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DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

The compacta X in S" for which Sh(X) = Sh(S") is equivalent
to S"— X~ S"—S"

by

T. B. Rushing * (Salt Lake City, Utah)

Abstract. The following is the principle result of the paper: If X c §", n = S, is a compactum,
then for & # 1, Sh(X) = Sh(S®) is equivalent to S"—X = S*—S¥ if X is globally 1-alg (and if
S"— X has the homotopy type of S* when k& = n—2). Introduction of the notion of shape yields
this generalization of the weak flattening theorems for spheres by Duvall-Siebenmann (co-
dimensions greater than 2), Hollingsworth-Rushing (codimension 2) and McMillan (codimension 1),
while at the same time yields converses for such weak flattening theorems. The proof is elementary
in the sense that the main tools involved are classical algebraic topology, Irwin’s embedding theorem,
Stallings’ Engulfing, and for k = 2, n—3 the simple surgery technique of trading 2-handles.

1. Definitions and notation. For the definition of the shape of a compactum
and related topics and notation refer to [1], [2] and [13]. Because of [14], we are ju-
stified in using Borsuk shape and Mardegié-Segal shape interchangeably. The notation
Sh(X) = Sh(Y) means that X and ¥ have the same shape. We use reduced Cech
homology and cohomology throughout this paper. A set X in an n-dimensional

manifold M is cellular if X = ﬂ D;, where each D; is an n-cell such that D,
i=1 .
cIntD;. A compactum X <S" satisfies the cellularity criterion if given a neighbor-
hood U of X, there is a neighborhood ¥'< U of X such that every loop in ¥—X is
mull-homotopic in U—X. A compactum X in S" is 1-uv (1-UV) if given a neighbor-
hood U of X, there exists a neighborhood V= U of X such that each loop in ¥ is
null-homologous (null-homotopic) in U. A compactum X in " has property UV®
if given a neighborhood U of X, there is a neighborhood ¥V'=U of X such that V'is
contractible in U. A compactum X in S" is globally 1-alg (globally 1-ss) in S" if
given a neighborhood U of X, there is a neighborhood V< U of X such that every
loop in ¥—X which is null-homologous in ¥—X (null-homologous in §"—X) is
null-homotopic in U—X. Refer to [16] for other standard definitions used herein.

2. Main results and introduction. Before outlining a history of the general

problem in shape theory which this paper concerns, we state our main results.

* Partially supported by N.S.F. grant GP 19707.
1 — Fundamenta Mathematicae XCVIL


Artur


2 T. B. Rushing

THEOREM 1. Let X<=S", n5, be compact. Then, for k # 1 Sh(X) = Sh(S%
is equivalent to 8" —X ~ S"—S* if X is globally 1-alg (and if S"— X has the homotopy
type of S' when k = n—2).

Theorem 1 is a consequence of the next two theorems. Theorem 2 can be proved
in a straightforward manner using the Marde§i¢-Segal definition [I13] of shape.
A proof based on the Borsuk definition [1] of shape may be accomplished by using
a sort of Cernavskii meshing technique. We omit these proofs.

THEOREM 2. Let X = 8", n arbitrary, be compact. Then, fork # 1, S"—X ~ §"—S*
implies Sh(X) = Sh(S.

THEOREM 3. Let X<S8", nz5, be a compactum such ihar (1) Sh(X) = Sh(s%),
k+#1, (2) X is globally 1-alg in 8" and (3) if k = n—2, S"—X has the homotopy type
of S*. Then, S"—X ~ S"~S* (cf. [10] for a discussion of the case X% S*).

The following proposition is a weak application of Theorems 2 and 3.

PROPOSITION. A finite-dimensional compact metric space X has the shape of

S*, k # 1, if and only if there is an embedding h: X— S", for some n, such that S"—
—h(X) ~ S"—S*

The problem of classifying the shape of subcompacta of some ambient space
in terms of their complements has been studied by a number of people. In the
fundamental paper of Borsuk [1], it was shown that two continua X, ¥Y< R? have
the same shape if they decompose R* into the same number of complementary
domains. Even ‘before the definition of shape was formulated, McMillan [15] es-
sentially proved that if X'is a compactum in $” which satisfies the cellularity criterion,
then Sh(X) = Sh(point) if and only if §"— X = S"—point. This result of McMillan’s
may be regarded as the special case of our Theorem 1 for k = 0. Lacher [12] ob-
tained other characterizations of finite-dimensional compacta having the shape
of a point.

Chapman [5] obtained the pleasing result that two Z-sets in the Hilbert cube
have the same shape if and only if their complements are homeomorphic. Also,
Chapman [6] proved some finite dimensional results. In particular, he showed that
if two compacta X and Y of dimension <k have the same shape, then they can
be put in R", n2k+2 so that their complements are homeomorphic. Conversely,
he showed that there are copies of X and Y in R", n>3k+3, such that if their
complements are homeomorphic, then they have the same shape. Geoghegan and
Summerhill [9] improved Chapman’s theorem by reducing the condition n3k-+3
to.nz2k+2 and by making explicit which copies of X and Y are acceptable. For
example, they showed that if X, Y<R" have dimensions in the trivial range and
both R"—X and R"—Y are 1-ULC, then Sh(X) = Sh(Y) is equivalent to their
complements being homeomorphic.

The following trivial range theorem can be proved by techniques of [7], [9] and
work of C. T. C. Wall [19]: If X, Y<R", n>5, are compacta in the trivial range
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which are globally I-alg in R" and which have the shape of a finite complex, then
Sh(X) = Sh(Y) is equivalent to R"—X =~ R"—Y. (Ross Geoghegan pointed out
the relevance of [19] to this result.) We feel that the recognition of this theorem
increases the - interest of [7].

There is no hope for proving such theorems for arbitrary compacta above the
trivial range. For example, let X be two linked k-spheres in R**! and let ¥ be
two unlinked k-spheres in R****. We now give an example to illustrate why we
require k # 1 in Theorem 2. Let T be a locally flat (n—2)-sphere in S" such that
(8" —2) & Z (eg., see [22]). Let h: S""2x R*~ 5" be an embedding such that
h(S"2x0) = Z, and let T = h(S""?x R?). Finally, let X = §"—T. Then, S"—X
~ 8"—8. However, Sh(X) # Sh(S") because the shape groups 7(X) = EI(SI)
(see 14.6 of [1]).

Recently, two of the author’s students, Vo-Thanh Liem and Gerard Venema,
have independently proved results from which our Theorem 3 follows in the omitted
case k = 1.

Let us emphasize here that our proofs are clementary in the sense that the
main tools involved are classical algebraic topology, Irwin’s embedding theorem,
Stalling’s engulfing, and for k = 2, n—3 the simple surgery technique of trading
discs.

‘We wish to express appreciation to R. J. Daverman for several discussions
concerning this paper.

3. Proofs.

Temma 1. Let X< S* be a compactum such that Sh(X) = Sh(S®). Then, X is
1-UV whenever k 5 1. (In_fact, this proof shows that X is m-UV whenever m,(S¥) = 0,
cf. Theorem 2.1 of [3].) ’

Proof. Pull a point o & §*—X out of S" and consider X to be in R". Let f:
X— S*and g: $*~X to be fundamental sequences (acting on R", [2]) which show
Sh(X) = Sh(S*). Since §* is an ANR, fis induced by a map f: X—S¥ [1]. Let 7
R"R" be an extension of f. We may assume that there is a neighborhood W of X
in R" such that f(W)<S¥, since S* is an ANR. By [1] we may assume that /= {f,}
where each f, = f. Let U be an arbitrary neighborhood of X. Choose V=Un W
and N such that gyfyl|V is homotopic to 1|¥ in U. It is easy to see that V" satisfies
1-UV wart. U.

LemMma 2. Let X< S be a compactum that is 1-uv. Then X is globally 1-ss in S”
if and only if X is globally 1-alg in S". '

Proof. (This proof is basically the same as Lemma 1 of [10], however we
include it here for completeness.) Obviously globally 1-ss always implies globally
1-alg. Let U be an arbitrary neighborhood of X. Choose M Utobe a PL-manifold
neighborhood of X satisfying global 1-alg w.r.t. U. Cheose V=M to satisfy 1-uv
for X w.r.t. M. Let § be a loop in ¥—X that is null-homologous in S"—X. One
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4 T.B. Rushing
may conclude that f§ is null-homologous in M—X by chasing the following
diagram: .

Be H(V-X)

¥ Yoo
B e Hy(V) 0

¥
0 € Hy(M) @ H,(S"~Int M)
/

//

v
H(0M)—»H(M~X) @ H(S"—Int M)~ H(S"-X)

/

0/ U] W U}
6 (8,0) 0

il

0

Hence, by the global I-alg condition, § is null-homotopic in U—X as desired.

The next lemma is a consequence of Lemmas 1 and 2.

Lemma 3. Let X<=S" be a compactum such that Sh(X) = Sh(S*), k # 1. Then,
X is globally 1-alg in S" if and only if X is globally 1-ss in S".

LeMMa 4. Let X< 8" be a compactum such that Sh(X) = Sh($"), k # 1, n—2.
Then, X is globally 1-alg in S if and only if X satisfies the cellularity criterion.

Proof. If X is globally 1-alg, then X is globally 1-ss by Lemma 3. But globally
1-ss implies the cellularity criterion since H,(S"~X)~ H" *(X)~0.

Proof of Theorem 3 for k = 0. We take care of this case first since it is
a quick consequence of [15]. Let f: X~ S° and g: 8% X be fundarmental sequences
{acting on S"—co = R", [2]) which show Sh(X) = Sh(S®). Then, we may assume
that £ is induced by a map f: X~ S°, [1]. Since g f~1, it follows that each f~*(—1)
and f (1) are UV®. Also, f ~1(~1) and f7U(1) satisty the cellularity criterion
by Lemma 4. Thus, £ ~*(—1) and f ~1(1) are cellular [15] and S"—X = S"—S° as
desired (e.g., Corollary 1.8.2 of [16]).

Proof of Theorem 3 for 2<k<n—3. We begin by proving a proposition.
(The last part of the proof of Proposition 1 mimics [17] and [8].)

The compacia X in S" for which Sh(X) = Sh(S¥) 5

PrOPOSITION 1. Let X< S™ be a compactum such that Sh(X) = Sh(s¥), 2<k
<n—3, and such that X is globally 1-alg in S™. Then, there is a PL (n—k—1)-sphere
S S" such that the inclusion S<8"—X is a homotopy equivalence.

Proof. Lemma 4 says that X satisfies the cellularity criterion. By a standard
argument (e.g., [15]), m,(S"—X) =0, ie., a PL simple closed curve in S'-X
bounds a PL singular disk in S” which can be moved off X by taking a fine triangu-
lation and using the cellularity criterion. Alexander Duality and the Hurewicz
theorem imply that m,_,_(8"=X) " m,_p—;(S"* = Z. TIrwin’s embedding
theorem [11], vields a PL (n—k—1)-sphere S<S"—X which. generates
- 1(S"—X). From Theorem 3 of [20], we conclude that S=S"— X is a homotopy
equivalence. This concludes the proof of Proposition 1.

We may assume that S of Proposition 1 is S*7*~*, [21]. Let T be an g-neighbot-
hood. (s-small) of $" *~* which misses X and let T be a closed &-neighborhood
(¢’ <g) of S"~*~*. Then,

(T, T', Sn-—k— 1) ~ (Sn—-k—l ka+1’ Sn—k—lel’ Sn—k—-l) i

(B, denotes the closed ball in R*"! of radius i)

Express S”—X as a monotone union of compact sets @ = Cy, Cy, ... ‘We wish
to construct a sequence /iy , %y, ... of homeomorphisms of S"7*7*x R*** into §"—X
such that

¢ Byt (STETIx RERL Srmklx B, SPTETY) (T, T, grk=y )
(2) h;[sn‘_kwlei_l = hi—llS"_k—IXBi~1, i=2,
and
® B xTnt BY S C;

Then, & = limh;: S" %1 x R¥*1 5, 8"~ X will be the required homeomorphism.
Suppose inductively we are given h;. We can obtain /;,y from an engulfing
technique of Stalling’s [18] once we establish Propositions 3 and 4 below. (The
engulfing technique is applied to a similar situation in the proof of Theorem 4
of [10]; hence we will not repeat it here.)
Denote the pair.

(57— (X U h(S"* 1 x Biy))), b S F % (Int Byyy —Brap)) by (M, W)

PROPOSITION 2. n*(M , W) =0.
Proof. Since §" % 1= S"—X is a homotopy equivalence,

0~ Hy(S"—X, 8" Y x H,(S"— X, h(S"* 1 x IntB,,)) -

Thus, by excision H*(M,PV) =0 and H(W)—H(M) is also an isomorphism.
By the proof of Proposition 1 and general position m;(M) ~ 7, (S"— (X U SnTEm1y)
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~0. Also 7;(W) = 0. Therefore, Theorem 3 of [20] implies that W M is a homo-
topy equivalence and the conclusion follows.

Let M' = S"—(X U h(S" ¥ 1 x B)).

PROPOSITION 3. There are arbitrarily small neighborhoods VU of X in S*
such that if V' =V—-X and U = U-X, then m{M', V)=m(M', U ~0 for
k =0, 1 and the inclusion induced homomorphism m,(M', V') — n(M', U’) is trivial.

Proof. Choose U and ¥ to be connected neighborhoods of X satisfying the
cellularity criterion where ¥ is a compact PL n-manifold. It is clear that mo(M, V")
~m(M,U)=0. Let fi (4'%0,84'x0)~(M',U") be a map. In order to
extend f to

7 (9(4*x 0, 1]), (@4* x [0, 1D U (4* x 1)) (M", U")

let us show that Hy(U~X) ~0. Since H (U, U~ X) ~ H,(S", S"—X) ~ H""*(X)~0,
the homology sequence of the pair (U, U—X) implies H, (U—X) ~0. Fis null-homo-
topic in $"—X since m,(S"—X)~0 by the proof of Proposition 1. By general
positioning with rtespect to " *"! and pushing radially away, we obtain the
desired extension

Fo (41 %[0, 11, (04* x [0, 1]) U (4* x 1)) > (M", U") .

Thus, 7,(M’, U ~0. Similarly, =,(M",V’')~0.
. We now give a proof (which requires no surgery) that w,(M", V") —»m,(M',U")
is trivial whenever 2<k<n—3. Consider the following diagram

(M) > mao(M', V) > my (V')

Lo b

(M) Sy (M, U') S my(U)

Since j, is the zero homomorphism by the cellularity criterion, it will suffice to
shf)w 8 one-to-one. We do this by observing that n,(M") = 0. By the proof of Prop-
osition 2, my(M") = 7,(W) R m,(S" 471 x §%) = 0.

Now let us handle the cases k = n—3 and k = 2. Since each loop in 9V is
null-homotopic in U—X, one can do surgery [4] on 0V to obtain a simply con-
nected n-manifold neighborhood ¥V of X such that VycU and n,(V,—X) 0.

It r-cr.nains to show that m,(M’, Vs —X) ~0. By the relative Hurewicz theorem and
excision, we have the following isomorphisms:

mA (M, V= X) R Hy (M, Ve=X)  Hy(S"—h(S"™* x B), V2)
& H,(S"—S"F L V).
Consider the sequence

H,(Vi) > H,(S" —S""k”l) - H,(S"— 8 k1, V*) —0.

The compacta X in S" for which Sh(X) = Sh(s%) 7

‘Whenever k = n—3 and k # 2, we have H,(S"—S"*"")~0 and so
Hy(S"—S"*1, V) % 0.

Whenever k=2, we have that H,(S"—S""¥~1, ¥,) ~ 0 since H,(Vy) » Hy(S"—S""*7)
is onto. (H,(X)—H,(S"—S""*1) is onto by construction, ie., use properties of
linking number of true cycles and the fact that the inclusion Skl g X s
a homotopy equivalence.)

.Proof of Theorem 3 for k = n—2. In view of Lemma 3, this proof can
be accomplished by a direct adaptation of the proof of Theorem 4 in [10].

Proof of Theorem 3 for k = n—1. This proof follows from the techniques
already presented. It is more convenient in the codimension one case to work on
one side of X; i.e., show that a specified component of S"—X is an open n-cell.
Notice that the proof suggested here is different from, and somewhat simpler than,
the proof given in [I5].

Proof of the Corollary. Necessity follows immediately from Theorem 2.
Now suppose we have a finite dimensional compact metric space X such that Sh(X)
= Sh(S¥), k # 1. Then X can be embedded in S™ for some m. It will suffice by
Theorem 3 to show that X satisfies the cellularity criterion in Sm+3 Let U be
a neighborhood of X in S™*3, By Lemma I, there is a neighborhood V" of X such
that each loop in ¥'—X (which we may assume to be a PL simple closed curve)
bounds a PL disk in U. By general positioning the interior of the disk with respect
to S™ such loops bound disks in U—-X as desired.
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Adjoint groups and the Mal’cev correspondence
(a tale of four functors)

by

Tan Stewart (Coventry)

Abstract. We make several observations on the connection between the structure of an as-
sociative algebra, its Lie algebra, and its adjoint group; with especial reference to the Mal’cev
correspondence between Lie algebras and groups. We view in this light the construction, by Levi¢
and Tokarenko, of a locally nilpotent non-Gruenberg Lie algebra. )

1. Introduction. The Mal'’cev correspondence (Mal’cev [11]) associates to
each complete locally nilpotent torsion-free group (in the sense of Kuro# [8] pp. 233,
248) a locally nilpotent Lie algebra over the rational field Q. It defines a pair of
mutually inverse exact functors

P By By, G By—Cy

where @y and %, are the categories of complete locally nilpotent torsion-free
groups and of locally nilpotent Lie algebras over Q. A treatment of these results
in a manner appropriate to what follows may be found in [15] where the functors
are first constructed in the finitely generated (“local”) case and then extended to
the “global” one.

There is a situation in which standard constructions give rise to groups and
Lic algebras of this type. Let R be an associative ring. Under commutation R form
a Lie ring [R]. Under the operation o given by

dgob =a+b+ab (a,beR)

R forms a semigroup with 0 as identity. The invertible dlements form a group R°

_ known as the adjoint (or associated) group of R. (Compare Kuro§ [8] p. 38 where,

however, a different definition of o is used. This makes no difference since the map -
d—> —u converts one into the other). If R is a nil ring then every element of R is
invertible. Suppose now that & is the category of locally nilpotent associative
algebras over @, and that Re sf. Then [R] lies in %¥; and it may be shown that R®
lies in @y (cf. Mal'cev [12]). We may thercfore form #([R]) and £ (R°). We shall
exhibit isomorphisms

Rz 9(R]), [Rl=Z(R).
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