colimit over a directed set will be called a direct Lmit.
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§ 2. Purity and flatness. Let &/ be a locally finitely presented Grothendieck cat-
egory and let m be a cardinal number. An object M of &7 is m-generated (resp.
m-presented) if there exists an exact sequence '

L-»N->M—0
where N (resp. M and L) is a coproduct of m copies of finitely presented objects.

THEOREM 2.1. (2) A €-module M is flat and 1m-presented iff M is a direct limit
of a system of cardinality m consisting of finitely generated free %-modules.

(b) If € has finite coproducts and cokernels, then ¢°*-module F is flat iff F is
a left exact functor.

The first part may be proved as Theorem 1in [12], and the second as Theorem 1.4
in [8].

It is not difficult to prove the following two lemmas (see [25] and [34]):

LEmMA 2.2. Every m-presented object of o is a direct limit of a system of cardi-
nality m consisting of finitely presented objects.

LeMMa 2.3. An object M is finitely presented iff Hom (M, —) commutes with
direct limits (i.e., colimits over directed sets).

An exact sequence

0—>K—N —IZM —0
is pure it Hom (X, p) is surjeciive for every finitely presented object X. In this
case p is called a pure epimorphism and i a pure monomorphism.

LeMMA 2.4. (8) If AcB<C, A is a pure subobject of C and B/A is a pure sub-
object of CJA, then B is a pure subobject of C.

(b) A direct limit of pure sequences is pure.

(©) An exact sequence of %-modules 0—A4—B—C—0 is pure iff the induced
homomorphism M ®4 A—M ®¢ B is injective for any €°*-module M.

(2) and (b) follow immediately from the definitions. (c) is proved in [34].

From Lemma 2.3 immediately follows

COROLLARY 2.5. If {M}}, i€ I, is a direct system with I directed, then the natural
epimorphism @ M;—colimM; is pure.

Recall that an object M is pure-projective (resp. pure-injective) if it is projective
(resp. injective) with respect to pure epimorphisms (resp. pure monomorphisms).

It follows from Lemma 2.2 and Corollary 2.5 that a locally finitely presented
category & has enough pure-projectives and every its pure-projective object is a sum-
mand of a suitable coproduct of finitely presented objects. Moreover, every object M
admits a pure-projective resolution, i.e., an exact sequence

dn
=P, =P, _1=..oPo—->M-0,
where P, are pure-projective and Kerd, is a pure subobject of P, for all n. Then the
pure extension functor Pexty may be defined by

Pext"(M, N) = H"Hom (P, N),
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where P is a pure-projective resolution of M. The pure-projective and pure-injective
dimension we define as
P.pd M = sup{n, Pexti(M, 9 # 0},
P.id M = sup{n, Pext’(?, M) # 0} .
The pure global dimension of o/ is defined as
P.gl.dime/ = sup{P.pd M, M e o} = sup{P.id M, Me o/} .

Moreover, we set
1.P.gl.dim R = P.gl.dim R-Mod

for any ring R. The projective dimension of M is denoted by pdAf. Finally, the
flat dimension of a small additive category € is

fd% = sup {pd M, M € ¢-Fl}

where %-Fl is the class of all flat #-modules.
Tt follows from Lemma 2.4(c) that pd M = P.pd M for M e ¥-Fl and therefore

' fd¥<P.gl.dim ¥-Mod .

In the proof of the next theorem we need the following

PROPOSITION 2.6 (Auslander). If a €-module M is a continuous well-ordered
union of submodules M such that pd My,.(/Mc<n for each &, then pd M<n.

Proof. The case n = 0 follows from [31], Lemma 1. The inductive step one can
obtain in the same way as in [1] by using the functorial natural epimorphism
P(M)—M, where

PM)=@ © (),
Xe® feM(X)

TaeoreM 2.7 (Jensen [15]). id% = suppd M where M runs over all flat € - modules
for which pd M is finite.

Proof. Let s denote the right side of the required equality, Since fld#>s,
one can assume that s is finite. Let M be a flat ¥-module. By Theorem 2.1 M is
a direct limit of a system {F;}, i e ], with F; frec and finitely generated. We shall
prove by transfinite induction on |I| that pd M is finite and therefore not greater
than s. Clearly this is true if I is finite.

Suppose that [ is infinite and consider the exact sequence

and (W%, = K*.

0—K— @ F;—colimF;~0,
iel iel
which is pure by Corollary 2.5. By Lemma 1.5 I is a continuous well-ordered union
of directed subsets I with |I,] <|I| and therefore our sequence is a direct limit of pure
sequences

0—K; > @ F;—~colimF;—0 .
ielz iely
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Furthermore, K is a continuous well-ordered union of the pure submodules K.
Hence K. /K; is flat and therefore pd K., JK¢<s because by the inductive assump-
tion pd K is finite for each £ Then by Proposition 2.6 pd K is finite. Thus pd M is
finite and the proof is complete.

Let L(o#) = fp(f)*™Mod where fp(«) is the full subcategory of &/ consisting
of all finitely presented objects. Consider a covariant functor

h.: - L()

defined by h, = Hom(—, A), h; = Homg(—,f) for feHomg(A4, A). Observe
that h. commutes with direct limits and arbitrary coproducts. Moreover, a short
exact sequence X in ¢ is pure if and only if the sequence hy is exact.

Turorem 2.8. There are natural isomorphisms

Pext™,(4, B) = Extl yy(hy, hp), n=0.

Proof. n=0. By Lemma 22 A4 = cqlimAi and B = colimB; where 4,, B;
are finitely presented. Then, using the Yo:;da Lemma, we gj;]
Pext%(4, B) = Hom,(4, B) = lirr[xcqli}nHom_,(Ai, B)
ie Je
= limcolimHomy (24, s,
iel Jjel
= Homy (s, hp) = BxtL (s hy) -

Now suppose that 7>0 and let P be a pure-projective resolution of 4. Then /p is
a projective resolution of Ay in L(sf) and therefore

Pext’,(4, B) = H"Hom (P, B) = H'"Homy(hp, hg) = Bxti cony(Pas B 5

which completes the proof.

From Theorems 2.1, 2.8 and Lemma 2.2 we obtain

COROLLARY 2.9. The functor h. establishes a natural equivalence between of and
the full subcategory Ip(al)*™-Fl of L(sf), which is equal to the jfull subcategory
Lexfp () of L(s4) consisting of all left exact functors.

It is clear that the functor h. is left exact and that

R'h. = Bxtly(—, *)

where R"A. is the nth right derived functor of A.. Moreover, using Theorem 1.4 and
Corollary 2.9, one can easily prove

TurorEM 2.10, The following conditions are equivalent:

(@) h. is exact.

(b) o satisfies- each of the equivalent conditions in [34], Theorem 4.

(©) h.: A—~L(s2) is an equivalence of categories.

(d) s is equivalent to a functor category € -Mod where € is small additive and
regular in the sense of von Neumann.
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Remark 1. The functor A. admits a left adjoint which is exact by Ulmer’s
Flatness Criterion [38]. Then o is a quotient category of L(#) and A. is a section
functor (see [10]).

Remark 2.Tn our situation fp (&)°*-Fl is a Grothendieck category, It would be

interesting to give a characterization of those small additive categories ¢ for which
%-Fl is a Grothendieck category.

From Theorem 2.8 and Corollary 2.9 we obtain

CoROLLARY 2.11. (a) P.pdA = pdh, for every object A in .

(b) P.gl.dims/ = fldfp()”.

An immediate consequence of the results of this section and Theorem 1.6 is
the following

THEOREM 2.12. (a) If {M}, i€, is a direct system in o, then for any object A
in o there exists a speciral sequence

EN = lim®P Pextd,(M;, A) = Pextl,(colim M;, 4) .
P

(b) If |I|<x, then P.pdcolimM,<1+n+supP.pd M.

(©) PpdM<n+1 whenever M is N, presented. In particular, pd M<n+1
if M is an w,-presented flat €-module.

(d) If M is a continuous well-ordered union of pure subobjects My in o, then
P.pd M<supP.pd M, /M.

(€) P.gl.dims/ = supP.pd M where M runs over all objects in sf for which
P.pd M is_finite.

THEOREM 2.13. P.gl.dim.of = supP.id F where F runs over all pure-projective
objects of A.

Proof. Denote by d the right side of the required equality. Since P. gl. dim &/ >4,
one can assume that d is finite. In virtue of Theorem 2.12(g) it is sufficient to prove
that m = P.pd &/ <d whenever m is finite. Let

0—P,—P,_{—>..=Py—>A4-0
be a pure-projective resolution of 4 and suppose that d<m. Then
PextL(P,_1/Pn, Pr) = Pextly(4, P,)
and the second member is zero by our assumption. Consequently, the sequence
0->P,—P,_,—P,_,[P,—0

splits, which contradicts the assumption m = P.pd4. Then m<d and the theorem
is proved.
Applying the above arguments and using [15], Corollary 4, we also obtain

COROLLARY 2.14. If R is a ring for which w.gl.dimR is finite, then 1.gl.dimR
= supinj.dim P where P runs through all projective left R-modules.

In the next section the following result is needed:
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Levva 2.15. Let @ be a full subcategory of of closed under pure subobjects and
pure epimorphic images, and let F be a family of objects in & such that every non-zero
object of B has a non-zero pure subobject from . Then

(2) Each object B of & is a contimious well-ordered umion of pure subobjects Bg
such that By.(/BseF for each £

(b) P.pdyB<sup{P.pd F,Fe F} for any object B of &.

Proof. (b) follows from (a) and Theorem 2.12(d). To prove (a) we put B, = 0
and B, = U Bz if n is a limit number and B, { <7, are defined. If B; is defined

<

and B/B:;éno, we choose a non-zero pure subobject X' e & of B/B, and put
By = p~1(X) where p: B—B/[B;is the natural epimorphism. From [9]2.52 and 2.54
and Lemma 2.4(a) it follows that the embeddings B;=B,,,cB are pure and that
Byy1/Be = X. This completes the proof. ‘

The above lemma will be applied in the following two cases: if # = o and if
o = %-Mod, # = ¥-FL

§ 3. Generalized stable and factorizable systems.

DEFINITION 3.1. Let m be an infinite cardinal number or ., and let 1 be a di-
rected set. A direct (resp. inverse) system (M, fi5)s,jer s wi-factorizable if for every
e T there exists a set J;={je I,i>i} of cardinality not greater than m and such
that each morphism 7y;, k>, admits a factorization

hies bt
M;—> M, M;<— M,
A
h\i-\ lrk ,  (resp. t}\ teg)
M; M;

with jeJ;. (M;, bijijer 18 m-stable if for any iel the directed set {Kerh;;} iz
(vesp.{Imh;;};»;) has a cofinal subset of cardinality not greater than .

x_-factorizable and w._,-stable systems will be called shortly factorizable
and stable, respectively. In this case one can assume that each set J; has exactly one
element. Moreover, (M;, h;) is stable’iff for any i there is an j=>i such that
Kerh;, = Kerhy; (resp. Imhy; = Imhy;) for all k>j (see [32]).

Observe that an inverse system of left R-modules

i era

«—R«Re...
is stable iff for each n the chain{Rr, ;... r,x17,} of principal left ideals terminates.

ProrosiTiON 3.2 (Laudal). If F is a countable stable inverse system in a Gro-
thendieck category %, then lim®F = 0.

The proposition was proved in [20] for # = R-Mod but the proof works in the
general case.

Observe that every m-factorizable system is m-stable. Moreover, it is easy to
prove the following
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LEMMA 3.3. Every m-stable inverse system consisting of projective objects is
m-factorizable.

The next proposition plays an important role in our further considerations.

ProposiioN 3.4. Let Fy = (Fy, fi)ijer be an m-factorizable direct system
in of where F; are pure-projective. Then M = colim Fy is an m-directed union (resp.
No-directed union if m = N..,) of pure subobjects of the form N = colim Fy where J is
a directed subset of I of cardinality <m (resp. ). If m=1,, nz —1, then
P.pdN<n+1.

Proof. For each ie I fix a set J,S I of cardinality < for which the m-factori-
zability condition in Defini:ion 3.1 is satisfied. Furthermore, for every X<I choose
a directed subset X such that |X] = |X| and X<& <1 (see [2], Lemma I).

Let N, be an m-generated (resp. countably generated) subobject of M and let

t: @ F,~M be the natural epimorphism. Then No=#( @ F;) for some Iy with
iel ielo
[Io] < (resp. [To] < 85). Let J be the union of the sequence Ly S Ly S Ly .. defined by

Ly = I, Lypy = UZsivk,. '

ieln

It is easy to verify that

(i) J is directed,

(ii) if jeJ then J;&J,

m if m is infinite,

(i) U]<{s0 fm=8_.

If we put N = colimF; and denote by u: N-»M the natural limit morphism,
then NocImu. The proof will be finished if we show

19 P.pd N<n+1 whenever m = §,, n=>—1,

2° 4 is a pure monomorphism.

If n320, 1° follows from Theorem 2.12(b). Assume n = —1 and consider the
spectral sequence from Theorem 2.12 for the system F;. Since F; are pure-projective,
we get an isomorphism :

PextL(N, X) = 1irfji<*)Hom,(zrj, X)
Jje

for any object X of . By(ii) Fy is factorizable, and so the inverse system Hom ,(F;, X)
is stable. Then by Proposition 3.2 the right member in the above isomorphism is
zero, proving that N is pure-projective. '

In virtue of Corollary 2.9, in order to prove 2° it is sufficient to show that
hy: hy—>hy is a pure monomorphism in L(s#) or, equivalently, that the induced group
homomorphism B ®¢ Ay—B @ hy is injective for every #°*-module B, where
% = fp(£)®. But from the m-factorizability condition we conclude that

k>4

UKerB® ks, = UKerB® Ay, .
. kely

Then in virtue of (i) the required result follows from
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LevMA 3.5. Let (G, gi) = colim(Gy, gy, jer in  and let J<I be a directed set
such thar for every jeJ

U Kergy; = U Kergy; ’
k> ked;
where J; is a subset of J. If (G, g7 = colim(Gy, g1, je 1» then the natural morphism
o: G'—G is injective.
Proof. Since & is locally finitely presented, it is sufficient to show that every
morphism f: P—G’, with P finitely presented, is zero whenever @f is zero.
Assume @f = 0. Tt follows from Corollary 2.5 that there is a factorization

P

, |
Sl
Gj — G

"9
with jeJ. Then 0 = @g3f’ = g;f" and by [25], p. 59, Lemma 8.8, we have
Imf'cKerg; = U Kergy; = U Kergy;
k> j ked;

50 gy f = 0 for some ke, k=j. Hence f= g f' = grgr;f = 0 and the lemma
is proved.

We say that the category « is locally n-noetherian if every subobject of a finitely
presented object is 1-generated.

THEOREM 3.6. Let (M, f) = colim(F;, f;)ijer where F; are finitely presented,
and let m be an infinite cardinal number. If A is locally n-noetherian, nwsm, then
(Fy, f3) is m-factorizable if and only if M is an wm-directed union of w-presented pure
subobjects.

Proof. The “only if” part follows from Proposition 3.4 because there is an exact
sequence (in the notation of 3.4)

® Fj,j,— ® F->N-0
Josj1 jed

with Fj,;, = Fj, (see [16], p. 33). To prove the “if” part observe first that every set
Iy=T with |I,|<m can be embedded into a directed set J=1I such that the condition
in Lemma 3.5 is satisfied and |J|<m. Indeed, by the n-noetherian condition, for

every ie I, there is an L;=] with |Lj]<n such. that

U Ker f}; = jULKBrfﬁ .
el

izi
Put I}, = U L; and I; = I, (in the notation of the proof of 3.4). Continuing in this
ielo
way, we define a sequence of sets yclyeL = . Tt is easy to see that their union
satisfies the required conditions, ‘ )
Now consider the natural epimorphism p: @ F;—»M. Fix i and choose an
iel

'
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m-generated pure subobject N, of M such that p(F)cN,. It is clear that there

exists a directed set Iy={je I, j=i} satisfying the condition in Lemma 3.5 and such
that Nycp( @ F), |lo|<m. Continuing in this way, we define a sequence
locflclzc..i.ég{j,j%} of sets with |I,|]<m and a sequence NocN,=N,c... of
m-generated pure subobjects of M such that N,cp(@® F)eN,.y, J;= D I,
satisfies the condition in Lemma 3.5, |/;]<m and N = p(l.zBlnFj) is a pure subg};j(::ct

Jjelt
of M. We shall show that the m-factorizability condition in Definition 3.1 is satisfied.

Let (M', f7) = colim(Fy, fip)pjrer,- By Lemma 3.5 the natural colimit mor-
phism ¢: M'-sMis injective and therefore it is 2 pure monomorphism because
Ime = N. For any k>i consider a commutative diagram

0> M 25 M—s M/M' >0

oo
I N Jr

F, 7_; F,, - Coker fy; = 0
ki

Since Coker fy; is finitely presented, there exists a morphism v such that f; = ufy;
Moréover, by Corollary 2.5 we have a factorization

M 5 F,

17

F;

with s&J;, s>1. Hence of(tfi;—f:) = 0, and so Im(tfy;—fi)=Ker £ because ¢ is
amonomorphism. Since F; is of finite type, we conclude from [25], p. 59, Lemma 8.8,
that fi(tfii—fs) = O for an jeJ,, j=s, which completes the proof.

COROLLARY 3.7. If R is a commutative ring which has at most 8, n20, principal
ideals, then ld R<n+1.

Proof. Let I, ke K, |[K|<S,, be the set of all finitely generated ideals in R
and let (M, f}) = colim(F;, f;); ;o1 be a non-zero flat R-module where F, are finitely
generated free. In virtue of Theorem 2.12(c) and Lemma 2.15 it is sufficient to show
that M contains a pure N,-presented non-zero submodule N. Let fio # 0. Since
|Kj<#, and R is §,-notherian, using the same type of arguments as in the first part
of the proof of Theorem 3.6 one can show that there exists a directed subset J of I,
with |J|<#, and i; €J, such that the condition in Lemma 3.5 is satisfied for each
system (R/T, ®x Fi, RIL ®@r fidi,jer> k€ K.

Put N = co.hf,an and let ¢: N—M be the natural colimit homomorphism. It

J€
is clear that N # 0 is n,-presented and by Lemma 3.5 R/I, ®; ¢ is injective for
each ke K. Consequently, ¢ is injective and Torf(R/L., M /Im¢p) =0 for any
ke K, so M[Img is flat. Thus ¢ is a pure monomorphism and the proof is complete.

CoRrOLLARY 3.8. If R is right coherent, right s,-noetherian and right self-FP
injective (see [35]), then r.ld R<n+1.
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Proof. Let M = colim(F;, f;;) be a flat right R-module where F; are finitely
generated free. Since R is right 8,-noetherian and coherent then (F;, f;;) is s,-stable,
and therefore it is §,-factorizable by the self-FP-injectivity of R. Then, combining
Proposition 3.4 and Lemma 2.15, we obtain the corollary.

DermITION 3.9. An object is m-coperfect if any decreasing directed family
of its subobjects of finite type has a cofinal subfamily of cardinality at most .

§_q-coperfect objects are copérfect in the semse of Roos [28] (see also [4]
and [5]). A ring R is said to be right m-caperfect if it ism-coperfect as a right module
over itself.

ProrosiTiON 3.10. If P is a projective m-coperfect object in o of finite type,
then the endomorphism tingE = Bnd P is right m-coperfect. )

Proof. Let I = f E+..+fy,E, f;€E, i,jeJ, be a decreasing directed
family of finitely generated right ideals in E. Consider the natural coproduct mor-
phism

Vi = (firs wos St PP

where P®) denotes a coproduct of n; copies of P. It is clear that j>i implies
Imy;cImy; and by our assumptions there exists a set Jyc=J, |Jo|<m, such
that each Imy;, i eJ, contains an Im, k e J,. By the projectivity of P, i, = ¥,
for some y and hence we conclude that L,=I;, which proves that the family I,
keJ,, is cofinal in L, jel.

‘The next theorem contains a relation between s,-coperfectness and a projective
dimension of flat modules, and generalizes a result in [3] and [30] (see also [14],
Proposition 2.1). :

TueoreM 3.11. If every finitely generated free €°°-module is W,-coperfect, then
fld¢<n+1, nz>—1.

Proof. Consider a contravariant functor

(—=)*: #-Mod—%¥"-Mod

defined by (—)?(?) =Homg_yq(—, h*) which determines a duality between categories
of finitely generated projective %-modules and finitely generated projective
%°"-modules.

Let M be a flat ¥-module. By Theorem 2.1, M can be represented as a direct
limit of a system of finitely generated free modules F;. It follows from our assump-
tions and Lemma 3.3 that the dualinverse system of finitely generated free ¢°°-mod-
ules FY is §,-factorizable; hence so is {F;}. Then, combining Lemma 2.15 and Prop-
osition 3.4, we obtain the required inequality.

DrerFmarioN 3.12. A weight of a small category € is the cardinality w(¥€) of the
disjoint union of sets Home(X, X’) where X and X run through a fixed set of
representatives of isomorphy classes of objects in 4.

It is easy to check that every finitely generated free ¢°P-module is w(%)-coper-
fect whenever w(%) is infinite. Thus Theorem 3.11 yields
2 — Fundamenta Mathematicae XCVI 4
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COROLLARY 3.13. If w(%)< s, n=0, then fld4<n+1.

Applying Corollary 2.12, we also obtam the following generalization of a result
in [14] and [18]:

CorOLLARY 3.14. If w(fp (&))< 8,, n=0, then P.gl.dim.o <n+1. In particular,
r.P.gl.dimR<n+1 whenever |R|<S\,, n=0.

" For the second statement let us observe that w(fp(R—Mod))smax(so, |R]).

DEFINITION 3.15 (see [26], p. 69). M is a Mittag-Leffler object if it is a colimit
of a factorizable direct system consisting of finirely presented objects.

~ The next theorem extends the results of [26], Part 2, § 2.

THEOREM 3.16. Let Fy = (Fy, fy)i o1 be a direct system consisting of finitely
presented ¥-modules and let F = colimFy. Then the following statements are equiv-
alent:

() The direct system (L Q¢ F;, L ®qfy;) is stable for any £°p-madule L.

(b) The inverse system (Homg poa(Fy, N), Homgaea(fiy, N)) is stable for any
@-module N.

(c) Fy is factarlzable

(d) F is an so-directed union of countably generated pure- projectzve pure sub-
objects.
(e) The natural abelian group homomorphism

o (HQ:) ®e F""H (0, ®e F)

is injective for any family Q, of €°°-modules.
- (&) F is a Mittag-Leffler object.
Proof. For arbitrary #-modules M, N and each X' e % we define a homo-
morphism
tx: NQX)Y* ®z M(X)—Homg.ymea(M, NY*
= fh(X)m where
—*: ¥-Mod—%°"-Mod

is a duality functor defined by M*(—) = Hom,(M (=), 0/Z) and Q/Z denotes
the abelian group of rationals modulo 1. It is easy to check that ty induce a homo-
morphism

setting tx(f ® m)(h)

11 N* Qg M—>Homg yoa(M, N)*

which is an isomorphism whenever M is finitely presented. Since — * is exact and
faithful, an inverse system of abelian groups is stable if and only if the dual direct
system is stable. From this we infer (a)-(b).

(d)—(e). Since the tensor product is right exact and @ is an isomorphism when-
ever Fis finitely generated free, it is an isomorphism for Ffinitely presented. Hence & is
injective if F is pure-projective and generally if F is a directed union of pure-projec-
tives.

icm
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The implication (c)—(f) is trivial and (f)—(d) follows from Proposition 3.4.
The proof of (b)—(c) and (e)—(a) for modules over a ring [26], Part 2, Prop-
osition 2.1.4 and 2.1.5, works in our situation. Thus the proof is complete.

Using the functor k., Proposition 3.4 and the above theorem, we obtain the
following result, which completes Theorem 3.6 in the case m = 8.;.

CorOLLARY 3.17. Let N = colim(P;, p;;) where P; are finitely presented objects
of . The following statements are equivalent:

(2) The system (P;, p;;) is factorizable.

(b) N is a Mirtag-Leffler object.

(c) N is an sy-directed union of countably generated pure-projective pure sub-
objects.

CorOLLARY 3.18. Let 0—A'—>A—A"—0 be a pure exact sequence in o. If A is
a Mittag-Leffler object, then so is A'. If A’ and A" are Mittag-Leffler objects, then A is
also a Mittag—Leffler object.

Proof. It is clear that X is a M1ttag—Leﬁier object in & if and only if Ay is
a Mittag-Leffler object in L(s?). Then, applying Theorem 3.16(e), we obtain the
required result.

§ 4. Pure-injective objects. The aim of this section is to prove the following gen-
eralization of a result in [34]:

THEOREM 4.1. Every locally finitely presented Grothendieck category of has enough
pure-injective objects.

The general idea of the proof is due to Kielpinski [17].

Let M be an object in /. An equation scheme over M is a morphism couple

5o
(o) = (M<K->P)

where i is a monomorphism and P is pure-projective. Let j: M—M’ be a mono-

morphism. A morphism g: P—M ' is called a solution of the equation scheme { f, i)

in M’ when gi = jf. In this case we say that { f, i) is solvable in M'. An equation

scheme < f, i’y over M is a subscheme of { f, i) if there is a commutative diagram

PLae
v/ l '
v |
Mo K—r P
where the vertical arrows are monomorphisms. Finally, we say that the equation
scheme { f, iy is finitely solvable if its every subscheme < f', i’ with K’ and P’ of
finite type has a solution in M.
LEmMMA 4.2. An equation scheme {f, iy over M in & is finitely solvable if and
only if it is solvable in a pure extension of M.
Proof. Suppose that { f, i) is finite solvable. Without loss of generality we may

assume that P is a coproduct of finitely presented objects. Thus K and P may be
o%
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represented as directed unions of subobjects K,c X and P,=P, t€ T, such that X, is
of finite type, P, is finitely presented and i(K,)< P, for all . Let us denote by f; and 7,
the restrictions of f and i to K,, and form a pushout diagram

K,—> P,
ftl \Lﬂc
M ——s B,

St

for every ¢ where s, is a split monomorphism by the finite solvability of {f, i)
The set T is directed if we put

(t<gs) « (K,=K, and P,cPy).

Furthermore, there are morphisms b,,: B,~»B; such that the above diagrams form
a direct system. It follows that s = colims, is a pure monomorphism and therefore
u = colimu, is the required solution. Since the “if” part is obvious, the proof is
complete.

In the proof of the next proposition we shall need the following

LemMA 4.3, Every object of & is a directed union of w-generated pure subobjects
where 1 = max (s, w(fp ().

Proof. In view of Proposition 3.4 it is sufficient to show that every direct sys-
tem F consisting of finitely presented objects of 7 is n-factorizable or, equivalently,
that so is the inverse system 4 of fp(sf)-modules. But this follows from Lemma 3.3
since it is easy to check that every module 4*, X e fp(s#), is n-stable.

PROPOSITION 4.4. Let O be an object of . The following properties are equiv-
alent:

(a) Q is pure-injective.

(b) Every finitely solvable equation scheme over Q is solvable in Q.

(c) Every finitely solvable equation scheme

o
{fii) =(Q+K-P)
with P n-generated is solvable in Q where n = max (w (Ip(2£)), %).
(d) Pextl(—, Q) =0 for n>1.

Proof. (a)—(b) follows from Lemma 4.2, (b)—(c) and (d)—(a) are obvious.
Now we prove (c)—(d). Let X be an object of &7 and consider a pure exact sequence

0-»K—-P—X—0

with P pure-projective. If X is n-generated, then P may be chosen n-generated too,

and it follows from (c) that Pext(,(X, Q) = 0 for n>1. Suppose that X is arbitrary.

Using Lemma 4.3, essentially as in the proof of Lemma 2.15, one cap show that P

is a well-ordered union of pure subobjects P, such that P, = i(K), P, = ) Peifnis
s<n
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a limit ordinal number and P, /P, is n-generated for all £. Since Pextl (Y, Q) =0
when Y is 1i-generated, every morphism K— Q may be inductively extended to a mor-
phism P~ Q. Hence. (d) follows and the proof is complete.
Now,' by using Lemma 4.2 and Proposition 4.4, Theorem 4.1 may be proved
essentially as Theorem 2 in [17]. Moreover, [36], Proposition 4.5, yields
COROLLARY 4.5. o/ has pure-injective envelopes.

§ 5. Perfect functor categories. Recall that a Grothendieck category & is said
to be coperfect if its every object is coperfect (cf. [28]). 4 is perfect if each of its
objects admits a projective cover (cf. [3], [6], [19], [32], [39]).

A ring R is right perfect if the category Mod-R of all right R-modules is perfect
or, equivalently, R-Mod is coperfect (see [3] and [4]).

In the next theorem we use the following notations:

re ree rac
(R, =) = (R»R—>R-..),

r *ri r2
M, <) = (MeMeM<..), reR,
where M is a right R-module and -7 denotes the right multiplication by r e R.
THEOREM 5.1. The following statements are equivalent:
(a) R is right perfect.
(b) im™(M, 4—) =0 for any right R-module M and any elements r,e R.
(©) Lim™(F, <--)
and r;e R.

0 where F is a countably generated free rzght R-module
Proof. Fix elements ry, r,,... € R and put N = colim(R, —») The spectral
sequence in Theorem 1.6 gives an isomorphism

Lm™(M, —>) = Exty(N, M)

for every right R-module M. Hence, if we assume (a), then N is projective by [3] and

- therefore (b) follows. Now assume (c¢) and consider the exact sequence

0—»>F—F—-N—-0

where Fis a free right R-module with basis xy, X;, X3, ... and s(x;) = X;— X1 F;-
1t follows from the above isomorphism that the sequence splits and therefore (a) is
a consequence of [3], Lemma 1.3 and Theorem A. Since (b)—>(c) is trivial, the proof
is complete.

COROLLARY 5.2. Let P be a finitely generated projective € -module. If id% = 0,
then the ring E = Endg.yoaP is right perfect.

Proof. Iet F=E@ E® ... Fix f1,f5, ..
the direct system

€ E and denote by N the colimit of

I In
P,—P,—>..—P—P, 1 —..
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with P, = P. Then, using the spectral sequence in Theorem 1.6, we obtain

S
lim™(F, &) = lim(l)(Homg.Mud(P, @ P), [N
= Extyrod, @ P) =0.

The corollary then follows from Theorem 5.1.
Following Bass [3], we say that the Jacobson radical J(#) of € is left T-nilpo-
tent if for any sequence
f1 Sn
CiCrme.=C=Cyy (..

with f, € J(€)(Cyy, C) there exists a k such that f, f; ... f, = 0. A right T-nilpo-
tence is defined analogously.

Levma 5.3 (Bass). If J(%) is left T-nilpotent, then M # J(¥)M Sor each
C-module M. In particular, J(¥)M is superfluous in M.

Proof, The module theoretic arguments of Bass [3] generalize.

The next result generalizes Theorem A in [3] (see also [19] and [39]).

THEOREM 5.4. Let € be a small additive category. Then the Jfollowing condirions are
equivalent:
(1) Every (resp. countably presented) flat €-module is projective.

(2) Every (resp. countably presented) flat € -module is a Mittag-Leffler object.
(3) The natural homomorphism

(H Q:) ®¢ M~ H(Q: ®¢ M)

Zoir-y:;tczlz ej;'t.)r any (resp. countably presented) flat €-module M and any family Q, of

(4) The category €°*-Mod is coperfect.

(5) Each countable inverse system in € is factorizable.

(Q J(¥) is left T-nilpotent and the endomorphism ring of any finitely generated
projective €°-module is left perfect.

(7) J(%) is left T-nilpotent and €|J(%) is semi-simple.

(8) The category-%-Mod is perfect.

() Every flat (resp. countably presented flat) €-module has a projective cover.

Proof. Let us denote by (') the countably presented version of the state-
ment (). -

(3)>@#). ¥ Mo M,oM;>..is a sequence of finitely generated #°~modules
then there exists a commutative diagram '

My <O M, <O M;<eD ...
T

Fy < F, F.
v B B

where the vertical arrows are epimorphisms and F; are finitel

Theorem 3.16 and the functor (—)?* Y Beaerated free. Using

from the proof of Theorem 3.11, we conclude
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that the bottom row is factorizable. Then fif, ..fy = fifz - fa+19 for some
g: F,oF, (1, 50 M, = M,., = .. and (4) follows.

Tt follows from Theorems 2.1 and 3.16 that (1)—(2)«(3) and (1)=(2)=(3").
Since (4)—(1) is a consequence of Theorem 3.11 for n = —1 and (3)—~(3") is trivial,
all the statements (1)-(3"), (1)-(3) and (4) are equivalent. Moreover, it follows from
Theorem 3.16 and the Yoneda Lemma that (2")—(5), and (5)—>(4) follows by a simple
generalization of Bjork’s module-theoretic arguments [4], Theorem 2 and [5], §2.

(5)-(6). Since the left T-nilpotence of J(%) is immediate and we have
proved (4)<3(5), (6) follows by using Proposition 3.10 for m = &_;.

(6)—(7) follows from Proposition 1.2 because in view of Lemma 1.1 we have
an isomorphism

: End gor ioa F/T (B e 100 F) = Bnd g/ seayor yoaF
where F = hy, @ .. ® hy,, F = hy, @ ... ® by, and hy, = Homgye)(—, X))

(1) —(8). We apply the arguments of Bass [3]. Let M be a & -module. By (7),
M/J(®)M = & L; where Lj is a direct summand of an R = Homg s (X*, —),
X e %. Furthermore, it follows from the remark in the proof of Proposition 1.2 that
L; = Imh*™* where & is an idempotent in the ring E;/\J(E;), E; = Endg X" ' Since J(%)is
left T-nilpotent, J(E;) is a nilideal and therefore & may be lifted to an idempotent
¢ eE,. Put L, = Imh® and consider a commutative diagram

where the middle vertical arrow is an epimorphism. Then we Have a commutative
diagram
k
M — M}J(E)M
. \ 4
? !‘

®L;
where k and ¢ are natural epimorphisms and % is minimal by Lemma 5.3. Hence ' is
surjective and, since Ker#'c=Kert = J(€)(@® L), it is minimal and (8) follows.
9)~(1"). We apply the arguments of Mares [21]. Consider an exact sequence of
%-modules i
0—->K—P—-M—0
where M is flat, P is projective and Imi is superfluous in P. Assume K # 0 and
choose a finitely generated submodule K’ 5 0 of K. Since M is flat, the sequence
in question is pure and therefore there exists a ¢: P—K such that #i(K’) = XK', so
i(K"y=XKer (1 —if). Since
P = Imit+Im(l—it) = Imi+Tm(l—iz)

and Imi is superflious in P, 1—it: P—P is an epimorphism and therefore
P = P, ® Ker(l—if) with a P;cP. Thus it follows that P = P +TImi, so P = Py
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and consequently Ker(l—if) = 0. This is a contradiction. The result is that X = 0
and therefore (1°) follows.

Since the implications (8)—(9)—(9") are trivial, the proof of the theorem is
complete. )

CoROLLARY 5.5. If ¥-Mod is perfect, then any projective € -module is a coproduct
of indecomposable cyclic left ideals and any two such decompositions are isomorphic.

Proof. The first statement follows immediately from the proof of Theorem 5.4.
The second one is a consequence of the Krull-Remark-Schmidt-Azumaya Theorem
because by Corollary 5.2 any indecomposable finitely generated projective 4 -module
has a local endomorphism ring.

We say that the category .« is semiperfect (resp. F-semiperfect) if edch of its
objects of finite type (resp. finitely presented) has a projective cover (see [197 and [397]).
It follows from [3] and [23] that R-Mod is semiperfect (resp. F-semiperfect) iff
R/J(R) is semi-simple (resp. regular in the sense of von Neumann) and idempotents
can be lifted modulo J(R). For a functor category we have the following result:

THEOREM 5.6. Let € be a small additive category. The Sollowing statements are
equivalent:

(2) €-Mod is semiperfect (resp. F-semiperfect).

(b) BII(F) is semi-simple (resp. von Neumann regular) and idempotents of € |J(%)
can be lifted modulo J(%). ‘

(c) Every finitely generated projective € -module has a semiperfect (resp. F-semi-
Dperfect) endomorphism ring. l

Proof. (b)~(a) may be proved as (7)—(8) in Theorem 5.4 by using the Nakayama
Lemma instead of Lemma 5.3.

(a)—~(b). The module-theoretic arguments of [3, p. 472] and [23, p. 2971 mhy
be carried over verbatim.

. (b).—>(c). It 2 is the full subcategory of #-Mod consisting of all finitely generated
projective modules, then there is an equivalence %-Mod = #-Mod. Let P e
§mce EndP = Endgop.proafip, in Viewbof the isomorphism from the proof of ©)-(D
in Theorem' 5.4 (for ¢ = & and.F = hp) End(P)/J(EndP) is semi-simple (resp.
von Neuxgann regular), and applying (2) to ¥ = 2°® we conclude that idempotents
may be lifted modulo J(EndP).

(©)—(b). By _the isomorphism mentioned above every finitely generated free
%f/J (#¢)-module F has .a.seml—mmple (resp. von Neumann regular) endomorphisn
ring. He.nce by ?roposxtlon 1.2 (resp. by the proof of (e)—(b) in Propositioﬁ 1.2)
ClI(%)is sern_l-sxm;?le (resp. von Neumann regular). Since the lifting of idempotents
modulo J(%) 1s equivalent to the lifting of idempotents of End (X)/I(End X) modulo
J(EndX) for any X e, (b) follows and the proof of the theorem is complete.

.§ 6. Pure—perfect categories. A pure epimorphism S M—Nin o is purely mini-
mal if a morphism g: X—M is a pure epimorphism whene

. ) - - ; Ver so is fg or, equi
if Ay is a minimal epimorphism in the category L(s?) % quivalently,

icm

of Grothendieck categories 111

On pure global di

DEFINITION 6.1. A locally finitely presented category & is pure-perfect if every
object 4 in &7 has a pure-projective cover, i.e. there exists a purely minimal epimor-
phism P—A4 with P pure-projective.

Now we prove the main result of this section. To formulate it we shall need the
following

DEFINITION 6.2. Let € be an additive category with coproducts. € is called
indecomposably right T-nilpotent if for any sequence in %

J1 Iz
XX, »X5—...

with X, indecomposable and X; 2 X, for i s j there is an index » such that
Sofue1-f1 = 0. An indecomposably left T'-nilpotency is defined analogously.

THEOREM 6.3. Let of be a locally finitely presented Grothendieck category. The
JSollowing statements are equivalent:

(1) & is pure-perfect.

) P.gl.dims = 0.

(3) Every countably presented object of s is pure-projective.

(4) Every pure-projective object of & is pure-injective.

(5) Every pure-injective object of o is pure-projective.

(6) Every object of o is a Mittag-Leffler object.

(7) The category L(sZ) is perfect.

(8) The category tp(sf)-Mod is locally artinian. )

(9) The category tp (L) is indecomposably right T-nilpotent and the endomorphism
ring each of its objects is left artinian.

(10) o is locally noetherian and each of its objects is a coproduct of indecomposable
noetherian objects.

Moreover, when o = %-Mod, each of the conditions (1)-(10) is equivalent to the
following statement:

(11) The natural group homomorphism

- (1 2) ® M~ ](0: ®4 M)
is injective for any (countably presented) € -module M and any family Q, of €°*-modules .
Proof. In virtue of Corollary 2.11, Lemma 2.2 and Theorem 5.4 applied to
@ = fp(&)® the statements (1)-(3), (6) and (7) are equivalent. The equivalence
(6)>(11) follows from Theorem 3.16, and (2)«>(4) is a consequence of Theorem 2.13.
(2)«+(10). We only have to show (2)—(10) since the converse implication is easy.
Let M be an object of finite type in &7 and N iis subobject. Since, as may easily be
checked, M /N is finitely presented, N is of finite type and therefore M is noetherian.
Hence &7 is locally noetherian. Then applying Theorem 5.4 and Corollary 5.5 to
% = fp(£)°?, and using the functor h.: &/—L(s/), we obtain the required result.
(7)—(8). It is easy to check that the category # = fp («#)-Mod is locally coherent
and therefore it is equivalent to the category Lex Coh (&) of all contravariant left
exact functors from Coh(%) to Abwhere Coh (%) is the abelian category consisting
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of all coherent object in & (see [25] and [28], p.204). Furthermore, by Theorem 5.4 4 is
coperfect and therefore (cf. [28], p. 206) Coh(%) is an artinian abelian category.
Finally, by [25], p. 379, Ex. 7, & is locally artinian,
(8)—=(9). Let
f1 T2
X=X, > X3

be a sequence in fp(&#) with X; indecomposable and X; 2 Xj for i # j. In virtue of
Theorem 5.4, J(fp(#)) is right T-nilpotent and the endomorphism ring of any
X efp(s#) is right perfect. Hence End, X is local for all i and, as may easily be
checked, f; € J(fp())(X;, X;.) because f; are non-isomorphisms.

Now let X efp(#). Since #* is a projective and artinian fp(sf)-module, by
using the same type of arguments as in the proof of Proposition 3.10 one can show
that End#* = (Bnd X)°® is right artinian. Hence the second part of (9) also holds.

©)—(7). It is clear that the category L(&) is equivalent to ¥°*~-Mod where ¥ is
the full subcategory of fp() consisting of representatives of isomorphy classes of
indecomposable objects. Then by Theorem 5.4 it is sufficient to show that J(%) is
right T-nilpotent. Let

S1 fa
Ci—Cy—>Cy~...

be a sequence in J((f) It C, = C; for infinitely many indexes i,. then

Sn In+t
Cn-’cn+1 - Cn+2_’"'

may be considered as a sequence of elements of J(End, C,). Since End, C, is right
perfect, we get Jm o f1 =0 for some m. Then without loss of generality we may
suppose that C; % C; for i # j and by (9) we again have f,, ... f; = 0 for some m.
(5)—(3). Let M be a countably presented object of «/. By Theorem 4.1 M can
be purely embedded in a pure-injective object Q which is pure-projective by our
assumption. Then one can suppose that Q is countably presented. It follows from
Lemma 2.2 that Q/M is a direct limit of a countable system consisting of finitely
presented objects and, according to Theorem 2.12(c), P. pd O/M<1. Hence M is
pure-projective and (3) is proved.
Since the implication (2)—(5) is trivial, the proof of the theorem is complete.
I:The equivalence of (2), (4) and (5) was proved in [31] and for module categories
in [18].
CorOLLARY 6.4. If o is locally finite, then P.gl.dimsZ = 0 if and only if fp(#)
is indecomposably right T-nilpotent.

Proof. In this case the endomorphism ring of any finitely presented object
of & is semi-primary.

COROLLARY 6.5. 1.P.gl.dimR = 0 if and only if R is left artinian and the cat-
egory xfp'of all finitely presented left R-modules is indecomposably right T-nilpotent.

Proof. If 1.P.gl.dimR = 0, then R is left noetherian and left perfect, and so it
is left artinian.
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COROLLARY 6.6. If & is locally finite and there is an upper bound for lengths of
indecomposable objects in fp(), then P.gl.dims = 0.

In virtue of Corollary 6.4 the corollary is a consequence of the followmg:

LEMMA 6.7. Suppose that € is an abelian category in which every object is both
noetherian and artinian and let

J1 f2

(*) M —>M,—Mz—...
be a sequence of indecomposable objects in € such that M; % M; for i # j. If there
is an upper bound for the lengths (M), then f, ... fy = 0 for some m.

Proof. Let I = I(*) = maxI(M;). It is clear that the lemma holds for I = 1.
i
If I>1 and I = I(M) for finitely many indexes i, then () may be replaced by a se-

quence (") with I(+")<I(x). Hence without loss of generality we may suppose
I = I(M) for all i. By our assumptions there exist 0 = 7, <n,...<m<... such that

Ker frnr o Soerr = Kerfy oo fyrss  J>Merts
for k=1,2,3,... Consider a sequence
a1 a2
(%) N;{—=N,—»N3;—>
where Ny, = M, 1 and gy = fu.,, - fuer1- It is clear that Kerg; = Kerg;+19:
for all 7 and therefore .
(k) Img;, nKerg;ys =0.

Assume that f,, ... fy # 0 for each m. Hence g, # 0 for any n and therefore
I(Kerg,) = j,<I. We shall prove by induction on j, that this is impossible. Clearly
it is true for j, = 0. If I(Kerg,) =j+1, then i(Img,) = [—j—1 and by (¥*x)
I(Kerg,+,)<j+1. Then by the inductive assumption /(Kerg,.;) = j—1 and again
using (+*#¥) we get a contradiction Img, @ Kerg,.; = N,.;, which proves the
inductive step and completes the proof of the lemma.

COROLLARY 6.8. The following conditions are equivalent:

(8) Ris left and right artinian and there is an upper bound for lengths of indecom-
posable objects in gpfp and fpg.

() 1.P.gl.dimR = 0 = r.P.gl.dimR.

() R is left artinian and the set of isomorphy classes of indecomposable finitely
presented left R-modules is finite.

Proof. The equivalence of (b) and (c) has been proved by Gruson and Jensen
(private information). Thus the statement (c) is left-right symmetric and therefore (c)
implies (a). Since (a)—(b) is a consequence of Corollary 6.6, the proof is complete.

Remark. The implication (a)~>(c) in the above corollary generalizes the follow-
ing Brauer—Thrall conjecture, proved by Roiter in [27]: Let Abe a finite-dimensional
algebra over a field k, and suppose that there are infinitely many isomorphy classes
of finite-dimensional indecomposable 4-modules. Then for any n there are inde-
composable 4-modules of finite dimension >n.
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As a consequence of Corollary 6.8 and [7], III, Theorem 5.3, we get
COROLLARY 6.9. If R is a balanced ring, then 1.P.gl.dimR = 0 = r.P.gl.dim.R.
If R is a commutative ring, then by [13], Theorem 4.3, P.gl.dim R = 0 if and
only if each R-module is a direct sum of cyclic modules. Now we give an example
which shows that a similar result is not true in the non-commutative case.
ExaMpLE ([7], p. 139). Let D be a field and let y: D—D be a ring monomor-
phism such that dim,pyD = 2. Put R = B ® D and define a multiplication by
(a, b)(e,d) = (ac, y(@)d+bc). It is easy to check that R is a local left and right
artinian ring with the Jacobson radical J(R) = {(0, b), b € D}, which is simple as
aright ideal, and it is a direct sum of two simple left ideals viewied as a left R-module.
Then R is not quasi-Frobenius and the injective envelope E(Ry) of Ry is indecom-
posable. By [7] Ris balanced and hence I.P.gl.dimR = 0 = r.P.gl.dim R. Moreover,
it follows from [7], Ch. II, that every left R-module is a direct sum of cyclic modules.
Finally, observe that the finitely presented indecomposable right R-module E(RR)
is non-cyclic. In fact, if we assume that E(Ry) is cyclic, then we have a commutative
diagram
R
Ny l‘
0> R —> E(Ry)
0

where r- is a monomorphism. Since R is local, r is invertible and hence ¢ is an iso-
morphism. But this is impossible since R is not quasi-Frobenius.

Remark. In [14] a category D(R) = fpp-Mod is applied to an investigation
of the pure-injective dimension of left R-modules. It is shown that there exists an
equivalence of R-Mod with the full subcategory of D(R) consisting of FP-injective
objects (cf. [35]) such that pure-injective left R-modules correspond to injective
objects in D(R). Recently Gruson and Jensen have proved that 1.P.gl.dimR = 0
iff D(R) is locally noetherian (see [14]). Thus it follows that the category R-Mod is

pure-perfect if and only if a direct sum of any family of pure-injective left R-modules
is pure-injective.

§ 7. Final examples. Let C be a coalgebra over a field k and let us denote by
C-Comod the category of all left C-comodules (cf. [37]). It is well known that
C-Comod is locally finite and that ﬁmtc-chmensmnal left C-comodules form a set
of its generators.

TrEOREM 7.1. If C is cocommutative, then P.gl.dim C-Comod = 0 if and only
if C is a direct sum of finite-dimensional coalgebras having a unique composition series
of subcoalgebras.

P'roof. By [37] Cis a direct sum of irreducible coalgebras C;. Hence C-Comod
is equivalent to the product of categories+C;- Comod and therefore one can assume
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that C is irreducible. Now,.if P.gl.dim C-Comod = 0, then C is finite-dimensional
and therefore -C-Comod = C*-Mod (see [37]). Consequently, the required result
is a consequence of [13], Theorem 4.3.

If |k|<8,, >0, then it is easy to check that w(fp(C-Comod))<s,, and by
Corollary 3.14 we get P.gl.dim C-Comod<n+1. Hence in virtue of Theorem 7.1
we obtain :

CorOLLARY 7.2. If C is an infinitely dimensional irreducible cocommutative
coalgebra over a countable field, then P.gl.dim C-Comod = 1.

Now let # denote the category of all commutative and cocommutative Hopf
algebras over a field k and let 9 denote its full subcategory consisting of all Dieudonné
Hopf algebras (cf. [11]). Then, essentially as above, one can prove that P.gl.dim s#
<n-+1 and P.gl.dim@ <n-+1 provided |k|<&,, n2>>0. Assume that the characteristic
of k is p>0 and consider a sequence in the category 2 '

S Sz
P —P,—P3~
where P, = k[x]/(x™), 4(X) =1Q@X+X @ 1, fi(X) = %P (see [11]). It is easy to
check that this sequence is not factorizable, and so by Corollary 3.17 its colimit P, is
not pure-projective. Hence, using Theorem 2.12(b), we obtain P.pd P,
= P.pdyP, = 1 and therefore we have the following

COROLLARY 7.3. If k is either finite or a countable field of characteristic p=>0,
then P.gl.dim# = P.gl.dim® = 1.

A similar result can be obtained for the category of graded abelian Hopf algebras
over a perfect field of finite characteristic p # 2 (cf. [29]).

We do not know if the assumption in Corollaries 7.2 and 7.3 about the cardi-
nality of k is essential.
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A locally connected non-movable continuum
that fails to separate E®

by
D. R. McMillan, Jr. * (Madison, Wisc.)

Abstract. A locally connected continuum X (Fig. 2) is constructed by tunneling into a 3-cell
in such a way that E®— X is connected. The non-movability of X is proven using the three-manifold
techniques of Haken and Waldhausen.

1. Introduction. K. Borsuk has introduced and studied the important shape
property of movability for compacta. Examples of movable compacta include com-
pact absolute neighborhood retracts and compacta embeddable in 2-manifolds
(see [1], [10], and [7]). Some of the more exotic continua, such as solenoids, are not
movable ([1). It seems especially worthwhile to seek convenient characterizations
of movable compacta in 3-manifolds. Most examples of locally connected continua
in Euclidean 3-space E® that come to mind are movable (for example, locally con-
nected one-dimensional continuna are movable), but in general this is not enough
to do the job. In particular, Borsuk gave in [2] an example of a locally connected,
non-movable continumum in E3. His example separates E> into two pieces. In an
effort to focus on what does (and does not) make a continuum (i.e., compact, con-
nected Hausdorff space) in E® movable, we present an example of a locally connected,
non-movable contimium with connected complement in E*. (This answers the second
part of Borsuk’s Problem 5.5 in [2].)

A compactum X is movable if for some (and hence for every) embedding XcQ
(= the Hilbert cube), the following holds: Bach neighborhood U of X contains
a neighborhood ¥ of X such that for each neighborhood W of X, the final stage of
some homotopy of Vin U throws ¥ into . Of course, it can be shown that if X lies
in a nice space, such as a manifold M, then X is movable by the preceding definition
if and only if the corresponding movability statement holds for X with respect to
its neighborhoods in M. Our example is constructed from a 3-cell by an infinite
sequence of tunneling operations. (See Figure 2: any resemblance to a Christmas
tree is coincidental.)

‘While the example itself is easy to describe, our proof of its non-movability
seems rather elaborate. Perhaps simpler proofs and/or examples exist. ‘We rely heavily

* Research supported by N.S. F. grant GP-38877A4f1.
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