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On the actions of SO(3) on lens space II
by

Soon-kyu Kim (Storrs, Ct.) and Jingyal Pak (Detroit, Mich.)

Abstract. In this paper, an cﬁ‘ec{ive (smooth) action of SO(3) on a generalized lens space
Lan #1035 @iy <oy @u), in 0dd (>3), is studied via the lifting action of SO(3) on the universal covering
space S*+1 over the lens space.

The main result is that there is an isotropy subgroup isomorphic to a finite cyclic group con-
trary to the case of SO (3) actions on spheres for which there is no such subgroup. If the cohomology
dimension of the singular set over Z is 2n—1 (or less than 2n—1), then there is 2 point in Lyy+,(m)
at which the isotropy subgroup is Z (or a subgroup of Zp). Furthermore, if y is the dimension of
the maximal orbit then the cohomology dimension of the fixed point set over Z must be less than,
2n—y. If it is equal to 2n—y—1 over Z,, then y must be 3 and some isotropy subgroup is Zp.

1. The results concerning actions of SO(3) on the sphere S" ([6], [7]) indicate
that there is no finite cyclic isotropy subgroup of SO(3). However, the authors
showed in [5] that if SO(3) acts effectively on a 5-dimensional lens space Ls(m),
m odd, with 3-dimensional orbits, then there exists a nontrivial cyclic isotropy sub-
group of SO(3). We used the lifting action of SO(3) on the universal covering
space S°.

This paper is a continuation of our paper [5]. Using the lifting action again,
we study an effective action of SO(3) in an arbitrary dimensional lens space. We
show that an isotropy subgroup is isomorphic to a subgroup of the fundamental
group of the lens space and it is nontrivial for certain cases, (see (2.2), (3.2)). We
also prove a theorem about the dimension of the fixed point set, (see (3.1)).

1t is well known that the conjugacy classes of closed subgroups of the group
SO(3) are the maximal torus S, the normalizer N of § in SO(3), the cyclic groups Z,
of order n, the dihedral group D, of order 2n, and the groups Hr, H¢, Hy of all
the rotational symmetries of the tetrahedron, the cube, the icosahedron, respectively.
The group Hy, He and H; are maximal finite subgroups of SO(3) and the groups
Hp, He, H;, D,,, N, SO(3) all contain D, = Z,®Z, as a subgroup.

A lens space Ly, (M, gy, - g,) 15 defined as the orbit space of a Z,-action
on the sphere $2"*! = {z = (%, Z)) € C"1 2] = 1} induced by a homeo-
morphism a: $"*1—S2"*1 defined by

O((Z) = (ZO eZWi[m’ Z4 eZm'q;[m’ s Zy e?.niq,.,hn) s
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where m>2 and ¢, ..., g, are integers such that (m, ¢;) = 1 for each i. A lens
space will be denoted by L(m) or L,,.,(m) where no confusion arises. The pro-
jection mapping p: S*"*!—L(m) is the universal covering mapping, and the group
of covering transformations is n,(L(m)) = Z,.

For an action (G, X) of a topological group G on a space X, we call G(x)
= {gx| g € G} the orbit of xe X and G, = {g € G| gx = x} the isotropy subgroup
of G at x& X. The orbit space of an action (G, X) is denoted by X/G.

Let (SO@M), @, Ly,4()), m odd, be an effective smooth action of SO®3)
ona lens space L,,..;(m). Denote by U the union of all the principal orbits, by D the
union of all the exceptional orbits, by B the union of all the singular orbits, and
by F the set of all the fixed points of (SO(3), @, Ly, (m)). Then U, D, and }3 are
all.SO(3)-invariant and they are mutually disjoint. It is known that i,f By, is the
uﬁllon’ of al-l the k-dimensional orbits, then: dim, B, <2n+1—r+k—1, Wh'c‘:re ris
ES :e ?;r]r)l.ensxon of the principal orbit. Hence dimzB<2n~1 and dim,F<2n—r

‘LEMMA (1.1). Any effective action (SO(3), @, Ly, .1(m)), m odd, can be lifted
equivariantly to_an effective action of (SO(3), &, S***1), ie., the d;'agram

SO(3) x 271 — oy g2n+1
id xpl ' lp
SO(3) % L(m) _®_, L(ri)

commutes, where p: S*™*1L, . (m) is the covering mapping.
Proof. See [4], (4.3) or [5], Lemma 1. .
We denoted by 4 the inverse i
mapine y e lnve;ge image of a subset 4 of L(m) under the covering
LEW (1.2). I.n the lifted action (SO(3), §2otty, UTD, B, and F ar? t)ze um:on
of ‘all the highest dimensional orbits, the union of all the singular orbits, and the fixed
point set in S***1, respectively. ‘ rand the fie
connPrtogf. Smce‘ pGSO(B‘)Q))) =80(3)(p() for each ye §?"*+1 and SO@3) is
ecte a_nd P 1s @ local homeomorphism, the lemma follows immediatel
As an immediate corollary we have: g
‘CO(ROLLARY (1.3). dim; B = dim, B and dim, F = dim,F
If (SO(3), $27*1) is the lifted action ' . '
@3), on of (SO(3), Ly 4 (m)), i
ot i _ s Lani1(m)), it can be seen e
o et o mduced stion of 7, = (L) on he 1t pace 5205003
rmula - g(ya) = (gy)a for all geSO@3 20+ 1 X
@ €7,(Lyye ((m)). In [4], Conner and Ra : ; RO
: R ymond defined a mappi :
—7;(L(m)) for each ye $2"+* and proved the following' '].err?xﬁzl'ng "+ 506

Lemma (1.4) (Conner and Ra: .
e ymond [4]). For each y e §*"+1

asily

, there is an exact

. ,
e=80(3),~>S0(3), > n, (L(m))
P . . N = ; m)) ¢ )_)0
where i is the inclusion and x = p(y) and p: SZ"“-».S‘:;"“/S’() (3) is the projectio
n.

4
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First we prove the following theorem:

TreoreM (1.5). Let (SO(3), Lyns((m)), m odd, be an effective action of SO(3)
ont Lyps ((m). Uf the principal isotropy subgroup SO3), is a finite cyclic group, then
SO(3), is isomorphic to a subgroup of n (L) & Z,. :

Proof. Let S, be the set of all principal orbits of the lifted action (SO(3),

§20%1). Then §, is an open dense subset of S§21+1, Therefore, p(S,)=L(m) is an

open dense subset of L1 (m). This implies that p(S,) n U # @. Thus there are

points x € L(m) and yep~i(x) such that both SO(3), and SO(3), are principal

isotropy subgroups. Then by Lemma (1.4), we have an exact sequence
e 80(3),~ 80 (3),— (Zn)gn—0

where p(y) = x and SO(3), and S8O(3), are principal isotropy subgroups.. Since
SO(3), is a finite cyclic group, SO(3), is a finite cyclic principal isotropy subgroup.
Then by Theorem 1 of [6], SO(3), must be a trivial group. Hence SO(3), 2 (Z,.)5n)-
Note that if (Z,, $***1/SO(3)) has a fixed point in S$27*+1/S0(3) that corre-
sponds to a principal orbit of (SO(3), §27+1), then SO(3), & Z,, i€, itisa non-
trivial cyclic group. (SO(3), may not be the principal isotropy subgroup.) '

2. We know that dim,B<2n—1. Suppose that the dimension of B over Z is

" the highest possible dimension, i.e., dimzB = 2n—1. Then the principal orbit of

(SO(3), Lans1(m)) has dimensions 3 for if dim;SO3)(x) =2, xe U, then B = F
since there is no 1-dimensional orbit. This implies that dimzB = dimz F<2n—2.
This contradicts the assumption about the dimension of B. There is a 2-dimensional
orbit and n>2 since dimz B, = 2n—1, where B, is the set of all the 2-dimensional
orbits, Therefore B, # @ and dimgB = m—122, i.e., n22. Moreover, a 2-di-
mensional orbit is either a sphere S? or a projective space p*. I SO(3)(2) is 2-di-
mensional, then there is.a g € SO(3) such that $0(3),.250(3),, x € U. Hence the
principal isotropy subgroup is either cyclic or dihedral. Exactly the same things
can be said about the lifted action (SO(3), §2r+1Y of the action (SO(3), Loy (m).

Levva (2.1). Let (SO(3), Lausr(m)), m odd, be an effective action of SO(3}
on Ly, . (m) with dimzB = 2n—1. Then the lifted action (SO(3), $****) has 2- and
3-dimensional orbits, n=2 and dimzB = 2n—1. Furthermore, 2-dimensional orbits
are either S* or P* and the principal isotropy subgroup Is either trivial or dihedral.
The principal isotropy subgroup can be a dihedral group only when the induced action
(Zps S2*1/SO(3)) has an isotropy subgroup isomorphic to Zs that corresponds to
principal orbits of (SO(3), Sty .

Proof. All that remains is to prove the last part of the lemma about the
principal isotropy subgroup. We know that the principal isotropy subgroup is
either cyclic or ¢ihedral. However by [7] it is actu: ly either a Cihedral group of order 4,
D,, or the trivial group. Suppose the principal isotropy subgroup is a dihedral
group D,, then by (1.4) SO(3),/D; is isomorphic to (Z.)ppn> p(¥) = x, which is
a cyclic group of odd order. But Hy is the only subgroup of SO(3) that contains D,
as a normal subgroup and the quotient group has an odd order. Since Hy/D, = Z3,
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this is impossible unless the action (Z,, $*"**/SO(3)) has an isotropy subgroup
isomorphic to Z;. In this case SO(3)(x) may not be a principal orbit.

In fact, we have the following: .

THEOREM (2.2). Let (SO(3), Ly, 41(m)), m odd (>3), be an effective action of
S0(3) on Ly, i(m) with dimzB = 2n—1. Then n>2, and there is a point x e Ly 1(m)
at which the isotropy subgroup is Z,,. The fixed point set F is the orbit space of a free
Z,,-action on a cohomology (2(n—3)+1)-sphere over Z,.

Proof. The fixed point set F of the lifted action (SO(3), $*"**) is either a co-

homology (2(n—2))-sphere over Z, and the principal isotropy subgroup is D,,
or a cohomology (2(n—3)+1)-sphere over Z, and the principal isotropy sub-
group is trivial (by a theorem of Montgomery and Yang [7]). We know that Zy
= 7,(L(m)) acts freely on $?**! and F is an invariant subset of the Z,,-action,
Furthermore, the same theorem in [7] says that §2"+1/SO(3) is a compact Haus-
dorff space which is cohomologically trivial over Z. Hence (Zns S2"*1/SO(3)) has
a fixed point, and we may take a fixed point 5(y) in the interior of §2"+1/50(3),
€8>+, that corresponds to a principal orbit SO (3)(y) in S**1, If the principal
isotropy subgroup SO(3), is D, then 800/ D2 2 (Z, Y509 = Zy, m>3. Hence
by Lemma (2.1), D, cannot be the principal isotropy subgroup. Therefore the

principal isotropy subgroup of the action (SO(3), §2"*1) s trivial and the fixed -

point set F if a cohomology (2(n—3)+1)-sphere over Z,. Hence F = F /2,,. Further-
more, (1.4) implies SO(3), = Z,, p() = X€ Ly, (m).
Now suppose that dim,B<2n—1.

THEOREM (2.3). Let (82(3), Ly, 1(m)), m odd, be an effective smooth action
of SQ(3) on Ly, (m). Suppose there is a 3-dimensional orbit and dimzB<2n—1.
Then the principal isotropy subgroup SO(3), is subgroup of Z,.

Proof. There is a 3-dimensional orbit and dim, B <2 i i i

- z n—1 in the lifted action
(SO(3), §27*1). By Theorem 2 of [6] the principal isotropy subgroup of the action

SO(3), S2**1) is trivial. Theref o~ -
Ece gj) ) is trivial. Therefore by Lemma (1.4) SO(3), = Edsny» y € pH),

3. In this section, we consider the dimension of the fixed point set F. It is

known that dim,F<2n—r, where r is the dimension of the principal orbit. We
first show that dim,F cannot be equal to 2n—r,

THEOREM (3.1). Let (SO(3), L, +1(m)), m odd, be an e
> dogy s s effective s ! i
of SO(3) on L,,, (m). Then dimy F<2pn—r, featbe smooth action
Proof. Suppose r =3 and dim, F=2n -3,

Then the lifted acti Zn+1
has a 3-dimensional orbit and dim,F action (SO(3), 527*)

R = 2n—3, the highest i i i

f)f F. Th'en-by Bredon ([1], p. 197), H*(SO(3)/SO(3)y)g_z_ H*]?;gilbijh:rl;nggs(lg)n
is the principal isotropy subgroup, and there are exac ly two orb;t types in thé
action (SO(3), $"*1). Therefore F = B. Then dim, B = 2n—3<2n}_,.p1 Hence
by Theorem 2 of [6] the principal isotropy subgroup is trivizl, This is a. contra-

diction since the only subgroup H of SO(3) such that H*(SO(3) JH) = H¥(S%)

©
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is Hy, the group of all the rotational symmetries of the iCOSahedron.z(I;T;)te that
int this case $2**1/SO(3) is a cohomology (2n—-2)-c(e$1 over )Z ,and (Z,,, $*"*1/SO(3))
ed point. This will also lead to a contradiction.
e ell\l'giv sul;pose r =2 and dim,F = 2n—2. Then dim; F = 2n—2. Then (}imzﬁ
— 2n—2, the highest possible dimension of F in the action (SO'(3)., Sz"“" ). By
Bredon again, H*(SO(3//SO(3),) = H*(S?), where'SO(3), is the principal isotropy
subgroup. Therefore, SO(3), is the maximal torus S of SO'(3). Thfan the exact se-
quence of (1.4) says that SO (3), is either § or N or 8O(3) itself. Since we m.ay'as-
sume xe U u D, SO(3), # SO(3). Therefore SO(3),/S = 0 or Z, which is iso-
morphic to (Z,)5ey. Since §2"*1/SO(3) is compact co];oinlology (2n—1)-cell over Z,
the action (Z,,, S*"*1/SO(3)) has a fixed pointﬁ () & §2"*1/SO (3) such that SO(3)(3)
is a principal orbit. By taking this fixed point, we have (Z,)74) & Zu, & contra-
diction.

Tn the next theorem, we consider the case when dimg, F = 2n—r—1.

TuporeM (3.2). Let (8O(3), Lyys1(m), m odd (>3), be an eﬁ"ective' smoa.th
action of SO(3) on Ly (m). If dimg, F = 2n—r—1, then r = 3-and there is a point
x €Ly, (m) at which the isotropy subgroup Is Zn.

Proof. Let (SO(3), S2"*) be the lifted action of (SO@3), Laps1(m)). Th.en
by Bredon [3], S*"*'/SO(3) is a compact coh01nology (2n+1‘—r)-ce11 with
2($*"*1/80(3)) = B/SO(3), and there are no exceptional orbits. Therefore,
(Zn, S"+1/SO(3)) has a fixed point in S§27+1/S0 (3) that corresponds to a principal
orbit of (SO(3), $2"*!). So we have an exact sequence

e—80(3),»50(3),~Z,~0, yep '),

SO(3), is the principal isotropy subgroup. If r = 2, then SO(3), = S' or N. ’.I‘I:;-m:-
fore- SO(3), must be S or N. Then SO(S)x/SOV(S)y g 0 or Z,. ']:'hls ;onna 1c4s
m # 2. Therefore the principal orbits are 3-dimensional and dln:lZz F = 2n—4.
We claim that dimg B # 2n—1. If dimzB = 2n-—.1, t}.lcn by [7], Fis en'her a co-
homology (2n—4)-515here over Z, and the prinf:lpa.ll 1s?tropy subgroup is D%,.Oll.‘
a cohomology (2n—5)-sphere over Z, and the principal isotropy subgroup is terlta‘.
For the dimensional reason F must be a cohomf)logy (21?—?)-sp.here over Z, with
the principal isotropy subgroup D;. However if the principal 1sot.ropy subgrolu)p
is D,, then SO(3), must be one of the groups H;, He, Hr, Dy. Sm.ce S~O(3)x/ 12
= Z,, m = odd (>3), none of these can be SQ(?)x. fl‘herefore dimzB<2n—1.
Then, by Montgomery and Samelson [6], the principal isotropy subgroup SO(3),
is trivial. Hence we have SO(3), = Z,, X = () € Lyys (m). .
COROLLARY (3.3). If SO(3) acts effectively on Ls(m), m odd (>3), then the action
has no fixed points. .
Prfof. 113Jy Theorem 3 of [5] if the fixed point .set F(SO(3), Ls(mf)) is nfn;
empty, then it is a circle. However by Theorem (3.1).d1mz‘F<_4—r. Thelre— O:;e._r :1
is the only choice. This contradicts Theorem (3.2) since if dimg, F =1 = r—1,

then r = 3.
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 Accepté par la Rédaction le 30. 6. 1975 v § 1. Introduction. The variants of the axiom of choice which we consider in

this paper are listed below.

The statements

A:  Antichain Principle. Every partially ordered set contains a maximal
antichain. (Le. a maximal subset of mutually incomparable elements.)
AC:  Axiom of Choice. For every family x of non-empty sets, there is a func-
5 tion f such that for each uex, f(u) ew
ACH:  Axiom of choice for a linearly ordered family of non-empty sets,
ACro: Axiom of choice for a family of non-empty sets each of which can be
linearly ordered.
(V) [(Yuex)@R,) (R, linearly orders u) - AC holds for x].
ACpro: Axiom of choice for a family of non-empty sets, each of which has
a defined linear ordering.
(V) [AR) (Yuex) (R, linearly orders #) -»AC holds for x].
ACH:  Axiom of choice for a linearly ordered family of non-empty sets, each
of which can be linearly ordered.
ACK0,:  Axiom of choice for a linearly ordered family of non-empty sets; each
of which has a defined linear ordering.
LW: Every linearly ordered set can be well ordered.
MC: Axiom of Multiple Choice. For every family x of non-empty sets, there
is a function f such that for each u € x, f(4) is a non-empty, finite sub-
set of u.
MCLC:  Axiom of multiple choice for a linearly ordered family of non—empty sets.
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