

- [9] A. Granas, The theory of compact fields and some of its applications to topology of functional spaces, Dissertationes Math. 30 (1962), pp. 89.
- [10] Sur la notion du degré topologique pour une certaine classe de transformations multivalentes dans les espaces de Banach, Bull. Acad. Polon. Sci. 7 (1959), pp. 191-194.
- [11] Theorems on antipodes and theorems on fixed points for a certain class of multi-valued mappings in Banach spaces, Bull. Acad. Polon. Sci. 8 (1959), pp. 271-275.
- [12] T. W. Ma, Topological degree of set-valued compact fields in locally convex spaces, Dissertationes Math. 92 (1972), pp. 1-43.
- [13] E. G. Skljarenko, On a theorem of Victoris and Begle, Dokl. Akad. Nauk SSSR 149 (1963). pp. 264-267.
- [14] G. S. Skordev, On the invariance of domain, Comptes Rendus de l'Academie Bulgare des Sciences 27 (1974), pp. 1471-1472.
- [15] S. A. Williams, An index for set-valued maps in infinite-dimensional spaces, Proc. Amer. Math. Soc. 31 (1972), pp. 557-563.

Added in proof.

[1] D. G. Bourgin, A generalization of the mapping degree, Canadian J. Math. 26 (1974), pp. 1109-1117.

Accepté par la Rédaction le 16. 6, 1975

Symmetric words in nilpotent groups of class ≤ 3

Ernest Pionka (Wrocław)

Abstract. Let G be a group. A word $w = w(x_1, ..., x_n)$ is said to be symmetric if $w(a_1, ..., a_n)$ $= w(a_{\pi 1}, ..., a_{\pi n})$ for all $a_1, ..., a_n \in G$ and all permutations π from the symmetric group S_n on n-letters. In this note we describe symmetric words in nilpotent groups of class ≤ 3 .

1. Introduction and notation. Let G be a group, and let $F_G(x_1, ..., x_r)$ be the group freely generated by $x_1, ..., x_r$ in the smallest variety var(G) of groups containg G. Let A be the group of automorphisms of $F_G(x_1, ..., x_r)$ induced by the mappings

$$x_{i} \rightarrow x_{\mu i}$$
, $1 \leqslant i \leqslant r$,

 μ belonging to the symmetric group S_r , on r letters. Let $S^{(r)}(G)$ be the set of all fixed points of A, i.e.,

$$S^{(r)}(G) = \{w: \ \xi w = w \ \text{for all} \ \xi \in A\}$$
.

The elements of $S^{(r)}(G)$ are called *symmetric words* (of r variables) in G. Clearly, $S^{(r)}(G)$ is a group. The aim of this note is to describe symmetric words

in nilpotent groups of class ≤ 3 . We prove that in this case $S^{(r)}(G)$ is Abelian.

2. Symmetric words. In an Abelian group every word w of r variables is of the form

$$w = \prod_{1 \leq i \leq r} x_i^{a(i)}.$$

We thus have

THEOREM 1. If G is an Abelian group, then $w \in S^{(r)}(G)$ if and only if

$$w = \prod_{1 \le i \le r} x_i^a.$$

In [3] all elements of $S^{(r)}(G)$ for a nilpotent G of class 2 are described. Namely THEOREM 2. If G is a nilpotent group of class 2, then $w \in S^{(r)}(C)$ if and only if

$$w = \prod_{1 \leq i \leq r} x_i^a \prod_{1 \leq j < i \leq r} [x_i, x_j]^b,$$

where the integers a, b satisfy the condition

$$a^2 \equiv 2b(\exp G')$$

 $(\exp G' \text{ means the exponent of the group of commutators of } G_i)$

To determine the symmetric words in a nilpotent group of class 3 we need some well-known identities:

$$[x, y, z][y, z, x][z, x, y] = 1,$$

$$[x, y, z] = [y, x, z]^{-1},$$

$$[x^{n}, y, z] = [x, y^{n}, z] = [x, y, z^{n}] = [x, y, z]^{n},$$

$$[y^{n}, x^{m}] = [y, x]^{mn}[y, x, x]^{\frac{1}{2}mn(m-1)}[y, x, y]^{\frac{1}{2}mn(n-1)}$$

valid in an arbitrary nilpotent group of class 3 for all integers n, m. Let C(m, n, p, q) be the class of all nilpotent groups of class ≤ 3 which satisfy the identities

$$x^{m} = 1$$
, $[y, x]^{p} = 1$, $[y, x, z]^{p} = 1$, $[y, x, x]^{q} = 1$.

In [2] B. Jónsson has proved the following

Theorem (B. Jónsson). There is a 1-1 correspondence between all the varieties of nilpotent groups of class ≤ 3 and the quadruples (m, n, p, q) satisfying the conditions

$$n \cdot \gcd(2, m) | m, p | n, q | p, q \cdot \gcd(m, 6) | m, p | 3q$$
.

The following lemma readily follows from [2].

LEMMA. Let G be a nilpotent group of class 3 with var(G) = C(m, n, p, q). Then for all natural numbers r the identity in G

$$\begin{split} &\prod_{1 \leqslant i \leqslant r} x_i^{a(i)} \prod_{1 \leqslant j < i \leqslant r} [x_i, x_j]^{b(i, j)} [x_i, x_j, x_j]^{c(i, j)} [x_i, x_j, x_i]^{c'(i, j)} \prod_{\substack{1 \leqslant j < i \leqslant r \\ j < k \leqslant r}} [x_i, x_j, x_k]^{d(i, j, k)} \\ &= \prod_{1 \leqslant i \leqslant r} x_i^{\overline{a}(i)} \prod_{1 \leqslant j < i \leqslant r} [x_i, x_j]^{\overline{b}(i, j)} [x_i, x_j, x_j]^{\overline{c}(i, j)} [x_i, x_j, x_i]^{\overline{c}(i, j)} \prod_{\substack{1 \leqslant j < i \leqslant r \\ 1 \leqslant j \leqslant i \leqslant r}} [x_i, x_j, x_k]^{\overline{d}(i, j, k)} \end{split}$$

is equivalent to the conditions

$$a(i) \equiv \overline{a}(i) \ (m), \quad 1 \leqslant i \leqslant r,$$

$$b(i,j) \equiv \overline{b}(i,j) \ (n), \quad 1 \leqslant j < i \leqslant r,$$

$$c(i,j) \equiv \overline{c}(i,j) \ (q), \quad 1 \leqslant j < i \leqslant r,$$

$$c'(i,j) \equiv \overline{c}'(i,j) \ (q), \quad 1 \leqslant j < i \leqslant r,$$

$$a(i,j,k) \equiv \overline{d}(i,j,k) \ (q), \quad 1 \leqslant j < i \leqslant r,$$

$$d(i,j,k) - d(k,j,i) \equiv \overline{d}(i,j,k) - \overline{d}(k,j,i) \ (p), \quad 1 \leqslant j < i < k \leqslant r.$$

We start with

Theorem 3. If G is a nilpotent group of class 3 with var(G) = C(m, n, p, q), then $w \in S^{(2)}(G)$ if and only if

$$w = x^a y^a [y, x]^b [y, x, x]^c [y, x, y]^{c'},$$

and

 $a^2 \equiv 2b \ (n), \quad c+c', \equiv \frac{1}{2}a^2(a-1) \ (q).$

Proof. Let

$$w = x^{a(1)}y^{a(2)}[y, x]^b[y, x, x]^c[y, x, y]^{c'}$$

be a word in G. Using (*), we calculate

$$\begin{split} w(y,x) &= y^{a(1)} x^{a(2)} [x,y]^b [x,y,y]^c [x,y,y]^{c'} \\ &= x^{a(2)} y^{a(1)} [y,x]^{-b+a(1)a(2)} [y,x,x]^{-c'+\frac{1}{2}a(1)a(2)(a(2)-1)} \times \\ &\times [y,x,y]^{-c+\frac{1}{2}a(1)a(2)(a(1)-1)} \,. \end{split}$$

Hence, by the lemma, we infer that w is symmetric if and only if

$$a(1) \equiv a(2) \ (\equiv a) \ (m) ,$$

$$a^2 \equiv 2b \ (n) ,$$

$$c+c' \equiv \frac{1}{2}a^2(a-1)$$

as required.

THEOREM 4. If G is a nilpotent group of class 3 and var(G) = C(m, n, p, q), then for every $r \ge 3$, $w \in S^{(r)}$ if and only if w is of the form

(1)
$$w = \prod_{1 \le i \le r} x_i^a \prod_{1 \le j < i \le r} [x_i, x_j]^b [x_i, x_j, x_j]^c [x_i, x_j, x_i]^{c'} \prod_{\substack{1 \le j < i \le r \\ j < k \le r}} [x_i, x_j, x_k]^d$$

and the three congruences

$$a^{2} \equiv 2b (n),$$

$$c+c' \equiv \frac{1}{2}a^{2}(a-1) (q),$$

$$a^{3} \equiv 3d (p).$$

are fulfilled.

Proof. Let w be a word in G. Then (cf. e.g. [2])

$$w = \prod_{1 \leq i \leq r} x_i^{a(i)} \prod_{1 \leq j < i \leq r} [x_i, x_j]^{b(i,j)} [x_i, x_j, x_j]^{c(i,j)} [x_i, x_j, x_i]^{c'(i,j)} \prod_{\substack{1 \leq j < i \leq r \\ j < k \leq r}} [x_i, x_j, x_k]^{d(i,j,k)}.$$

Let α, β, γ be integers satisfing $1 \le \alpha < \beta < \gamma \le r$. We define

$$u(x_{\alpha}, x_{\beta}, x_{\gamma}) = w(1, ..., 1, x_{\alpha}, 1, ..., 1, x_{\beta}, 1, ..., 1, x_{\gamma}, 1, ..., 1).$$

If the word w is symmetric, then the words u(x, y, 1), u(x, 1, y), u(1, x, y) are also symmetric and, of course, the equalities

$$u(x, y, 1) = u(x, 1, y) = u(1, x, y)$$

hold. This together with the lemma and Theorem 3 yields

$$a(\alpha) \equiv a(\beta) \equiv a(\gamma) \ (\equiv a) \ (m) \ ,$$

$$b(\beta, \alpha) \equiv b(\gamma, \alpha) \equiv b(\gamma, \beta) \ (\equiv b) \ (n) \ ,$$

$$c(\beta, \alpha) \equiv c(\gamma, \alpha) \equiv c(\gamma, \beta) \ (\equiv c) \ (q) \ ,$$

$$c'(\beta, \alpha) \equiv c'(\gamma, \alpha) \equiv c'(\gamma, \beta) \ (\equiv c') \ (q) \ .$$

Since α , β , γ have been arbitrary, we can assume that the word w is of the form (1) with $[x_i, x_j, x_k]^{d(i,j,k)}$ instead of $[x_i, x_j, x_k]^d$.

Clearly w is symmetric if and only if

$$w(x_1,...,x_r) = w(x_2,x_1,x_3,...,x_r) = w(x_2,...,x_r,x_1)$$

because the cycles (1, 2) and (1, 2, ..., r) generates the group S_r .

We have

$$\begin{split} w(x_2,x_1,x_3,...,x_r) &= x_2^a x_1^a \prod_{3\leqslant i\leqslant r} x_i^a [x_1,x_2]^b \\ &\prod_{2\leqslant j< i\leqslant r} [x_i,x_j]^b [x_1,x_2,x_1]^c [x_1,x_2,x_2]^{c'} [x_i,x_j,x_j]^c [x_i,x_j,x_i]^{c'} \\ &\prod_{3\leqslant i\leqslant r} [x_1,x_2,x_i]^{d(2,1,i)} [x_i,x_2,x_1]^{d(l,1,2)} \\ &\prod_{3\leqslant i,j\leqslant r} [x_i,x_1,x_j]^{d(i,2,l)} [x_i,x_2,x_j]^{d(i,1,l)} \\ &\prod_{3\leqslant j,j\leqslant i\leqslant r} [x_i,x_j,x_k]^{d(i,j,k)} \\ &= \prod_{1\leqslant i\leqslant r} x_i^a [x_2,x_1]^{a^2-b} \\ &\prod_{2\leqslant j< i\leqslant r} [x_i,x_j]^b [x_2,x_1,x_1]^{-c'+\frac{1}{2}a^2(a-1)} [x_2,x_1,x_2]^{-c+\frac{1}{2}a^2(a-1)} [x_i,x_j,x_j]^c [x_i,x_j,x_i]^{c'} \\ &\prod_{3\leqslant i\leqslant r} [x_2,x_1,x]^{-d(2,1,i)-d(i,1,2)+a^3} [x_i,x_1,x_2]^{d(i,1,2)} \\ &\prod_{3\leqslant i,j\leqslant r} [x_i,x_1,x_j]^{d(i,2,j)} [x_i,x_2,x_j]^{d(i,1,j)} \end{split}$$

and likewise

 $\prod_{\substack{3 \leq j < i \leq r \\ j < k \leq r}} [x_i, x_j, x_k]^{d(i,j,k)},$

$$\begin{split} w(x_2, x_3, ..., x_r, x_1) &= x_2^a ... x_r^a x_1^a \prod_{2 \le i \le r} [x_1, x_i]^b \prod_{2 \le j < i \le r} [x_i, x_j]^b \\ &\prod_{2 \le i \le r} [x_1, x_i, x_i]^c [x_1, x_i, x_1]^{c'} \\ &\prod_{2 \le j < i \le r} [x_i, x_j, x_j]^c [x_i, x_j, x_i]^{c'} \\ &\prod_{1 \le j < i < r} [x_{i+1}, x_{j+1}, x_1]^{d(i,j,n)} [x_1, x_{j+1}, x_{i+1}]^{d(n,j,i)} \\ &\prod_{\substack{1 \le j < i < r \\ j \le k < r}} [x_{i+1}, x_{j+1}, x_{k+1}]^{d(i,j,k)} \end{split}$$

 $= \prod_{\substack{1 \le i \le r}} x_i^a \prod_{2 \le i \le r} [x_i, x_1]^{-b+a^2} \prod_{2 \le j < i \le r} [x_i, x_j]^b$ $\prod_{\substack{2 \le i \le r}} [x_i, x_1, x_1]^{-c' + \frac{1}{2} a^2(a-1)} [x_i, x_1, x_i]^{-c + \frac{1}{2} a^2(a-1)}$ $\prod_{\substack{2 \le j < i \le r}} [x_i, x_j, x_j]^c [x_i, x_j, x_i]^{c'}$ $\prod_{\substack{1 \le j < i < r}} [x_{i+1}, x_1, x_{j+1}]^{d(i,j,n)} [x_{j+1}, x_1, x_{i+1}]^{-d(n,j,i) - d(i,j,n) + a^3}$ $\prod_{\substack{1 \le j < i < r \\ j < k < r}} [x_{i+1}, x_{j+1}, x_{k+1}]^{d(i,j,k)}.$

This together with the lemma gives

$$a^{2} \equiv 2b (n),$$

$$c+c' \equiv \frac{1}{2}a^{2}(a-1) (q),$$

(2)
$$a^3 \equiv 2d(2,1,i) + d(i,1,2) \ (p), \quad 3 \le i \le r,$$

(3)
$$d(i,2,j) \equiv d(i,1,j) \ (q), \quad 3 \leqslant i,j \leqslant r, \ i \neq j,$$

(4)
$$a^3 \equiv 2d(i,j,r) + d(r,j,i) + d(j+1,1,i+1) - d(i+1,1,j+1)$$
 (p), $1 \le j < i < r$,

(5)
$$d(i,j,r) \equiv d(i+1,1,j+1) \ (q) \ , \quad 1 \le j < i < r \ ,$$

(6)
$$a^3 \equiv d(r,j,i) + d(i,j,r) + d(j+1,1,i+1)$$
 (q), $1 \le j < i < r$,

(7)
$$d(i+1,j+1,k+1) \equiv d(i,j,k) \ (q), \quad 1 \le j < i < r, \ j < k < r.$$

We are now going to show that for all $r \ge 3$ these congruences imply the equality of all d(i, j, k) modulo q. This is done by induction on r.

For r=3 this is obvious. Suppose it holds for r-1 $(r\geqslant 4)$. Then consider the integers d(i,j,r) where $1\leqslant j< i< r$.

If j>1, then by (7) we have $d(i-1, j-1, r-1) \equiv d(i, j, r)$ (q).

If j = 1, i < r - 1, then by (5) we have $d(i, 1, r) \equiv d(i+1, 1, 2)$ (q).

If j = 1, i = r - 1, then using (3) and (7) we obtain $d(r - 1, 1, r) \equiv d(r - 2, 1, r - 1)$ (q).

It is enough to apply (2) and (4) for r = 3 to get

$$d(3,1,2) \equiv d(2,1,3) (p)$$
,

$$a^3 \equiv 3d(3, 1, 2) (p)$$
.

Suppose now that for r-1 $(r \ge 4)$ the congruences (2)-(7) imply

$$d(k,j,i) \equiv d(i,j,k) \ (p), \quad 1 \leqslant j < i < k \leqslant r-1,$$

$$a^3 \equiv 3d(k,j,i) \ (p), \quad 1 \leqslant j < i < k \leqslant r-1.$$

If $i \le r-2$, then it follows from (4) that

$$a^3 \equiv 2d(i, j, r) + d(r, j, i)$$
 (p),

since, in view of the induction hypothesis, we have

$$d(j+1, 1, i+1) \equiv d(i+1, 1, j+1) (p)$$
.

But p|3q, and therefore $3d(i,j,r) \equiv 3d(3,1,2) \equiv a^3$ (p). This gives

(8)
$$d(i,j,r) \equiv d(r,j,i) \ (p) \ , \quad 1 \leq j < i \leq r-2 \ .$$

If i = r-1, $j \le r-3$, then combining (8) and (4) we get

$$a^3 \equiv 2d(r-1, j, r) + d(r, j, r-1)$$
 (p).

Consequently

(9)
$$d(r-1, j, r) \equiv d(r, j, r-1) (p), \quad 1 \le j \le r-3.$$

The congruence $d(r, r-2, r-1) \equiv d(r-1, r-2, r)$ follows now from the one above and (4).

We have thus proved that the integers d(i, j, k) are equal modulo q, and that

$$3d(i,j,k) \equiv a^3 (p), \quad 1 \le j < i < k \le r,$$

$$d(i,j,k) \equiv d(k,j,i) (p), \quad 1 \le j < i < k \le r.$$

It follows from the lemma that the identities

$$[x_i, x_j, x_k]^q [x_k, x_j, x_i]^q \equiv 1, \quad 1 \le j < i < k \le r$$

hold in G. This and the fact that p|3q complete the result.

3. Homomorphisms ∂_r^{r+1} . If G is a group, then the mapping $\partial_r^{r+1}\colon S^{(r+1)}\to S^{(r)}$ defined by

$$(\partial_r^{r+1} w)(x_1, ..., x_{r+1}) = w(x_1, ..., x_r, 1)$$

is a homomorphism. From Theorems 1 and 2 follows

COROLLARY. If G is a nilpotent group of class ≤ 3 , then for all $r \geq k$ the mapping ∂_r^{r+1} is an isomorphism.

Let us consider the following two examples:

EXAMPLE 1. Let Q be the eight-element group of quaternions. Since m(Q) = 4, n(Q) = 2, p(Q) = q(Q) = 0, we get from Theorem 2

$$S^{(1)} = \{1, x, x^2, x^3\}, \quad S^{(2)} = \{1, x^2y^2, [y, x], x^2y^2[y, x]\}$$

and therefore $\partial_1^2(S^{(2)}(Q)) \neq S^{(1)}(Q)$.

EXAMPLE 2. By Jónsson's theorem there exists a nilpotent group G of class 3 for which m=18, n=p=9, q=3. As is easy to verify, the word w=xy[y,x] is symmetric in G, while there is in G no symmetric word of 3 variables which would be of the form xyz..., because the congruence $3d \equiv 1$ (9) does not have a solution, thus $w \notin \partial_2^3(S^{(3)}(G))$.

These examples show that the assumption $r \ge k$ is indispensable. Theorem 4 and the corollary deduced from it depend very heavily on Jónsson's theorem. Since it seems that there is nothing like Jónsson's theorem for a nilpotent group of class ≥ 4 , the following problem requires another method.

PROBLEM. Let G be a nilpotent group of class k. Is the mapping ∂_r^{r+1} an isomorphism for every $r \ge k$?

In the case of a free nilpotent group, this question is answered in the afirmative in [4].

4. The groups $S^{(r)}(G)$.

THEOREM 5. If G is a nilpotent group of class ≤ 3 , then for every r the groups $S^{(r)}(G)$ are Abelian.

Proof. Let G be a nilpotent group of class 2, and $w_1, w_2 \in S^{(2)}(G)$. In view of Theorem 2 we have

$$w_1w_2=x^{a_1}y^{a_1}[y,x]^{b_1}x^{a_2}y^{a_2}[y,x]^{b_2}=x^{a_1+a_2}y^{a_1+a_2}[y,x]^{b_1+b_2+a_1a_2}.$$

Since $b_1 + b_2 + a_1 a_2$ is invariant under transposition a_1 , a_2 and b_1 , b_2 , we see that the group $S^{(2)}(G)$ is Abelian.

For symmetric words w_1 , w_2 of three variables in a nilpotent group G of class 3 we get

$$w_1 w_2 \equiv x^{a_1} y^{a_1} z^{a_1} [y, x]^{b_1} [z, x]^{b_1} [z, y]^{b_1} [y, x, x]^{c_1} [y, x, y]^{c_1'} [z, x, x]^{c_1} [z, x, z]^{c_1'} \\ [z, y, y]^{c_1} [z, y, z]^{c_1'} [y, x, z]^{d_1} [z, x, y]^{d_1} x^{a_2} y^{a_2} z^{a_2} [y, x]^{b_2} [z, x]^{b_2} [z, y]^{b_2} \\ [y, x, x]^{c_2} [y, x, y]^{c_1'} [z, x, x]^{c_2} [z, x, z]^{c_1'} [z, y, y]^{c_2} [z, y, z]^{c_2'} [y, x, z]^{d_2} \\ [z, x, y]^{d_2} \\ = x^{a_1 + a_2} \dots [y, x]^{b_1 + b_2 + a_1 a_2} \dots [y, x, x]^{c_1 + c_2 + b_1 a_2 + \frac{1}{2} a_1 a_2 (a_2 - 1)} \dots \\ \dots [y, x, y]^{c_1' + c_1' + a_2 b_1 + a_1 a_2^2 + \frac{1}{2} a_1 a_2 (a_1 - 1)} \dots [y, x, z]^{d_1 + d_2 + a_1^2 a_2 + a_1 a_2^2} \\ [z, x, y]^{d_1 + d_2 + 2b_1 a_2 + a_1 a_2^2}.$$

Therefore it is enough to show that D_1 and D_2 equal 0 modulo q, where

$$\begin{split} D_1 &= [c_1 + c_2 + a_2b_1 + \tfrac{1}{2}a_1a_2(a_2 - 1)] - [c_1 + c_2 + a_1b_2 + \tfrac{1}{2}a_1a_2(a_1 - 1)] \\ &= \tfrac{1}{2}(a_2k_1 - a_1k_2)n \;, \\ D_2 &= [c_1' + c_2' + b_1a_2 + a_1a_2^2 + \tfrac{1}{2}a_1a_2(a_1 - 1)] - [c_1' + c_2' + a_1b_2 + a_1^2a_2 + \tfrac{1}{2}a_1a_2(a_2 - 1)] \\ &= \tfrac{1}{2}(a_2k_1 - a_1k_2)n \;. \end{split}$$

If the natural number n is odd, then $D_1 = D_2 \equiv 0$ (q), since the number $\frac{1}{2}(a_2k_1 - a_1k_2)$ is an integer and q|n.

If n is even, then, in view of Theorem 4, a_1 , a_2 are also even. Hence $D_1 = D_2 \equiv 0$ (q).

It should be noticed that the form of the product of two symmetric words of two variables in G is the same as (10), provided the commutators which contain the variable z are dropped. Thus our discussion shows also that $S^{(2)}(G)$ is an Abelian group. The result now follows from the corollary.

^{4 —} Fundamenta Mathematicae XCVII

Remark. There are non-nilpotent groups for which $S^{(r)}$ is non-Abelian for some r. For example, one can prove (cf. [3]) that for the normal product of Z_p (p-prime) and Z_2 we have $S^{(2)}(Z_pZ_2) = Z_pZ_2 \times Z_p$.

5. Free nilpotent groups. Using the result of the previous section, one can easily get a more accurate description of the group $S^{(r)}(G)$, G being a free nilpotent group.

THEOREM 6. If G is a free nilpotent group of class 2, then all the groups $S^{(r)}(G)$ are cyclic infinite.

Proof. From Theorem 2 we deduce that $w \in S^{(2)}(G)$ if and only if w is of the form

$$w = x^{2k} y^{2k} [y, x]^{2k^2},$$

for some integers k. Therefore if we put $w_0 = x^2y^2[y, x]^2$, then $w = w_0^k$. The result now follows from the corollary.

THEOREM 7. Let G be a free nilpotent group of class 3. Then

1. The words $u_1 = x^2y^2[y, x]^2[y, x, x]^2$, $u_2 = [y, x, x][y, x, y]^{-1}$ are the free generators of the group $S^{(2)}(G)$.

2. If $r \ge 3$, then the words

$$\begin{aligned} v_{1r} &= \prod_{1 \leq i \leq r} x_i^6 \prod_{1 \leq j < i \leq r} [x_i, x_j]^{18} [x_i, x_j, x_j]^{90} \prod_{\substack{1 \leq j < i \leq r \\ j < k \leq r}} [x_i, x_j, x_k]^{72} \\ v_{2r} &= \prod_{1 \leq i, j < r} [x_i, x_j, x_j] [x_i, x_j, x_i]^{-1} \end{aligned}$$

are the free generators of the group $S^{(r)}(G)$.

Proof. 1. It follows from Theorem 3 that every symmetric word of three variables in G is of the form

$$w = x^{2k}y^{2k}[y, x]^{2k^2}[y, x, x]^c[y, x, y]^{2k^2(2k-1)-c}$$

where k, c are integers. We have

$$u_1^k = x^{2k} y^{2k} [y, x]^{2k} [y, x, x]^c [y, x, y]^{2k^2 (2k-1) - p(k)}$$

for a certain integer p(k). Then $w = u_1^k u_2^{c-p(k)}$. Indeed,

$$u_1^k u_2^{c-p(k)} = x^{2k} y^{2k} [y, x]^{2k^2} [y, x, x]^{p(k)} [y, x, y]^{2k^2(2k-1)-p(k)}$$

$$[y, x, x]^{c-p(k)}[y, x, y]^{p(k)-c} = w.$$

Since the exponent k and c-p(k) are uniquely determined by the word w, u_1 and u_2 are free generators of $S^{(2)}(G)$, as required.

2. In view of the Corollary it is sufficient to consider the case r=3. By Theorem 4, $w \in S^{(3)}(G)$ if and only if w is of the form

$$w = x^{6k} y^{6k} z^{6k} [y, x]^{18k^2} [z, x]^{18k^2} [z, y]^{18k^2} [y, x, x]^c [y, x, y]^{18k^2(6k-1)-c}$$

$$[z, x, x]^c [z, x, z]^{18k^2(6k-1)-c} [z, y, y]^c [z, y, z]^{18k^2(6k-1)-c} [y, x, z]^{72k^3} [z, x, y]^{72k^3},$$

where k, c are integers. If q(k) is the exponent at [y, x, x] in the reduced form of v_{13}^k , then, as is easy to verify,

$$w = v_{13}^k v_{23}^{c-q(k)} ,$$

and the theorem follows.

References

[1] M. Hall, The theory of groups (Russian), Moskwa 1962.

[2] B. Jónsson, Varieties of groups of nilpotency 3, manuscript.

[3] E. Plonka, Symmetric operation in groups, Colloq. Math. 21 (1970) fasc., pp. 179-186.

[4] - On symmetric words in free nilpotent groups, Bull. Acad. Polon. Sci. 18 (1970), pp. 427-429.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Accepté par la Rédaction le 23. 6. 1975