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Adjoint groups and the Mal’cev correspondence
(a tale of four functors)

by

Tan Stewart (Coventry)

Abstract. We make several observations on the connection between the structure of an as-
sociative algebra, its Lie algebra, and its adjoint group; with especial reference to the Mal’cev
correspondence between Lie algebras and groups. We view in this light the construction, by Levi¢
and Tokarenko, of a locally nilpotent non-Gruenberg Lie algebra. )

1. Introduction. The Mal'’cev correspondence (Mal’cev [11]) associates to
each complete locally nilpotent torsion-free group (in the sense of Kuro# [8] pp. 233,
248) a locally nilpotent Lie algebra over the rational field Q. It defines a pair of
mutually inverse exact functors

P By By, G By—Cy

where @y and %, are the categories of complete locally nilpotent torsion-free
groups and of locally nilpotent Lie algebras over Q. A treatment of these results
in a manner appropriate to what follows may be found in [15] where the functors
are first constructed in the finitely generated (“local”) case and then extended to
the “global” one.

There is a situation in which standard constructions give rise to groups and
Lic algebras of this type. Let R be an associative ring. Under commutation R form
a Lie ring [R]. Under the operation o given by

dgob =a+b+ab (a,beR)

R forms a semigroup with 0 as identity. The invertible dlements form a group R°

_ known as the adjoint (or associated) group of R. (Compare Kuro§ [8] p. 38 where,

however, a different definition of o is used. This makes no difference since the map -
d—> —u converts one into the other). If R is a nil ring then every element of R is
invertible. Suppose now that & is the category of locally nilpotent associative
algebras over @, and that Re sf. Then [R] lies in %¥; and it may be shown that R®
lies in @y (cf. Mal'cev [12]). We may thercfore form #([R]) and £ (R°). We shall
exhibit isomorphisms

Rz 9(R]), [Rl=Z(R).
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Essentially these are due to Mal’cev [12] pp. 360-361 in the finite-dimensional case.
‘We shall give a proof which ties in with the approach used in [15].
These isomorphisms are “natural” and the diagram of functors

N

—
y'@"g—-———'%_@

commutes “up to natural transformations” in a sense we make precise in Section 2.

Though the existence of these isomorphisms is easy to prove, it has a variety
of applications. Some of Mal’cev’s results in [12] that “generalised nilpotent”
properties of R carry over to R® can easily be deduced from them when R e .
‘We shall not pursue the matter here. Instead we shall apply the results to a recent
construction of Levich and Tokarenko, which yields a locally nilpotent torsion-
free non-Gruenberg group. (A. Gruenberg group is one generated by ascendant
abelian subgroups, cf. Robinson [13] p. 100.) Levich and Tokarenko remark that
one may now construct a locally nilpotent non-Gruenberg Lie algebra (answering
question 1 of [16] p. 81): presumably what they have in mind consists of forming
the completion of their group and applying the Mal’cev correspondence. The
resulting object, however, is not presented in'a very explicit form. Using our result
we can give a somewhat simpler construction, although leaning heavily on the
work of Levich and Tokarenko. :

Another application (in Section 2) concerns the problem of characterising
adjoint groups of algebras (or equivalently groups of units). We show that a group G
with trivial centre embeds in the associated group of a locally nilpotent ring whose

- additive group is torsion-free provided G is a torsion-free Baer group. (A Baer
group is one generated by abelian subnormal subgroups, cf. Robinson [13] p. 101).
Finally in Section 4 we sketch other possible applications of our results.

2. The Mal’cev correspondence. We summarise the construction of the funec-
tors & and & given in [I5]. It boils down to this: for elements x,yeL (Le%y)

we define a product
Xy =x+y+ile, yI+17l0, v, 1+ by, x, XD+

where the expression on the right is that occurring in the Campbell-Hausdorff
formula (Jacobson [6] p. 171). Under this operation, L becomes a group %(L)
lying in €,. Conversely for every group Ge%y we can define Lie operations

ig = g%,
g+h=gh(g, )" *(g, b, g)"*Xg, b, B)~V12 ...,
{9, 11 = (g, W) (g.h, 9)" (g, b, )™ 1% ..

(LleQ,g,heq), where (g, h) = g~ hT'gh is the group commutator, These com-
mutator expressions arise from “inverting” the Campbell-Hausdorff formula (cf.
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Lazard [9]). Then G with these operations gives a Lie algebra in %, which we
call Z(G).

Next we turn to the adjoint group. If R € &/ we can redefine R° in the usual
way. Adjoin an identity 1 to R and consider the resulting ring S. The elements 1+.r
of 8 (reR) form a subgroup of the multiplicative semigroup of S, which is
isomorphic to R°. We may identify R® with the subgroup 1+R of S.

We define a function

¢: $(R)-R°
by

1
(%) = exp(x) = 1+x+ix2+...

for x & [R]. This is well-defined and its image lies inside 1+ R = RC. Further, ¢ is
a group homomorphism, for

P () = exp(x)exp(y)
= exp(x+y+3lx,y1+..)
= ¢ (xy)
because the Campbell~Hausdorff formula holds in R. Now ¢ is ipjective, for if
¢@(x) = 1 then
x = logp(x) = logl =0

and is surjective because if re R then

14r = explog(1+r) .
=exp(r—3ir*+3iri—..).
This shows that ([R]) = R°. Since ¥ and % are mutual inverses we have % (R%)
=~ [R]. We state these results as:
THEOREM 1. Suppose R is a locally nilpotent associative algebra over Q. Then

R = 9(RD), [Rl=zZLR).

Let oy and o/, be the subcategories of €y and %, whose objects are the R°,
[R] for R e o and whose morphisms are induced from . We can red.eiliue 17 an@ &
as functors & g—Hy and Hy— o, using exp and log; th{s redefinition amounts
to a natural transformation of functors. Clearly now the diagram

o
o/ N
e )
9 < g A o

commutes.

i

3. The Levich-Tékarenko construction. The theorem of Levich-Tokarenko '[10]
says that every periodic locally nilpotent group is an epimorphic image of a torsion-
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free locally nilpotent group. We sketch their construction, with a slightly different
proof. ‘

Periodic locally nilpotent groups are uniquely expressible as a direct product
of locally finite p~groups for distinct primes p (Kuro§ [8] p. 229), whence it suffices
to prove the theorem for a locally finite p-group P. Form the group algebra Z,P
and let I be its augmentation ideal, spanned by the elements g—1 (g € P). From
standard results in the representation theory of finite p-groups (Curtis and Reiner
[2] p. 189) ?t follows that I is a locally nilpotent algebra. Thus the multiplicative
semigroup [ of I is a locally nilpotent semigroup (with zero). We may form the
semigroup rings ZI and Z,I (identifying the zero of I with that of the coefficient
ring) and these are also locally nilpotenf. There are obvious ring homomorphisms

Zi-Z [,I' ~I
which induce group homomorphisms ‘
(Z)°—~(Z,D)°—I°.
Now the map g—g—1 gives a group monomorphism P—1I.

Since ZI is locally nilpotent and has torsion-free additive group it is easy to
see that (ZI)° is a locally nilpotent torsion-free group. (This also follows from our
subsequent application of the Mal’cev correspondence.) We identify P with its
image in I° and co-restrict, giving a subgroup J (P) of (ZI)° ard a canonical epi-
morphism

T (P)—P.

Let P be the Kovacs—Neumann—Kargapolov group, which is a non-G—ruenbcfg
locally finite p-group (Robinson [13] p. 108, Kargapolov [7]). Then G = 7 (P) is
locally nilpotent torsion-free, and has a completion G*. Tt follows from [15] p. 307
Lemma 2.4.5 that % (G") is a locally nilpotent non-Gruenberg Lie algebra.

' However, as we said, the structure of £ (G") is not very explicit. Instead, we
t.ake.I as above and form the semigroup algebra QI (again identifying zeros) which
lies in &/, Then L = [Q[] is a locally nilpotent Lie algebra, and ‘

(%) 9Ly~ =2(Z)° =27 (P).

Thus ¥ (L) has a section (subquotient) isomorphic to P, and is non-Gruenberg.
So L is non-Gruenberg. :
Further, QI is a non-Gruenberg associative algebra in the sense that it is not

generated by ascendant zero subalgebras (with the obvious definitions). Thus, at
a stroke, we have:

THEOREM 2. Let I be the multiplicative semigroup of the augmentation ideal
of Z,P, where P is any locally finite p-group which is non-Gruenberg (e.g. the Kovdcs—
Neumann—Kargapolov group). If A is the semigroup algebra QI then:

() 4 is a locally nilpotent non-Gruenberg associative algebra over Q,

:(ii) A° is a locally nilpotent torsion-free non-Gruenberg group,

(iii) [4] is a locally nilpotent non-Gruenberg Lie algebra over Q.
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Notice that (x+) above implies (ZI)° locally nilpotent and torsion-free in the
Levich-Tokarenko construction, as remarked at the start of this section.

4. Embedding in adjoint groups. The question arises of characterising the Lie
algebras in &, and the groups in 4. It is easy to see that every L € o 4 has the
following property: if X is any finite-dimensional subspace of L, then there exists
an integer .n = n{X) such that

(%) L, X,.,X1=0.
n
This is a kind of Engel cdndit%on, and we shall refer to algebras satisfying it as
E-algebras.
For any x € L we write, as usual, ad(x) for the map L—L defined by

vad(x) =[y,x] (xel)

and we let ad (L) be the associative algebra generated by the ad(x) (x € L). Clearly
L is an @-algebra if and only if ad(L) is locally nilpotent as an associative algebra.
If I has trivial centre then the adjoint representation ad: L— ad (L) is faithful, so
we have: '

PROPOSITION 3. A Lie algebra L over Q with wivial centre can be embedded
in a Lie algebra in o o if and only'if L is an €-algebra.

Proof. Note that a subalgebra of an G-algebra is an &-algebra.

From Theorem 1 we have the:

COROLLARY 4. A group G with trivigl centre can be embedded in the adjoint
~group of a ring with torsion-free additive group if and only if G is a locally nilpotent
torsion-free group such that L(GYis an €-algebra, where G* is the completion of G.

In particular we deduoce:

PROPOSITION 5. Any torsion-free Baer group can be embedded in the adjoint
group of a locally nilpotent ring (indeed Q-algebra).

Proof. If G is a Baer group then so is G* and therefore £ (G™) is a Baer al-
gebra (in the obvious sense) by [15] p. 307. But Baer algebras satisfy (x) because
every finite-dimensional subspace lies inside a nilpotent subideal (Hartley [5] p. 259).

Tt is easy to see (cf. Robinson [13] pp. 11, 68) that a group G is a Baer group
if and only if for every finitely generated subgroup H of G there exists n = n(H)
such that .

() (G, H,..,H)y=1.

n

This is a reasonable analogue of the condition defining €-algebras. However, we
have just constructed an -algebra which is non-Gruenberg, so certainly non-Baer.
In consequence:
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(a) €-algebras need not be Baer algebras.

(b) Subgroups of 4°, for A4 € o/, need not be Baer groups.

(c) Condition (x+) for G is not equivalent to condition (%) for .2 (G*).

(d) Lemma 2.5.2 of [15] p. 310 is not always true for non-normal sub-
groups 4, B.

Proposition 5 has some bearing on the question of characterising groups of
units of rings (Fuchs [3] p. 299).

Finally we note that &, is strictly smaller than €. For let L be a Lie algebra
with basis xg, Xy, ..., 0 Where [x;, x;] = 0 = [x,, 6], [x;, 0] = x;_, (i1). Then
L e%q but Lis not an €-algebra (take X' = (o). By the same token % (L) is in %,
but not in 4.

5. Further remarks.

(1) If fis any field of characteristic zero and A4 is as in Theorem 3, then I®p4d

and [T®gyA] will be locally nilpotent non-Gruenberg associative and Lie algebras
over {. :

(2) Further, let L be any locally nilpotent non-Gruenberg Lie algebra over f
and let I' = y(L) be its Gruenberg radical (Hartley [5] p. 258). By using exponentials
(as in Hartley [S] p. 262] or by a more general theorem of Hartley (reported in [16]
P. 85) we have I' an ideal of L. Now Sinonjan [14] has shown that a Lie algebra
over a field of characteristic zero is Gruenberg if and only if

(a) it is locally nilpotent,

(b) it has an ascending series (cf. [13] p. 7) with abelian factors.

It follows that L/I" has trivial Gruenberg radical. Hence over any T there exists
a non-zero locally nilpotent Lie algebra with trivial Gruenberg radical.

3) Wit.h the notation of Section 3, (@1)° is in fact (isomorphic to) the comp-
letion of (ZI)°. More generally, using the characterisation of completions as isolators
(Kuro§ [8] p. 255) we can see that if R is a locally nilpotent ring with torsion-free
additive group then the completion of RO is (isomor_phic t0) (Q ®, R)°.

(4)’ The Levich-Tokarenko construction has an obvious functorial property.
If P,P’, P" are periodic locally nilpotent groups then the diagram

- P"

_)P}\,._.._.__..___
AN S
/

(%) 4
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commutes whenever the top triangle does, where the vertical maps are the canonical
epimorphisms and those in the lower triangle are induced in the obvious way. Now
even if P is small, 7 (P) may be very large. I P is a finite p-group of order p" then
it appears that J (P) has Hirsch-number

PPt =p+1

(where the Hirsch-number is the number of infinite factors in a cyclic series; or in
this case the dimension of the corresponding Lie algebra). One way to reduce the
size of 7 (P) while keeping (+++) commutative is to replace it by the subgroup of
(Z1)° generated by the elements g—1 (g € P) of I. This also maps onto P, but is
smaller than the complete inverse image of P.

Both this functor and & may be studied using Theorem 3 to simplify compu-~
tations. In particular it appears that J can strictly increase nilpotency classes.

(5) The methods of this paper can be used to give an integrated treatment of
completions of locally nilpotent torsion-free groups and of the Mal’cev correspon-
dence. Basic tools are the Campbell-Hausdorff formula, the theorem of Hall [4]
p. 56 that any finjtely generated torsion-free group embeds in a group of unitrian-
gular matrices over (which has a very short proof due to Swan [17]) and the anal-
ogous theorem of Birkhoff [1] for finite dimensional nilpotent Lie algebras over Q
using zero-triangular matrices.

Let 4, be the associative algebra of nxn zero-triangular matrices over Q.
By Hall’s theorem we can find » such that A? contains a given finitely generated
nilpotent torsion-free group. Now 4% is complete, which yields a completion G*
of G. The Mal’cev correspondence can be defined for G by means of logarithms.
Similarly if L is a finite dimensional nilpotent Lie algebra over Q then L4}
for some 7, and we may define the Mal’cev correspondence by exponentials.

This gives a local version of the theorems. For a global version, we argue
exactly as in [15] for the Mal'cev correspondence, and follow the outline given in
Hall [4] p. 46 for completions.

The advantages of this approach are the compact presentation, and the way
that the underlying representation theory is brought to the fore.
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Properties of connected functions
in terms of their levels *

by

K. M. Garg (Edmonton, Alberta)

Abstract. Let f be a connected real-valued function defined on a connected, locally connected,
Hausdorff space X. Tn this paper we investigate necessary and sufficient conditions on the levels
of f under which f is continuous, monotone or injective, and obtain some structural properties
of f when it is nowhere monotone.

Among the main results, f is proved to be always continuous relative to the closure of the
union S of connected levels of f. If f ~* preserves relatively compact sets, and either S is dense in. X,
or its image f(S) is dense in the range of f, then 1 is proved to be continuous, monotone and proper.
When f assumes a dense set of its values only once, it is found to be continuous and monotone,
and when the singleton levels of f are dense in X, fis even injective. If X is second countable and
fis nowhere monotone, it is proved that the level f ~*(0) is dense-in-itself for a residual set of values
of @ in R, and there further exists a residual set of points x in X such that x is a limit point of the
level f ”1{ F(x)}. Some earlier results on the distribution of closed, connected, singleton, dense-in-
itself and perfect levels of f are also extended to the present setting.

1. Introduction. Before discussing the results of this paper, we first give some
definitions that are used throughout the paper. ‘

1.1. DerFNITION, The space of real numbers is denoted as usual by R. If EcR,
a point x e R is said to be a bilateral limit point of E if it is a limit point of E from
both the sides, and we call E bilaterally closed if it contains all of its bilateral limit
points. Any set E is said to be singleton if it contains one and only one point, and
E is called countable if it is finite or countably infinite. When E is a subset of
a topological space X, E is called a boundary set [8] if its interior is empty, E is
meager if it is a countable union of nowhere dense sets, and E is residual if its comp-
lement X'—E is meager.

Let X, ¥ be two topological spaces and f be a function mapping X into Y.

1.2. DermNITION. For every ye Y, the set
FTO) = fxeX: () = 3}

* This paper was presented at the Conference on Monotone Mappings and Open Mappings,
State University of New York, Binghamton, 1970 under the title “Monotonicity of connected
functions”. The research was partially supportw National Research Council of Canada
under grant no. A-4826, .
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