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Write F = x"Y(I'), 4’ = A~ F and let us consider the metric spaces (4, 0). We
shall show that this is an absolutely Borel space (*). We adopt. the notation of the
proof of Lemma 3. Let F,, = |J {G,,: s € S}. Since G,, is an F,-set and ¢(G,,, G
=1/m for distinct 5, #, we infer that F = X\ F,, is a G,-set in (X, @). Thus (F, 0)
is an absolutely Borel space and so is (4', g), as A’ is an F,-set in (¥, ). By Lemma ]
the space (4', g) is not o-discrete and thus by a Theorem of A. H. Stone ([6], The-
orem 1) it must contain a Cantor set. This gives the contradiction, because separable
subspaces of (4, ¢) are countable (compare with [6], Sec. 5).

Remark 4. Let E be the space considered in the Example (Sec. 1). One can
prove (see R. Pol, Comment. Math. 22 (1977)) that the product E™ jg perfectly
normal, while E is not paracompact.

(*) A metrizable space is absolutely Borel if it can, be embedded as a Borel subspace in
a completely metrizable space.
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A herediéarily normal strongly zero-dimensional space
with a subspace of positive dimension and
an N-compact space of positive dimension

by

Elibicta Pol and Roman Pol (Warszawa)

Abstract. In this paper we give a solution of an old Cech’s problem on dimension by construc-
ting a hereditarily normal strongly zero-dimensional space containing a subspace of positive di-
mension. We give also an example of an N-compact space of positive dimension.

The aim of this paper is to construct spaces with the properties mentioned in
the title:

The problem of existence of a hereditarily normal space X containing a sub-
space with the covering dimension greater than the covering dimension of X is an
old problem of Cech (see [2]; compare also [7] Appendix, [3], [11] Problem 11-14,
{1] VII, Introduction). Recently, V. V. Filippov [6] showed that the existence of
a Souslin Tree yields a space of this kind, Further examples, with many additional
properties, were constructed by V. V. Fedoruk [5]; he used, however, some
additional set theoretic assumptions, too. The example we shall construct needs
only the usual axioms for the set theory. It solves at the same time a problem on
the local dimension raised by C. H. Dowker in [3].

The problem of existence of a closed subspace with the positive covering di-
mension in a product of countable discrete spaces appears in the natural way in
the theory of N-compactness (see [12]). It was solved recently by S. Mréwka [10]
(see also [13]). We give another example of this kind (it seems to us that it is simpler
than the Mréwka’s one).

1. Notation and terminology, Qur terminology will follow [4]. We shall use
the following notation: I denotes the closed real unit interval, Q stands for rationals
of I, P—for irrationals of I and N — for natural numbers. For an ordinal o we
shall denote by D(x) the set of all ordinals less than o with the discrete topology
and by W(w) the same set with the order topology. The word “dimension” wilt
denote the covering dimension dim (see [4], § 7.1); a space X with dimX =0 i.s
called strongly zero-dimensional, We say that the local dimension of a space X is
at most n (abbreviated locdimX'<r) if each point x €.X has an open neighbour-
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hood U with dim U <z (see [3] and [11] Definition 11-6). All spaces under discussion
are assumed completely regular.

2. Auxiliary comstruction. The construction of the Broom due to Knaster and
Kuratowski (see [8] and [4] P. 6.3.23) is a source of the following observation which
play the key role in the sequel.

Let X be a topological space, 4 a subspace of X and let 9,>{0, 1} be a sub-
set of Q such that the set 0, = O\Q, is dense in Q. Let

BX, 4) = (Xx Qo) W (AXP) U [(AN4) % 0]
be the subspace of the Cartesian product X'xI. For Y<X put
CY)=x)nBX,4)=B(Y,AnY).

‘We have the following

Lemma 1. If A is not an F,-set in X, then for arbitrary q, ¢’ € Q, the sets X x {q}
a}lm' Xx{q'} cannot be separated in B(X, A) by the empty set. In particular,
dim B(X, 4)>0.

Proof. Suppose that B(X, 4) is the union of two disjoint open-and-closed
subsets U and U’ such that U>X x {g} and U'>Xx{¢'}. The set F=Un U’,
where bar denotes the closure in X'x I, separates the sets X'x {g} and X'x{¢'} in
tXx! and Fn B(X, A) = @. For each se Q, the set F(s) = {xe X: (x,5)& F}
is closed in X. We shall show that 4 = ) F(s), i.e. that 4 is an F,-set in X. Indeed,
. seQs ’
if xeF(s) for some s Q; then (x,s) e F = F\B(X, 4), hence x ¢ 4; for every
x & X there exists a ¢ e I such that (x, 1) € F = F\B(X, A) and if xe 4,then te Q,
so that x € F(¥). - :

3. A hereditarily normal strongly zero-dimensional space with a subspace of

quitiv.e dimension. C. H. Dowker [3] showed that the existence of such a space
is ef:lmvalent to the existence of a hereditarily normal space L with locdimZ = 0
<dimZ (see [11] Remark 11-18); for the construction of Z we shall need the following

LeMma 2. There exists a perfectly normal and locally second-countable space K
y.vitl;c locdim K = 0 which contains a locally countable subset A which is not an F-set
in K.

We take the space X defined in Example of [14] as the space K; we recall the
construction below. Let B(x;) = D(w )" be the Baire space of weight 8, (see [4]
Example 4.2.12). For each x & B(8,) let %(x) = min {o: x())<a for ie N} and let K
be j:he graph {(x, x(x)): x € B(s)} =B(xy) x W(w,) of the function x. The space
K is perfectly normal (see [14] Proposition 1) and, since K (B(s,) x (&)
=K (DY x W(&)) for every (<, , K is locally second-countable and locdim K
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- Finally, if we choose for each ¢<w; a point x;ex%™!(£) then the set A

= {(xs, &) E<w,} has the required properly, by [14] Remark 3, Proposition 2’

ExaMpLE 1. There exists a perfectly normal locally second-countable space L
such that locdimZ = 0<dimL,

Let us put Qp = {0, 1} and let L = B(K, 4), where K and 4 are as in Lemma 2.
By Morita’s theorem. L is perfectly normal. (see for-example [4] P. 4.5.16) and it is
locally second-countable. By Lemma 1 we have dimZL>0. It remains to show that
locdimZ = 0. Take an arbitrary point (¥, f) & L, where x€ K, ¢ e I There exists
an open-and-closed neighbourhood U of x such that dim¥U = 0 and [U N A[<so-
The set

C(U) = (Ux Qo) U [(TUn ) x(P L Qo)] v [(INA) x Q1]

.is the countable union of its closed strongly zero-dimensional subsets Ux {#} for

te Qp, (UNd)x{t} for te Q, and {y}x (P U Qo) for ye Un 4. Hence by the
Sum Theorem dimC(U) = 0. It follows that the point (x, ?) has an open-and-
closed strongly zero-dimensional neighbourhood. _

We shall use Dowker’s construction (see [11] Theorem 11-17) to obtain the
following

EXAMPLE 2. There exists a hereditarily normal strongly zero-dimensional
Lindelsf space containing a subspace of positive dimension. ;

Let L* =L u {p} where L is the space from Example 1 and p is a point which
does not belong to L. The topology of L* consists of all open subsets of L and the
sets ¥ such that pe ¥ and LNV is a second-countable closed subspace of L. It is
easy to see that L* is Lindelsf. By the construction it follows that each separable
subset of K is contained in an open-and-closed second-countable and strongly zero-
dimensional subspace of K; the same holds in L. Thus the space L* is hereditarily
normal, because for any separated sets A4, B either 4 U BcL or one of the sets
is second-countable. Finally, it is not hard to verify that dimL* = 0<dimL.

Remark 1. The space L we have constructed is collectionwise normal. Indeed,
the space K is perfect and collectionwise normal (see [14] Remark 2) and thus the
same is true for the product K x I which contains L (cf. [4], P. 4.5.16, P. 5.5.19 and
P. 5.5.1). Let us notice that L cannot be paracompact because in the class of para-~
compact spaces locdim = dim (see [11], Corollary 11-8).

Remark 2. As proved by C. H. Dowker [3], for the function locdim the
Finite Sum Theorem holds in the class of normal spaces. It is easy to show that
the space Z = (Nx L) U {a}, where the sets of the form {a} U kgn[{k} x L] form

a base of meighbourhoods at the point a, is the union of countably many closed
subsets with locdim = 0, whereas locdimZ>0. Thus the Countable Sum Theorem

fails for locdim in the class of perfectly normal spaces.
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4. An N-compact space of positive dimension. A space X is N-compact if it
can be embedded as a closed subspace in a product of copies of N (see [16]).

Let S be a set of cardinality ;. For every TS by py: N°»NT we shall de-
note the projection; if |T|<¥, then the set py *(x), where x € N7, will be called
an Kg-cube. .

The following lemma was proved by the authors in [15] (Example 2).

LEMMA 3. There exists a subset E of N° which has the following properties:

() E is locally an F,-set in N°(%),

(ii) E is not an F,-set in N,

(iii) E is the union of Nq-cubes.

Notice that N*\E is also the union of s,-cubes, because by (i) it is the union
of Gs-sets and every G;-set in N¥ is the union of &,-cubes.

ExampLe 3 (cf. [10]). An N-compact space M which is not
zero-dimensional.

Let Q, be a dense subset of O such that 0, = O\Q, is also dense in Q. Define
' M = B(N®, E), where E is as in Lemma 3. By Lemma 1 and (ii) it follows that
dimM>0. It remains to show that M is N-compact.
First we shall prove that

strongly

M

Indeed, the space NI is realcompact and the complement (N¥xI)NM
= (Ex Q) U [(N*\E) x P] is the union of ,-cubes and thus, as each No-cube is
a Gs-set in N°x I, (1) follows by Mréwka’s theorem (see [4] P. 3.12.25).

Let U be an open-and-closed subset of N, Then

M is realcompact.

@

If Un E is not an Fy-set in U then by Lemma 1 dimC(U)>0. Conversely, let.
Un E be an F,-set in N®. Since U is open-and-closed it depends on countably
many coordinates, ie. U = pr (U)x N for some countable set T, =S (see [4],
P. 2.7.12). Because U n E is an F,-set which is the union of %,-cubes,

dimC(U) = 0 if and only if U n E is an F,-set in U.

UnE=pp(Un E)x N2, where T,<8 is countable,

by Theorem 2 of [15]. By Remark 2 of [15] there exists TS, T=T, u T, 1 TI<8o
such that p(U n E) is an F,-set in N7. Thus we have

U= U'xNT, where U’ is open in NT,

and

UnE=ExN", where E =p(UnE)= |F,,
i=1

j=

() This means that for each x ¢ NS there exists a neighbourhood V of x such that ¥ N E is
an Fg-set in V.
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where F, are closed in N”. It follows that

C(U) = (Ux Qo) v [(Un E)xP]u [(UNE) x Q4]
= (U'x NS\Tx Qo) U (B x N5 xP) w [(UNE) x NS x 0,1
9P (U % Qo) W (E/ X P) U-[UNEY X @Iy x NN

The space Z = (U'x Qo) v (E'XP) v [(U'\E") x ‘Qd‘cNT‘xI is a men;izable
separable space and it is the union of its closed zero-dlmensl,onz.tl subsets U’ x {t},
for te Qo, (UNE)x{t}, for te @y and Fix(PU Qo), for i=1,2,.. Hence
dimZ = 0 by the Sum Theorem. Thus C(U) is the pI‘DdI:th of zero-dimensional
second-countable spaces and hence dimC(U) = 0 by Morita’s theorem ([91, The-
orem 3). The proof of (2) is completed.

Let U be an open-and-closed subset of M. For ge Qp put

U(g) = {xe N: (x,9) e U};

clearly U(g) is open-and-closed. in N®.
‘We shall verify that

3) (U(q)\U(q’)) A E is an F,-set in U(gN\U(g’) for every g, g€ Q-

Indeed, the set ¥ = U n C(U@NU(g)) is open—and-closeld in C(U(g\U(g") an(i
(U@NT(@) x {g) = V= CU@\U@INU@NU(@))  {g'}- Honce from Lemma
it follows that (U(@\U(¢") N E is an F,-set in UgN\U(q)-

For an open-and-closed set U=M we define

Jy = ) U@cN

geQo
The sets Jy satisfy
4) C(lyclU
and

(5) UNC(Jy) is the countable union of strongly zero-dimensional open-and-
closed subsets of M. :

Consider an (x, ) e C(Jp). Then x& U(g) and because Qp is dense in Q and

qeQo .
U is closed, we have U=C({x}) 3 (x, ). Thus (4) holds.lTo estai?lxsh L(TS) let ;i
assume that (x, 1) € UNC(Jp). Then (x, q") ¢ U for some ¢ € 0s- SlnceU is ;}12 ’
and Q, is dense in Q there exists ¢ € Qo such that (x,q)e U Thus xe UigNU(q
and (x,)eC (U(q)\U(q’)). We have obtained the equality
NCUp) = U CU@NU@) T

4,9'€Qo

which proves (5) by (3) and (2).
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We shall prove now that M is N-compact. Since by (i) and (2) it follows tﬁat

©) locdimM = 0,

it suffices only to verify that every open-and-closed ultrafilter in A with the count-
able intersection property has nonémpty intersection (see [16], p. 478). Let % be
such an ultrafilter. We shall show that

(7)  there exists Ue % with dimU = 0, .

Suppose on the contrary that dim U>0,fér each Ue %. Fix an arbitrary g, e Q,
and let )

¥ = {Ulgy): Ue ). , ‘ ,

We shall prove that ¥ is an open-and-closed ultrafilter in N° and has the
countable intersection property. ¥ 1s a‘filter because for U,, U, e % the inter-
section U (o) 0 Us(go) = (U U,)(go) belongs to ¥ and if an open-and-closed
set A= N® contains U, (g,) then 4 = (C(4)y U U,)(go) also belongs to ¥ (because
% is a filter). Now let U be an open-and-closed subset of N°. Then either C(U) e %
or M\C(U) = C(N\U) e U, hence either Ue ¥ or N\Ue¥"; thus ¥ is an

o]
ultrafilter. Let U,e % for i=1, 2, ..., we shall show that Ui(go) # O. As
. i=1 '

shown in (5), we have .Ul(Ui\C(JUi)) = U ¥;, where the sets V; are sfrongly 2610~
i= i=1 RN T

dimex?sional and open-and-closed in M. Since % is an ultrafilter it follows from the
negation of (7) that M\V;e % for j=1,2, ... By the countable intersection prop-
erty of % there exists a point

o0 «0 o0 o o -] <]
(%0, 10) 6_01 U; ﬁ)_ﬂi 0CaN) =ﬂi UN Uij =N UNUUNCU)) =N CWy).
i= = i=1. = i=1 i=1 i=1

=

We obtain
o -
Xo E.q Jo,.= N Ui(go) -
. i= i=1

.Now ¥, being an open-and-closed ulirafilter-in N° with the countable inter-
section property, has the nonempty intersection; and thus there exists an x e N %.
By (6) there exists an open-and-closed strongly zero-dimensional neighbourhood U
of x. We have Ue % contrary to our assumption that % does not contain strongly
zero-dimensional sets. This completes the proof of (7). L

Let us take an open-and-closed set Uo € % with dim U,

: = 0. The set U, is
realcompact by (1) and thus it is N-compact (see [16],

p. 478). The family
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={UynU: Ue } is an open-and-closed ultrafilter in U, with the countable
intersection property and hence @ # () # < () %. This completes the proof
that M is N-compact. :

- Remark 3. It we take in the above construction K instead of Nt and A instead
of E, where K and 4 are as in Lemma 2, then. we obtain a space M which i.s perfcctly
siormal, locally second-countable, N-compact, and satisfies dim M’ > locdimM’ = 0
(the space M’ is a slight modification of Example 1). The proof of & -gon:pactness
of M’ is analogous to the proof in Example 3 and reduces to the p.rfjol of N-com-
pactness of K (%) (which follows by Mréwka’s result [10]‘frou} the fact that K can
be mapped continuously in a one-to-one way into the metl:llzable strongly Zero-
dimensional space B(x,)) and of realcompactness of M’ (which follows from the
fact that M’ can be mapped in a one-to-one way into the space {?(sl) x I (see [4]
Exercise 3.11.B)). The remaining properties of M * can be proved in the same way
as the properties of the space L in Example 1. .

We are grateful to Professor R. Engelking for valuable discussions about

the subject of this paper.

Added in proof. N

(a) In the paper A hereditarily normal strongly zero-dimensional space containing sszsp‘acgs
of arbitrarily large dimensional, Fund. Math. (to appear) the authors have developed essentially
the idea deseribed in Section 3.

(b) E. Pol, Bull. Acad. Polon. Sci. 24 (1976), pp- 749—752 gave under‘ CH an cxample
of a locally compact perfectly normal space Xy with locdim X = 0 and dim&X, >n, whe{e
n=1,2, ..; some very strong examples of this kind, also under CH, were constructed recently
by V. V. Fedorduk, On the dimension of hereditarily normal spaces (to appear).
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Addition and correction to the paper
«“QOn stability and products”
Fund. Math, 93 (1976), pp. 81-95

by

J. Wierzejewski (Wroctaw and Nijmegen)

In the paper quoted in the title the second part of Corollary 5.5 was formulated

wrongly. Namely it should have the following form:

The class of all w-stable theories for which ar is finite. is closed under finite

droducts. i

Now we shall show that “w-stable” cannot be omitted. The notqtion and

terminology are taken from [1].

Namely, let 8= (Q v (@X0XQ), W, C, D, R, ~u)yen, Where

Q is the set of rationals numbers, ‘ .

W is a unary relation and W(a) iff a € O,

C is a unary relation and C(a) iff a ¢ Q,.

D is a ternary relation and D(a,b,c) iff W), W®) and dqeQ, ¢

={a,b,q), :

R is a ternary relation and R(a, b, ¢) iff D(a, b, ¢) and

a<b->AdqgeQc=<{a,b,q) and g is a natural number,
{a2b4345Q0=<a,b,q> and ¢ # 0,

~, are equivalence relations on Q with inﬁnitely‘max_ly classes and ol
~y4+1 divides every equivalence class of ~, into infinitely many equivalence

classes of ~,..1. Moteover every equivalence class of ~, is a dense linear ordermg
‘without endpoints (with the ordering taken from Q).

Note that we can. define a formula which linearly arders W into type 7.
Fact 1. For every 2F Th(B) and every p € SA ecither rank (p) = 0, either

rank (p) = 1, or rank (p) = co.

4%

Indeed, every type contains one of the following sets of formulas:

1) {xo = a} for some ae 4,
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