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S ’ Abstract. A combinatorial property [x, 4, g] of cardinals is introduced and studied. Work
of Jech shows that x inaccessible and x weakly compact implies [x, », 3]. [%, %, 3] is used to establish
an algebraic embedding theorem for certain classes of universal algebras. One corollary of this
embedding theorem is: if x is inaccessible and weakly compact and G is a group with |G| = % and
every subgroup of G of smaller cardinality is free, then G is free.

In 1949 R. Rado published the following: [9].

SELECTION LEMMA. Let A and N be sets and let A, be a finite subset of A for
each v e N. Suppose that for each finite L= N we are given a function fy : L—A such
that fi(v) € A, for each ve L. Then there is a function f: N—A such that given any
Sinite LEN there is a finite MSN with LM and f|L = fy,|L.

Through the years other have discovered versions of this lemma (see [4], [6],
[7], [10]) and several have explored its connection with logical compactness (see
[51, [7], [10D). It is natural to ask about possible generalizations of this lemma.
Rado in [9] gave an example to show that “finite” could not be replaced by “de-
numerable.” In [7] Jech defined “» is A-compact” for infinite cardinals » << with, s
regular,~and in this same paper he gave a generalization of the Selection lemma
for such x» and 4 which we denote by [x, 4, 3] (we define this notation in § 0). Jech
showed ([7], Theorem 2.2) that weakly compact inaccessible cardinals s satisfy
[, %, 3], and conversely that if [x, %, 3] holds then x» is weakly compact. Further
he in effect showed that % is compact if and only if [, 4, 3] holds for all A>s.

In this paper we study [x, %, 3] and some related properties [x, 1, ¢]. We
assume their validity and derive some of their consequences, both set theoretical
(§1 and §2) and algebraic (§3). In § 1 we show that [x, %, 3] implies that x is a reg-
ular limit cardinal without appealing to weak compactness. In § 2 we use inverse
limit systems to give a measurability criterion. Our main result, Theorem 3.1, uses
[, %, 3] to prove an algebraic embedding theorem. Because of Jech’s work this
gives an algebraic property of weakly compact inaccessible cardinals and of com-
pact cardinals, special cases of whilch, have been proved by Mekler and Gregory (*).

(*) We wish to thank Paul EXISF for informing us of the work of Mekler and Gregory.
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Throughout the paper we work in Zermelo-Fraenkel set theory with the Axiom
of Choice (ZFC). Unless otherwise specified we do not assume the generalized
continuum hypothesis (GCH).

§ 0. Notation and basic definitions. As usual we identify an ordinal with its
set of predecessors and a cardinal with the smallest ordinal having that cardinality.
The letters o, f, v, & are used for ordinals and the letters %, 4, i, ¢, 0 for cardinals.
Of course @ has its usual meaning. For S a set S| denotes the cardinality of S,
P(S) = {x| x=8}, PAS) = {x| x=S8 & |x|<x}. »* denotes the first cardinal
greater than x. We say x is a limit cardinal if % # A* for all A. of(«) is the smallest
B which can be mapped onto a cofinal subset of . In the following definitions s is
infinite. % is regular it cf(3) = %. u is weakly inaccessible if it is both a limit cardinal
and regular. % is inaccessible if it is regular and for each A<x, u<x we have 1" <.
% is weakly compact if the following holds: if X is a set of sentences of 2, with
|Z] = % and every X' e P,(Z) has a model, then X has a model. x is compact if it
satisfies the above condition for weak compactness with the cardinality restriction
on X removed. x is measurable if there is a nonprincipal x-complete ultrafilter
over x. v

In ZFC the following is known: if s is weakly compact then x is weakly
inaccessible; if » is compact then » is measurable; if » is measurable then » is
inaccessible. We refer the reader to [1], [2] for proofs and further details on the
above definitions. )

DerFiNITION. LSP(S). L is a x-cover of S if for each X'e P,,(S) there is an
AeL with XcAd.

DEFINITION. L a #-cover of S. Ra set. A collection of functions F={fulAeL}
where fa: AR is called an L-R valuation.

We now present two generalizations of the Selection lemma.

We assume o<x<A

I. %, 2, ¢ have the Rado property (written [, A, 0]) if whenever S is a set
with |S]<4, Lis a x-cover of S, and # is an L-R valuation with |R| <g there exists
a function f: S—R such that for each X e P,(S) there is an 4 e L with X< 4 and
J1X =71iX.

Such an f need not be unique. But abusing notation we write f == lim f}.
AeL

IL. %, 2, ¢ have the * Rado property (written [x, A, 0]*) if all the above holds
with the removal of the cardinality restriction on R and with the addition of: for
each 1€ .S |R|<g where R, = {f,()] 4eL}.

Remarks. Rado’s Selection lemma is the statement “for all Mw, A, 0] .
In the terminology of Jech [7] [%, A, 3] is the assertion that every x—A mess is
solvable. Clearly if x<<A<A’ then [, A’ e] implies [x, A, o] and [%, A, o]* implies
[e, 4, oT". '
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§ 1. Elementary consequences of the Rado property. First we prove that it is
easy to increase the size of g.

TaeoreM 1.1. If [x, 4, 3] then [x, A, x]".

Proof. Let .S be a set with [S|< /A, L a x-cover of .S and # an L-R valuation
with |R]<x. For XeP(S) let X* = {(r,r)| te X, reR}. |S*|<A Clearly L*
= {4% AeL}is a x-cover of S*. For 4* e L* define g,.: 4*~{0, 1} by

1 for N=r,
g ((1,7) = _f f:A()
lO otherwise .
By [x,4,3] there is a g: §*~{0,1}, g = lim g .. For €S let Y, = {{}xR,.
A*eL¥

Y,= 8" and | Y| <x. Hence there is an A*2 Y, with g .| Y, = g|Y,. But g (¢, r))
= 1if and only if f,() = r. So there is exactly one r such that g ((z, r)) = 1. Define
f: S—=R by
Oy =r
We claim f=1limf,. Let XeP/S).
AeL

X*<A* and g|X* = g4 X* Now X<A and for all te X
SO =reg(tn)=1egu@nN)=1ofO=r.

Thus f,|X = f|X.

From this point on whenever we assume [x, A,3] we will use [, 4, %]* or
[%, A, %] without reference to Theorem 1.1.

‘We now study the effect of [x, %, 3] on .

if and only if g((z,n) =1.

|X*|<x. Hence there is an A4*e L* with

THEOREM 1.2. If [x, x, 3] then x is a limit cardinal.

Proof. Suppose % = u*. Let S =%, L = P,(x). For AeL we have |d|<y
since |4] <x. Let f: A—p be some injection. ¢ = { f,| A eL}is an L-u valuation.
Now u<xso by [x, %, %] there is an f = lim f,. f: ¥—p. Since each f, is an injection,

AcL

it is easy to verify that f is an injection. Hence s<xp. But % = p* and we have
a contradiction. Thus » is a limit cardinal.

THEOREM 1.3. If [, 3¢, 3] then x is regular.
Proof. Suppose » is not regular. Then » = (} X, where u = cf(3)<x and

a<p
X.eXpita<f<p; o<|X,| = A, with A, <x and A, <, for a<f<pand » = supl,.

a<p

Let 8 =x, L =P x). For each « consider X,,,—X, | X,11—Xi = Asy-
Let {Y,11, W,e1} be a partition of X,y —X, with |Y, (| = Wil = dpsr-

Lzt A e L. Since [4|<x and {4,] a<p} is an increasing sequence of cardinals with
Sup = x, there is a smallest « such that [4|<1,. Call this index . Consider X, ;.
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Let ¢ be an injection from A A (X4 —~X,,) into Y4 and let 2 be an injection
from A N (S—X,,41) into W,y Let us define fy: A— S by

t for telX,,,
=< g for teX,u—Xyg,
’ h(f) for teS—X,41-

Each f, is an injection. Note thatif 7€ X, and f,(f) is defined then fA(.t)eX,,.
Thus

D] Ae LY <Xyl = Ap<x.
By [x, », »}* there is an f = lim f,. As before it is easy to verify that f: %~ is an

Ael
mjectxon We claim there is an a<p with fx]=X,. If not, for each o<y there is

an y, with f(»,) ¢ X,,. Let ¥ = {»,J a<u}. | Y| <x. Hence for some AeL f4| Y--f‘l Y.
But f[Y1= X, 41 Thus fIY]ISX, (- And f(Vegs1) € Xyor Which contradicts
the choice of y,,.+ . Hence x» is regular.

By Theorems 1.2, 1.3 we have: if [x, %, 3] then x is weakly inaccessible. Thus
for uncountable » [x, %, 3] is & large cardinal assumption,

§ 2. x-inverse limits. In [6] the relationship between the Selection lemma (call.cd.
theorem H in [6]) and inverse limit systems was explored. We now examine in-
verse limit systems using [x, 4, 3]. ’

Let <I, <) be an upper directed partially ordered set. A collection of sets
{B;| ieI} and functions {¢,| i<j,i,je I} is called an inverse limit system if

i) ¢y: B—~B;,

ii) ¢;; is the identity on B,

i) @y = @i @p, ISj<k.

DEFINITION. The x-inverse limit B of such a system is the set of all p EH B;

&
such that for each X e P (I) there is an iyel and a be By, with p(j) = ¢@;,(b),
J<ip for all je X.

DEFINITION. A partially ordered set I, <) is (upper) x-directed if for each

X €P,(I) there is an iy e I with j<i, for all je X.

‘THEOREM 2.1. Assume [x%, A, 3). Let {I, <) be a x-directed partially ordered
set with \I|<A. Let {B}, {@;} be an inverse limit system with B; # & and [B|<x
and each @;; a surjection. Let N<I be such that (N, <| Nx N} is x-directed. Sup-

pose there is a g € [] B, such that for each X € P,(N) there is annye N and a be B,
ieN

with g(j) = @j,,(b), j<ny for all]eX Then there is an fe BY with f(n) = g(n) for
all ne N. ‘

Proof. Let S = I, L = P (I). For AeL let Ay = 4 n N. Since |Ay] <x there
is an nye N, b,,eB,, with i<n, and g(i) = @,,(b,,) for all ie dy. Consider
A U {np}. |4 v {np}|<x. Hence there is zn i, €] with i<iy, ny<iy for all ie A.
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Since ¢,,;, is a surjection, there isa b, & B;, with ¢, (b,) = b,,. Assume we have.
chosen such an i, b, for-each A4 e L. Define f,: 4—1) B; by
iel
Jall) = @3;,(by) .
Note f,(i1e B;. Thus

HAa@ A LH<|Bl<x.

By [x, A, x]* there is anf— hmfA Clearly fe[] B;. We clalmf is the desired

iel

function. Let X e P(I). There is an AeL with X<4 and fIX = £,|X. So f(i)
= @u,(by) for ie X and fe BZ. Let ne N there is an 4 € L with ne 4 and f,(n)
= f(n). But

i) =

Thus f(n) = g(n) for all ne N.
COROLLARY. With the assumptions of the theorem and N = @ we have By # O.

Remark. With N = @ the requirement that each ¢@;; be a surjection is no
longer necessary. See Kurosh [8], pp. 168-169 for the proper modification.

The next theorem is just an observation on how much compactness the in-

finitary language %, should have for x to be measurable. See [1] for-a language
proof.

THEOREM 2.2. Assume that either » is maccesszble or that GCH holds. Thzn
[, 2%, 3] implies % is- measurable.

Proof. If [x, 2% 3] then x is weakly inaccessible and if GCH holds we hava

x is inaccessible. We proceed under the assumption that x is inaccessible. Let I
= {o] o partitions % into < nonempty subsets}; that is o = {X; .| E<p<n}
with X;, # @ and X, , X, , =D if & #¢,, % = UX“ If X' e P(x) and

x—~XeP,(x) we say X is large. Let N = {o| oI and some X, , is large}. We:
partially order I and N by refinement. o<z if and only if each element of t is in
a (unique) element of ¢. We claim <J, <) (N <) are x-directed. Let {o,|v<ao<xu}
SI where o, = {X, , | £<g,, <x}. Since x is regular, | | o,| = 0<x. We obtain

v<g
a common refinement by taking in every possible way one element from each par-
tition, forming their intersection and omitting the empty intersections, The common
refinement ¢ has <0° elements. Since »x is inaccessible 0¢<x and o e /. If for cach
oy, 0, € N then for each o, some X, ,, is large. Cleasly N X, o is large and o € N.

Svs Ty
v<g
Let B, = 0. For o<t define ¢,,: B,—B, by ¢(X:, ) = unique X, . such
that X, =X, , Each ¢,, is a surjection. {Bd}, {@,c} is an inverse limit system.
Let g €[] B, be such that g(o) is large for all ¢ € N. Note [{] = 2% Since [%, 2%, 3],

ageN

by Theorem 2.1.
={X|3cel flo) =

q)m',A(bA) = Qupp © (PnuiA(bA) = (pnno(bng) = g(ﬂ) -

there is an fe By with f(6) = g(0) for all ceN. Let U
X }. Every large subset of % is in U. For each X & P(x) either
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- i i tion property; that is if
XeU or x—XeU. We claim U has the x intersec ; A |
{X,] £<0<sx}<Uthen () X, # @. Consider such an {Xe E<O0<x}sU. Let o, be
&<

' such that f(a,) = X;. [{osl <8} <x. Hence there isa oel and ¥, e Bﬂwith 00
and f(o)) = :pa_g LY, for all & By the definition of @4, ,, ¥, # D<f(oy). Thus
Y,s () X; # 9. Let

&<8

UY = (XeP(d)| 3{X{ E<0<x}cU, QG’QQX}'

Tt is easy to verify that U™ is a x-complete ultrafilter over s, U™ is nonprincipal
since every large subset of x is in U™, Hence % is measurable.

§ 3. Some algebraic properties of weakly compact and compact cgrdinals.
Unless otherwise stated we assume % is uncountable, weakly compact, and inacces-
sible. By Jech’s work we have [x, x, 3] and hence [x, %, x]. © denotes a type for
a universal algebra, having finitary operation symbols and constants but no re-
Jation symbols. We assume |t| <. .

I' denotes a class of pairs (4, X) where 4 is a t-algebra and X is a generating
set for 4. We write this as 4 = (X'>. I" is assumed to satisfy

(i) (isomorphism closure) if (4, X)eT and ¢ is an isomorphism on 4 then
(old], o[ XDeT.

(ii) (s-closure) if (4,X)el’ and Y<X then ((Y), Y)el.

(iii) (weak %-local property) if A is a t-algebra and A = (X ) where [X| = x»
and ((Y),Y)eT for each YeP,(X) then (4,X)eT.

If (4, X) e I' we say X is a I'-basis for 4. We say a t-algebra B is [-embedd-
.able if for some (4, X)eI we have B=4.

THEOREM 3.1. Let D be a t-algebra with |D| = x. If every subalgebra S € P, (D)
is I'-embeddable then D is I'-embeddable. .

Proof. Let F be the free algebra of type t with countable free basis Z
={zyy ey Zp, .} |[F] <. Xf n<mare natural numbers, let Z {1, m] = (2,15 Zys 1> eve» Z)-
For any set X let X™* denote the set of non-empty finite ordered subsets of X.

Let & = {S| S subalgebra of D, SeP,(D)}. Since |7|<x and x>, & is
a u-cover of D. Hence &* ={S*| Se&} is a x-cover of D*. Let Se.
.Since S is I-embeddable we can choose a pair (4(S), X(S)) e I' with SS4(S).

Construction of fs. Fix e &. Let se S. Since 5 € (X(S)), there is some T
polynomial pJZ[l,n(s)]]e F and some XIs] = (x,,..., x,(s)) € X(S)" with s
= p [X[s]]. We define f5. on S* as follows:

Let J = (sy, .., ) € 8% Let ug = 0 and u; = n(s))+ ... +n(s) for 1<i<m.

f?"(‘]) = (ﬁsu b psm’ R)

where Py, = ps[Zlu;-;+1,u;]]€F and R is the set of all equational relations
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involving z;, 1<j<u, induced by the homomorphism (from F into 4(S)) which
maps Zlu;; +1, 4] to X[s;], 1<i<m. We view R as a subset of FxF.

Thus {fss] S*€#*} is an P*—F*x P(Fx F) valuation. Since |F|<x and
» is inaccessible, [F*x P(FxF)|<x. By [x,%,%] we obtain an f = lim f and
domain f = D*

Let seD. Then f((s)) = (8[ZI1, n(s)]], R)) since f((s)) = fs((s)) for some
S*e &*. We now define ordered sets of symbols

A = (a(s, n, .., a(s,n(s))) for each se D.

Let 9, denote the corresponding unordered set of symbols. All such symbols are
regarded as formally distinct. Let % = {¥,] se D}. (A denotes the free r-al-
gebra on the symbols of 2. We place equational relations on the generators ¥ in:
accordance with the information coded by S In particular let J = (sy, ..., 5,,) € D*.
There is an S* such that f|{(s,), ..., (Sw)> T} = Josl {50 -es (5,), J}. Hence f(J)
= (Psy» s Bso R(J)). The relations of R(J) induce relations R(J) on the gener-
ators Uy U... U W via the 1-1 correspondence Zluo +Lw]e A, 1<ism
Let R = { {R(J)| Je D*}. We claim i) /R is a I-basis of {U>/R and ii) D is
embedded in {UY/R by sw-p,[AC].
Proof of (i). Let TeP, (). Then

Dp={seD| Tn¥Y, # B eP,/(D).

By the properties of f there is some Se.% with DycS and f|Dy = fu| DE. Let
g: U {¥] seS}>X(S) be the mapping induced by the mapping AL —X[s], s S.
g is well defined since all the symbols are distinct. Let Ry be those relations in &
involving only members of T. Since f and fs« agree on Dj, the relations Ry are
precisely those induced by g|T. Hence g induces an isomorphism between (T»/R
and {g(T)y<A(S). By the s-closure and isomorphism closure of I" we conclude
that T/R is a I'-basis of {T)/R. Now i) follows from the weak s-local property of I".

Proof of (i). Let J = (sy, ..., s,) € D*.

Let $* and fi be as in the proof of i) and

FU) = (B> - sBss R(D) -

Let R(J), be, as before, the relations induced on A, L. u A by R under
the mapping induced by QI2‘—>X [s;l, 1<im. This induced mapping extends to
an isomorphism between {2y U ..U U, SR and <X[s;]| 1<i<md S A(S). The
image of each p,[2] under this isomorphism is p [XTs]] = 5,. We conclude
that the mapping p [U°]—s for s€ D is an isomorphism of a subalgebra of <2>/R
with D. This proves the theorem.

Before we can apply this theorem we need some additional definitions.

DEeFINITION. Let I be a class of ¢ algebras. ¥ is weak x-local if whenever
4 is a t-algebra with |4] = % and every subalgebra SeP,(4) is in X, then deX.
3 — Fundamenta Mathematicae XCVII
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DEFINITION. T as above. sX = class of subalgebras of algebras in X. We
say X is s-closed if 52 = 2.

COROLLARY 1. Let V be any quasivariety (universal Horn class) of t-algebras.
Let & be the class of free V-algebras. Then s® is weak x-local.

Proof. First by [3], pp. 236, & # . Let I' consist of all pairs (4, X) where
Ae® and Xis a V-free basis for 4. Since ¥ is a universal Horn class, I' is s-closed
and isomorphism closed. I' has the weak x-local property. In fact I" has the follow-
ing stronger property: if 4 € Vand 4 = <X and for each Y& P, (X) (¥, Y) €T,
then (4, X) e I'. Later we call this the w-local property. Let Be V and let ¢; X—+B
be any mapping. We must show there is a 7-algebra homomorphism : A—+B
such that y|X = ¢. Now for each Y e P,(X) there is a unique homomorphism
@y: (¥>— B such that ¢y|Y = ¢|Y. This is because ({¥), ¥) e I'. Using this one
can easily define the required homomorphism . Thus (4, X) e I. 5@ is just the
class of all I'-embeddable algebras. The corollary now follows from Theorem 3.1.

COROLLARY 2 (Mekler, Gregory). The classes of free groups and of free abelian
groups are weak x-local.

Proof. For each class & mentioned we have s® = & and Corollary 1 applies.

The next two corollaries concern free and direct products of groups. X is any
class of groups which is s-closed and weak x-local. For example we can take X to
be any universal class of groups.

COROLLARY 3. Let Z* be the class of free products of % groups. Then

(i) s=* is weak x-local,

(i) if the infinite cyclic group is in X then X* is weak x-local.

Proof of (i). We define I' as follows. (G, X) eI if and only if G is a group,
G = (X ) and there is a partition = of X such that a) each Y en generates a X-sub-
group of G and b) G is the free product of the subgroups (YD, Ye =. I is clearly
s-closed and isomorphism closed. We claim I' has the weak x-local property.
Suppose |X| = x and for every We P, (X) W), W)erl. Let ny be a partition
of W as in the definition of I'. We view my as a function fy: Wx W=+ {0, 1} where
Jw(x,2) =1 o x~zmodny. By [x, %, 3] there is an f: X'x X~ {0, 1}, f=limfy,
defining a partition = of X. It is easy to verify that = satisfies a) and b). Hence
({X>, X) eT. Since s2* is the class of I'-embeddable algebras, i) is proved.

Proof of (ii). By the Kurosh subgroup theorem for free products ([8], pp 17-26)
any group Ge sZ* satisfies G = F+H where F is a free group and He Z* Since
F is a free product of infinite cyclic groups, ii) is proved.

COROLLARY 4. The class of subdirect products of X groups is weak x-local.

By subdirect product, we mean a subgroup of a (restricted) direct product.
The proof is analogous to that of (i) in Corollary 3.

‘We now assume that » is uncountable and compact. We alter the definition
of the class I' by replacing (i) with (iii") (x-local property) if A is a t-algebra and
A = (X> and (Y}, Y)eI for each ¥ e P, (X) then (4, X) e I'. Now Theorem 3.1
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can be proven without any restriction on [D]. We just use [x, 4, %] for the ap-
propriate A.

DerNITION. Let X be a class of t-algebras. ¥ is %-local if whenever A4 is
a t-algebra and every subalgebra S €P,(A4) is in Z, then 4 2.

If % is uncountable and compact Corollaries 1, 2, 3, and 4 hold when the con-
clusion that the relevant class is weak x-local is strengthened to %-local. Of course
in 3 and 4 the hypothesis that “X is weak x%-local” must be changed to “¥ is »-local.”
Corollary 2 in this form is also due to Mekler and Gregory.
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