42

R. Pol

Write $F = \varkappa^{-1}(\Gamma)$, $A' = A \cap F$ and let us consider the metric spaces (A', ϱ) . We shall show that this is an absolutely Borel space $(^2)$. We adopt the notation of the proof of Lemma 3. Let $F_m = \bigcup \{G_{sm} : s \in S\}$. Since G_{sm} is an F_{σ} -set and $\varrho(G_{sm}, G_{tm}) \geqslant 1/m$ for distinct s, t, we infer that $F = X \setminus \bigcup F_m$ is a G_{δ} -set in (X, ϱ) . Thus (F, ϱ) is an absolutely Borel space and so is (A', ϱ) , as A' is an F_{σ} -set in (F, ϱ) . By Lemma 1 the space (A', ϱ) is not σ -discrete and thus by a Theorem of A. H. Stone ([6], Theorem 1) it must contain a Cantor set. This gives the contradiction, because separable subspaces of (A', ϱ) are countable (compare with [6], Sec. 5).

Remark 4. Let E be the space considered in the Example (Sec. 1). One can prove (see R. Pol, Comment. Math. 22 (1977)) that the product E^{\aleph_0} is perfectly normal, while E is not paracompact.

References

- [1] R. Engelking, General Topology, Warszawa 1977.
- [2] G. Fodor, Eine Bemerkung zur Theorie der regressiven Funktionen, Acta Sci. Math. (Szeged) 17 (1956), pp. 139-142.
- [3] I. Juhász, Cardinal functions in topology, Math. Centre Tracts 34, Amsterdam 1971.
- [4] E. Pol and R. Pol, A hereditarily normal strongly zero-dimensional space with a subspace of positive dimension and an N-compact space of positive dimension, Fund. Math. 97 (1977), pp. 43-50.
- [5] R. Pol, Note on decompositions of metrizable spaces I, Fund. Math. 95 (1977), pp. 95-103.
- [6] A. H. Stone, On σ-discretness and Borel isomorphism, Amer. J. Math. 85 (1963), pp. 655-666.
- [7] Non-separable Borel sets II, Gen. Top. and Appl. 2 (1972), pp. 249-270.

DEPARTMENT OF MATHEMATICS AND MECHANICS, WARSAW UNIVERSITY WYDZIAŁ MATEMATYKI I MECHANIKI UNIWERSYTETU WARSZAWSKIEGO

Accepté par la Rédaction le 18. 8. 1975

A hereditarily normal strongly zero-dimensional space with a subspace of positive dimension and an N-compact space of positive dimension

b

Elżbieta Pol and Roman Pol (Warszawa)

Abstract. In this paper we give a solution of an old Čech's problem on dimension by constructing a hereditarily normal strongly zero-dimensional space containing a subspace of positive dimension. We give also an example of an N-compact space of positive dimension.

The aim of this paper is to construct spaces with the properties mentioned in the title.

The problem of existence of a hereditarily normal space X containing a subspace with the covering dimension greater than the covering dimension of X is an old problem of Čech (see [2]; compare also [7] Appendix, [3], [11] Problem 11-14, [1] VII, Introduction). Recently, V. V. Filippov [6] showed that the existence of a Souslin Tree yields a space of this kind. Further examples, with many additional properties, were constructed by V. V. Fedorčuk [5]; he used, however, some additional set theoretic assumptions, too. The example we shall construct needs only the usual axioms for the set theory. It solves at the same time a problem on the local dimension raised by C. H. Dowker in [3].

The problem of existence of a closed subspace with the positive covering dimension in a product of countable discrete spaces appears in the natural way in the theory of N-compactness (see [12]). It was solved recently by S. Mrówka [10] (see also [13]). We give another example of this kind (it seems to us that it is simpler than the Mrówka's one).

1. Notation and terminology. Our terminology will follow [4]. We shall use the following notation: I denotes the closed real unit interval, Q stands for rationals of I, P—for irrationals of I and N—for natural numbers. For an ordinal α we shall denote by $D(\alpha)$ the set of all ordinals less than α with the discrete topology and by $W(\alpha)$ the same set with the order topology. The word "dimension" will denote the covering dimension dim (see [4], § 7.1); a space X with dim X = 0 is called strongly zero-dimensional. We say that the local dimension of a space X is at most n (abbreviated locdim $X \le n$) if each point $x \in X$ has an open neighbour-

⁽a) A metrizable space is absolutely Borel if it can be embedded as a Borel subspace in a completely metrizable space.

hood U with dim $\overline{U} \le n$ (see [3] and [11] Definition 11-6). All spaces under discussion are assumed completely regular.

2. Auxiliary construction. The construction of the Broom due to Knaster and Kuratowski (see [8] and [4] P. 6.3.23) is a source of the following observation which play the key role in the sequel.

Let X be a topological space, A a subspace of X and let $Q_0 \supset \{0, 1\}$ be a subset of Q such that the set $Q_1 = Q \setminus Q_0$ is dense in Q. Let

$$B(X, A) = (X \times Q_0) \cup (A \times P) \cup [(X \setminus A) \times Q_1]$$

be the subspace of the Cartesian product $X \times I$. For $Y \subset X$ put

$$C(Y) = (Y \times I) \cap B(X, A) = B(Y, A \cap Y).$$

We have the following

LEMMA 1. If A is not an F_{σ} -set in X, then for arbitrary $q, q' \in Q_0$ the sets $X \times \{q\}$ and $X \times \{q'\}$ cannot be separated in B(X, A) by the empty set. In particular, dim B(X, A) > 0.

Proof. Suppose that B(X,A) is the union of two disjoint open-and-closed subsets U and U' such that $U\supset X\times\{q\}$ and $U'\supset X\times\{q'\}$. The set $F=\overline{U}\cap\overline{U'}$, where bar denotes the closure in $X\times I$, separates the sets $X\times\{q\}$ and $X\times\{q'\}$ in $X\times I$ and $F\cap B(X,A)=\emptyset$. For each $s\in Q_1$ the set $F(s)=\{x\in X\colon (x,s)\in F\}$ is closed in X. We shall show that $A=\bigcup\limits_{\substack{s\in Q_1\\s\in Q_1}}F(s)$, i.e. that A is an F_σ -set in X. Indeed, if $x\in F(s)$ for some $s\in Q_1$ then $(x,s)\in F=F\setminus B(X,A)$, hence $x\in A$; for every $x\in X$ there exists a $t\in I$ such that $(x,t)\in F=F\setminus B(X,A)$ and if $x\in A$, then $t\in Q_1$ so that $x\in F(t)$.

3. A hereditarily normal strongly zero-dimensional space with a subspace of positive dimension. C. H. Dowker [3] showed that the existence of such a space is equivalent to the existence of a hereditarily normal space L with $\operatorname{locdim} L = 0 < \dim L$ (see [11] Remark 11-18); for the construction of L we shall need the following

LEMMA 2. There exists a perfectly normal and locally second-countable space K with $\operatorname{locdim} K = 0$ which contains a locally countable subset A which is not an F_{σ} -set in K.

We take the space X defined in Example of [14] as the space K; we recall the construction below. Let $B(\mathbf{x}_1) = D(\omega_1)^N$ be the Baire space of weight \mathbf{x}_1 (see [4] Example 4.2.12). For each $x \in B(\mathbf{x}_1)$ let $\kappa(x) = \min\{\alpha: \kappa(i) < \alpha \text{ for } i \in N\}$ and let K be the graph $\{(x, \kappa(x)): x \in B(\mathbf{x}_1)\} \subset B(\mathbf{x}_1) \times W(\omega_1)$ of the function κ . The space K is perfectly normal (see [14] Proposition 1) and, since $K \cap (B(\mathbf{x}_1) \times W(\xi)) = K \cap (D(\xi)^N \times W(\xi))$ for every $\xi < \omega_1$, K is locally second-countable and locdim K

= 0. Finally, if we choose for each $\xi < \omega_1$ a point $x_{\xi} \in \kappa^{-1}(\xi)$ then the set $A = \{(x_{\xi}, \xi): \xi < \omega_1\}$ has the required property, by [14] Remark 3, Proposition 2'.

Example 1. There exists a perfectly normal locally second-countable space L such that locdimL = 0 < dimL.

Let us put $Q_0 = \{0, 1\}$ and let L = B(K, A), where K and A are as in Lemma 2. By Morita's theorem L is perfectly normal (see for example [4] P. 4.5.16) and it is locally second-countable. By Lemma 1 we have $\dim L > 0$. It remains to show that $\operatorname{locdim} L = 0$. Take an arbitrary point $(x, t) \in L$, where $x \in K$, $t \in I$. There exists an open-and-closed neighbourhood U of x such that $\dim U = 0$ and $|U \cap A| \leq \aleph_0$. The set

$$C(U) = (U \times Q_0) \cup [(U \cap A) \times (P \cup Q_0)] \cup [(U \setminus A) \times Q_1]$$

is the countable union of its closed strongly zero-dimensional subsets $U \times \{t\}$ for $t \in Q_0$, $(U \setminus A) \times \{t\}$ for $t \in Q_1$ and $\{y\} \times (P \cup Q_0)$ for $y \in U \cap A$. Hence by the Sum Theorem dim C(U) = 0. It follows that the point (x, t) has an open-and-closed strongly zero-dimensional neighbourhood.

We shall use Dowker's construction (see [11] Theorem 11-17) to obtain the following

EXAMPLE 2. There exists a hereditarily normal strongly zero-dimensional Lindelöf space containing a subspace of positive dimension.

Let $L^* = L \cup \{p\}$ where L is the space from Example 1 and p is a point which does not belong to L. The topology of L^* consists of all open subsets of L and the sets V such that $p \in V$ and $L \setminus V$ is a second-countable closed subspace of L. It is easy to see that L^* is Lindelöf. By the construction it follows that each separable subset of K is contained in an open-and-closed second-countable and strongly zero-dimensional subspace of K; the same holds in L. Thus the space L^* is hereditarily normal, because for any separated sets A, B either $A \cup B \subset L$ or one of the sets is second-countable. Finally, it is not hard to verify that $\dim L^* = 0 < \dim L$.

Remark 1. The space L we have constructed is collectionwise normal. Indeed, the space K is perfect and collectionwise normal (see [14] Remark 2) and thus the same is true for the product $K \times I$ which contains L (cf. [4], P. 4.5.16, P. 5.5.19 and P. 5.5.1). Let us notice that L cannot be paracompact because in the class of paracompact spaces locdim = dim (see [11], Corollary 11-8).

Remark 2. As proved by C. H. Dowker [3], for the function locdim the Finite Sum Theorem holds in the class of normal spaces. It is easy to show that the space $Z = (N \times L) \cup \{a\}$, where the sets of the form $\{a\} \cup \bigcup\limits_{k \geqslant n} [\{k\} \times L]$ form a base of neighbourhoods at the point a, is the union of countably many closed

subsets with locdim = 0, whereas locdimZ>0. Thus the Countable Sum Theorem fails for locdim in the class of perfectly normal spaces.

ich

4. An N-compact space of positive dimension. A space X is N-compact if it can be embedded as a closed subspace in a product of copies of N (see [16]).

Let S be a set of cardinality \aleph_1 . For every $T \subset S$ by $p_T : N^S \to N^T$ we shall denote the projection; if $|T| \leq \aleph_0$ then the set $p_T^{-1}(x)$, where $x \in N^T$, will be called an \aleph_0 -cube.

The following lemma was proved by the authors in [15] (Example 2).

Lemma 3. There exists a subset E of N^S which has the following properties:

- (i) E is locally an F_{σ} -set in $N^{S}(1)$,
- (ii) E is not an F_{σ} -set in N^{S} .
- (iii) E is the union of \$3-cubes.

Notice that $N^S \setminus E$ is also the union of κ_0 -cubes, because by (i) it is the union of G_{δ} -sets and every G_{δ} -set in N^S is the union of κ_0 -cubes.

Example 3 (cf. [10]). An N-compact space M which is not strongly zero-dimensional.

Let Q_0 be a dense subset of Q such that $Q_1 = Q \setminus Q_0$ is also dense in Q. Define $M = B(N^S, E)$, where E is as in Lemma 3. By Lemma 1 and (ii) it follows that $\dim M > 0$. It remains to show that M is N-compact.

First we shall prove that

(1) M is realcompact.

Indeed, the space $N^S \times I$ is realcompact and the complement $(N^S \times I) \setminus M$ = $(E \times Q_1) \cup [(N^S \setminus E) \times P]$ is the union of κ_0 -cubes and thus, as each κ_0 -cube is a G_δ -set in $N^S \times I$, (1) follows by Mrówka's theorem (see [4] P. 3.12.25).

Let U be an open-and-closed subset of N^S . Then

(2) $\dim C(U) = 0$ if and only if $U \cap E$ is an F_{σ} -set in U.

If $U \cap E$ is not an F_{σ} -set in U then by Lemma 1 dim C(U) > 0. Conversely, let $U \cap E$ be an F_{σ} -set in N^S . Since U is open-and-closed it depends on countably many coordinates, i.e. $U = p_{T_1}(U) \times N^{S \setminus T_1}$ for some countable set $T_1 \subset S$ (see [4], P. 2.7.12). Because $U \cap E$ is an F_{σ} -set which is the union of \aleph_0 -cubes,

$$U \cap E = p_{T_2}(U \cap E) \times N^{S \setminus T_2}$$
, where $T_2 \subset S$ is countable,

by Theorem 2 of [15]. By Remark 2 of [15] there exists $T \subset S$, $T \supset T_1 \cup T_2$, $|T| \leqslant \aleph_0$ such that $p_T(U \cap E)$ is an F_σ -set in N^T . Thus we have

$$U = U' \times N^{S \setminus T}$$
, where U' is open in N^T ,

and

$$U \cap E = E' \times N^{S \setminus T}$$
, where $E' = p_T(U \cap E) = \bigcup_{i=1}^{\infty} F_i$,

where F_i are closed in N^T . It follows that

$$\begin{split} C(U) &= (U \times Q_0) \cup [(U \cap E) \times P] \cup [(U \setminus E) \times Q_1] \\ &= (U' \times N^{S \setminus T} \times Q_0) \cup (E' \times N^{S \setminus T} \times P) \cup [(U' \setminus E') \times N^{S \setminus T} \times Q_1] \\ &\stackrel{\text{top}}{=} \{(U' \times Q_0) \cup (E' \times P) \cup [(U' \setminus E') \times Q_1]\} \times N^{S \setminus T} \,. \end{split}$$

The space $Z=(U'\times Q_0)\cup (E'\times P)\cup [(U'\setminus E')\times Q_1]\subset N^T\times I$ is a metrizable separable space and it is the union of its closed zero-dimensional subsets $U'\times\{t\}$, for $t\in Q_0$, $(U'\setminus E')\times\{t\}$, for $t\in Q_1$ and $F_i\times (P\cup Q_0)$, for i=1,2,... Hence $\dim Z=0$ by the Sum Theorem. Thus C(U) is the product of zero-dimensional second-countable spaces and hence $\dim C(U)=0$ by Morita's theorem ([9], Theorem 3). The proof of (2) is completed.

Let U be an open-and-closed subset of M. For $q \in Q_0$ put

$$U(q) = \{x \in N^S : (x, q) \in U\};$$

clearly U(q) is open-and-closed in N^s .

We shall verify that

(3) $(U(q) \setminus U(q')) \cap E$ is an F_{σ} -set in $U(q) \setminus U(q')$ for every $q, q' \in Q_0$.

Indeed, the set $V = U \cap C(U(q) \setminus U(q'))$ is open-and-closed in $C(U(q) \setminus U(q'))$ and $U(q) \setminus U(q') \setminus \{q\} \subset V \subset C(U(q) \setminus U(q')) \setminus \{U(q) \setminus U(q')\} \times \{q'\}$. Hence from Lemma 1 it follows that $U(q) \setminus U(q') \cap E$ is an F_{σ} -set in $U(q) \setminus U(q')$.

For an open-and-closed set $U \subset M$ we define

$$J_U = \bigcap_{q \in Q_0} U(q) \subset N^S$$
.

The sets J_U satisfy

and

$$C(J_U) \subset U$$

(5) $U \setminus C(J_U)$ is the countable union of strongly zero-dimensional open-and-closed subsets of M.

Consider an $(x, t) \in C(J_U)$. Then $x \in \bigcap_{q \in Q_0} U(q)$ and because Q_0 is dense in Q and U is closed, we have $U \supset C(\{x\}) \ni (x, t)$. Thus (4) holds. To establish (5) let us assume that $(x, t) \in U \setminus C(J_U)$. Then $(x, q') \notin U$ for some $q' \in Q_0$. Since U is open and Q_0 is dense in Q there exists $q \in Q_0$ such that $(x, q) \in U$. Thus $x \in U(q) \setminus U(q')$ and $(x, t) \in C(U(q) \setminus U(q'))$. We have obtained the equality

$$U \setminus C(J_U) = \bigcup_{q, q' \in Q_0} C(U(q) \setminus U(q')) \cap U$$

which proves (5) by (3) and (2).

⁽¹⁾ This means that for each $x \in N^S$ there exists a neighbourhood V of x such that $V \cap E$ is an F_{σ} -set in V.

49

We shall prove now that M is N-compact. Since by (i) and (2) it follows that

E. Pol and R. Pol

$$\operatorname{locdim} M = 0,$$

it suffices only to verify that every open-and-closed ultrafilter in M with the countable intersection property has nonempty intersection (see [16], p. 478). Let $\mathcal U$ be such an ultrafilter. We shall show that

there exists $U \in \mathcal{U}$ with dim U = 0.

Suppose on the contrary that dim U>0 for each $U\in \mathcal{U}$. Fix an arbitrary $q_0\in Q_0$ and let

$$\mathscr{V} = \{U(q_0) \colon U \in \mathscr{U}\}.$$

We shall prove that $\mathscr V$ is an open-and-closed ultrafilter in N^S and has the countable intersection property. $\mathscr V$ is a filter because for $U_1,\,U_2\in\mathscr U$ the intersection $U_1(q_0) \cap U_2(q_0) = (U_1 \cap U_2)(q_0)$ belongs to $\mathscr V$ and if an open-and-closed set $A \subset N^S$ contains $U_1(q_0)$ then $A = (C(A) \cup U_1)(q_0)$ also belongs to $\mathscr V$ (because \mathscr{U} is a filter). Now let U be an open-and-closed subset of N^{S} . Then either $C(U) \in \mathscr{U}$ or $M \setminus C(U) = C(N^S \setminus U) \in \mathcal{U}$, hence either $U \in \mathcal{V}$ or $N^S \setminus U \in \mathcal{V}$; thus \mathcal{V} is an

ultrafilter. Let $U_i \in \mathcal{U}$ for i = 1, 2, ..., we shall show that $\bigcap_{i=1}^{\infty} U_i(q_0) \neq \emptyset$. As

shown in (5), we have $\bigcup_{i=1}^{\infty} (U_i \setminus C(J_{U_i})) = \bigcup_{i=1}^{\infty} V_i$, where the sets V_j are strongly zero-

dimensional and open-and-closed in M. Since $\mathcal U$ is an ultrafilter it follows from the negation of (7) that $M \setminus V_j \in \mathcal{U}$ for j = 1, 2, ... By the countable intersection property of *U* there exists a point

$$(x_0, t_0) \in \bigcap_{i=1}^{\infty} U_i \cap \bigcap_{j=1}^{\infty} (M \setminus V_j) = \bigcap_{i=1}^{\infty} U_i \setminus \bigcup_{j=1}^{\infty} V_j = \bigcap_{i=1}^{\infty} U_i \setminus \bigcup_{i=1}^{\infty} (U_i \setminus C(J_{U_i})) = \bigcap_{i=1}^{\infty} C(J_{U_i}).$$

We obtain

$$x_0 \in \bigcap_{i=1}^{\infty} J_{U_i} \subset \bigcap_{i=1}^{\infty} U_i(q_0)$$
.

Now \mathscr{V} , being an open-and-closed ultrafilter in N^S with the countable intersection property, has the nonempty intersection, and thus there exists an $x \in \bigcap \mathcal{U}$. By (6) there exists an open-and-closed strongly zero-dimensional neighbourhood Uof x. We have $U \in \mathcal{U}$ contrary to our assumption that \mathcal{U} does not contain strongly zero-dimensional sets. This completes the proof of (7).

Let us take an open-and-closed set $U_0 \in \mathcal{U}$ with dim $U_0 = 0$. The set U_0 is realcompact by (1) and thus it is N-compact (see [16], p. 478). The family ${\mathscr W}$

 $=\{U_0 \cap U: U \in \mathcal{U}\}\$ is an open-and-closed ultrafilter in U_0 with the countable intersection property and hence $\emptyset \neq \cap \mathscr{W} \subset \cap \mathscr{U}$. This completes the proof that M is N-compact.

Remark 3. If we take in the above construction K instead of N^{\aleph_1} and A instead of E, where K and A are as in Lemma 2, then we obtain a space M' which is perfectly normal, locally second-countable, N-compact, and satisfies $\dim M' > \operatorname{locdim} M' = 0$ (the space M' is a slight modification of Example 1). The proof of N-compactness of M' is analogous to the proof in Example 3 and reduces to the proof of N-compactness of $K(^2)$ (which follows by Mrówka's result [10] from the fact that K can be mapped continuously in a one-to-one way into the metrizable strongly zerodimensional space $B(\aleph_1)$ and of realcompactness of M' (which follows from the fact that M' can be mapped in a one-to-one way into the space $B(\mathbf{s}_1) \times I$ (see [4] Exercise 3.11.B)). The remaining properties of M' can be proved in the same way as the properties of the space L in Example 1.

We are grateful to Professor R. Engelking for valuable discussions about the subject of this paper.

Added in proof.

- (a) In the paper A hereditarily normal strongly zero-dimensional space containing subspaces of arbitrarily large dimensional, Fund. Math. (to appear) the authors have developed essentially the idea described in Section 3.
- (b) E. Pol, Bull. Acad. Polon. Sci. 24 (1976), pp. 749-752 gave under CH an example of a locally compact perfectly normal space X_n with $\log \dim X_n = 0$ and $\dim X_n > n$, where n=1,2,...; some very strong examples of this kind, also under CH, were constructed recently by V. V. Fedorčuk, On the dimension of hereditarily normal spaces (to appear).

References

- [1] P. S. Alexandroff and B. A. Pasynkov, Introduction to Dimension Theory (in Russian), Moskva 1973.
- [2] E. Čech, Problem 53, Colloq. Math. 1 (1948), p. 332.
- C. H. Dowker, Local dimension of normal spaces, Quart. J. Math. Oxford 6 (1955). pp. 101-120.
- [4] R. Engelking, General Topology, Warszawa 1977.
- [5] V. V. Fedorčuk, Compatibility of some theorems of the general topology with axioms of the theory of sets (in Russian), DAN SSSR 220 (1975), pp. 786-788.
- [6] V. V. Filippov, On the dimension of normal spaces (in Russian) DAN SSSR 209 (1973), pp. 805-807.
- [7] W. Hurewicz and H. Wallman, Dimension Theory, Princeton 1941.
- [8] B. Knaster et K. Kuratowski, Sur les ensembles connexes, Fund. Math. 2 (1921). pp. 206-255.
- [9] K. Morita, On the dimension of the product of Tychonoff spaces, Gen. Top. and its Appl. 3 (1973), pp. 125-133.

⁽²⁾ In fact, one can prove that K is strongly zero-dimensional.

^{4 —} Fundamenta Mathematicae XCVII

- [10] S. Mrówka, Recent results on E-compact spaces, TOPO 72, Proc. of Second Pittsburgh International Conference, Lecture Notes 378, Springer-Verlag 1974.
- [11] K. Nagami, Dimension Theory, New York 1970.
- [12] P. Nyikos, Strongly zero-dimensional spaces, Proc. of Third Prague Top. Symp. 1971, Prague 1972, pp. 341-344.
- [13] Prabir Roy's space △ is not N-compact, Gen. Top. and its Appl. 3 (1973), pp. 197-210.
- [14] R. Pol, A perfectly normal locally metrizable not paracompact space, Fund. Math. 97 (1977), pp. 37-42.
- [15] and E. Pol, Remarks on Cartesian products, Fund. Math. 93 (1976), pp. 57-69.
- [16] J. van der Slot, A survey of realcompactness, Theory of Sets and Topology (in honour of Felix Hausdorff), Berlin 1972, pp. 473-494.

DEPARTMENT OF MATHEMATICS AND MECHANICS, WARSAW UNIVERSITY WYDZIAŁ MATEMATYKI I MECHANIKI UNIWERSYTETU WARSZAWSKIEGO

Accepté par la Rédaction le 18. 8. 1975

Addition and correction to the paper "On stability and products" Fund. Math. 93 (1976), pp. 81-95

by

J. Wierzejewski (Wrocław and Nijmegen)

In the paper quoted in the title the second part of Corollary 5.5 was formulated wrongly. Namely it should have the following form:

The class of all ω -stable theories for which α_T is finite is closed under finite droducts.

Now we shall show that " ω -stable" cannot be omitted. The notation and terminology are taken from [1].

Namely, let $\mathfrak{B} = \langle Q \cup (Q \times Q \times Q), W, C, D, R, \sim_n \rangle_{n \in \omega}$, where

O is the set of rationals numbers,

 \widetilde{W} is a unary relation and W(a) iff $a \in Q$,

C is a unary relation and C(a) iff $a \notin Q$,

D is a ternary relation and D(a, b, c) iff W(a), W(b) and $\exists q \in Q$, $c = \langle a, b, q \rangle$,

R is a ternary relation and R(a, b, c) iff D(a, b, c) and

$$\begin{cases} a < b \to \exists q \in Q \ c = \langle a, b, q \rangle \text{ and } q \text{ is a natural number,} \\ a \geqslant b \to \exists q \in Q \ c = \langle a, b, q \rangle \text{ and } q \neq 0, \end{cases}$$

 \sim_n are equivalence relations on Q with infinitely many classes and \sim_{n+1} divides every equivalence class of \sim_n into infinitely many equivalence classes of \sim_{n+1} . Moreover every equivalence class of \sim_n is a dense linear ordering without endpoints (with the ordering taken from Q).

Note that we can define a formula which linearly orders W into type η .

Fact 1. For every $\mathfrak{A} \models \operatorname{Th}(\mathfrak{B})$ and every $p \in \operatorname{SA}$ either rank (p) = 0, either rank (p) = 1, or rank $(p) = \infty$.

Indeed, every type contains one of the following sets of formulas:

1) $\{x_0 = a\}$ for some $a \in A$,