

Complements of solenoids in S^3 are m-spaces *

by

G. J. Michaelides (Tampa, Fla.)

Abstract. An m-space is a pair (X, m), where X is a topological space and m, called an n-mean on X, is a map from X^n (the n-fold cartesian product of X, n > 1) to X satisfying the two conditions:

1. m(x, x, ..., x) = x for every $x \in X$,

2. $m(x_1, x_2, ..., x_n) = m(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)})$ for every n-tuple $(x_1, x_2, ..., x_n) \in X^n$, and every permutation $\sigma \in S_n$, where S_n is the symmetric group of n elements.

It is known that compact finite polyhedra are m-spaces if and only if they are contractible. In this paper we examine the existence of a mean on a class of non-compact, infinite polyhedra, namely the complements of solenoids Σ_p in S^3 , and we show that they are indeed m-spaces. As a corollary to this and from some properties of the homotopy groups of m-spaces we deduce that the fundamental group of $S^3 - \Sigma_p$ is isomorphic to the p-adic rationals.

An *n*-mean on a space X is a continuous function (map) m from X^n , the n-fold cartesian product of X, to X satisfying the following two conditions:

1. m(x, ..., x) = x for every $x \in X$,

2. $m(x_1, ..., x_n) = m(x_{\sigma(1)}, ..., x_{\sigma(n)})$ for every *n*-tuple $(x_1, ..., x_n) \in X^n$, and every permutation $\sigma \in S_n$, where S_n denotes the symmetric group of *n* elements.

A space that admits an *n*-mean will be called an *m*-space. We shall assume that $n \ge 2$ since, for n = 1, every space becomes an *m*-space with *m* being the identity map.

Examples of means are the arithmetic n-mean on the real line and the geometric n-mean on the non-negative real line. Investigation of the existen e of n-means on topological spaces and some consequences was done in [3], [6], [7]. For example in [7] it was shown that compact connected finite polyhedra admit a mean if and only if they are contractible. In this paper we examine the existence of a mean on some non-compact polyhedra (infinite), namely, the complements of p-adic solenoids, Σ_p , in S^3 and show that these are m-spaces. Since Σ_p is itself an m-space [3] one may ask whether complements of compact m-spaces in S^n (the n-dimensional sphere) are necessarily m-spaces. That the existence of a mean on a compact space is neither necessary nor sufficient condition for the existence of a mean on its complement can be seen from the following examples.

^{*} This is a part of the author's dissertation written at the University of Georgia under the direction of R. B. Sher.

- 1. Let K be a Fox-Artin arc ([1] Ex. 1.1) in S^3 whose complement $S^3 K$ is not simply connected. K is homeomorphic to I, hence an m-space, but $S^3 K$ does not admit a mean since its fundamental group, $\pi(S^3 K)$ is not abelian, a necessary condition for the existence of a mean [6].
- 2. Let $Y = \{(x, y): 0 < x \le 1, y = \sin(1/x)\} \cup \{(0, y): -1 \le y \le 1\}$ be a subset of S^2 . Then Y does not admit a mean [4], but $S^2 Y$ does because Y is cellular and $S^2 Y$ is homeomorphic to $S^2 p$, p being a point of S^2 , [5], which in turn is homeomorphic to R^2 (the Euclidean plane).

From the last example we can make the general observation that if K is cellular in S^n , then $S^n - K$ is an m-space since $S^n - K$ is homeomorphic to R^n .

A p-adic solenoid, Σ_p , where p is a positive integer greater than, or equal to 2, can be described in two different ways.

1. As the inverse limit of the inverse sequence

$$S^1 \stackrel{\varphi}{\leftarrow} S^1 \stackrel{\varphi}{\leftarrow} \dots S^1 \stackrel{\varphi}{\leftarrow} S^1 \stackrel{\varphi}{\leftarrow} \dots$$

where S^{1} is the multiplicative group of all complex numbers z with |z|=1 and $\varphi(z)=z^p$, and

2. As the intersection $\bigcap_{i=0}^{\infty} T_i$ of solid tori, where $T_{i+1} \subset \operatorname{Int} T_i$ and T_{i+1} "wraps around p times" in $\operatorname{Int} T_i$. For the precise meaning of "wrapping around p times" see [8], p. 230 exc.4.

Lemma 1. Let S^3 be the one-point compactification of R^3 , i.e. $S^3 = \{(z,s) \in C \times C: |z|^2 + |s|^2 = 1\}$, where C denotes the complex numbers. Then S^3 can be written as the union of two closed subsets

$$T = \{(x_1, x_2, x_3, x_4) \in S^3: x_1^2 + x_2^2 \ge x_3^2 + x_4^2\}$$

and

$$T' = \{(x_1, x_2, x_3, x_4) \in S^3 : x_1^2 + x_2^2 \le x_3^2 + x_4^2\}$$

such that T and T' are solid tori and their intersection is a torus.

For the proof of this well-known Lemma see [9], p. 138 and also [2].

The torus $T \cap T'$ of Lemma 1 corresponds to a torus imbedded in R^3 in the standard way. Since $T \cap T'$ is the boundary of T and T', T corresponds to the standard solid torus in R^3 . If a solid torus in the interior of the standard solid torus goes around p times, then this will correspond to a solid torus $T_1 \subset \operatorname{Int} T$ that goes around p times (see above).

In the following lemma a solid torus in S^3 corresponding to the standard solid torus in R^3 will be referred to also as the *standard torus*.

DEFINITIONS. By a *spine* of a solid torus we mean a subpolyhedron of lower dimension to which the torus collapses.

A simple closed curve is said to be *unknotted* in \mathbb{R}^3 (equivalently S^3) if there is a homeomorphism $h\colon \mathbb{R}^3 \to \mathbb{R}^3$ ($h\colon S^3 \to S^3$) which sends the simple closed curve to the circle $x^2 + y^2 = 1$, z = 0.

Lemma 2. Let T_0 be the standard solid torus in S^3 and let $T_1 \subset \operatorname{Int} T_0$ be a solid torus that goes around p times in the interior of T_0 . Then $\operatorname{Cl}(S^3 - T_1) = \overline{S^3 - T_1}$ is a solid torus and there is a homeomorphism $h \colon S^3 \to S^3$ such that $h(\overline{S^3 - T_1}) = T_0$ and $h(\overline{S^3 - T_0}) = T_1$, i.e. $\overline{S^3 - T_0}$ is imbedded in $\overline{S^3 - T_1}$ the same way T_1 is imbedded in T_0 .

Proof. By Lemma 1, $\overline{S^3-T_0}$ is a solid torus. To show that $\overline{S^3-T_1}$ is a solid torus we shall show that there is a homeomorphism $h: S^3 \to S^3$ such that $h(\overline{S^3-T_1}) = T_0$.

Let Σ and Σ' be spines of $\overline{S^3-T_0}$ and T_1 , respectively. In this case Σ and Σ' are both unknotted simple closed curves hence there is a homeomorphism h_1 of S^3 onto itself such that $h_1(\Sigma) = \Sigma'$ and $h_1(\Sigma') = \Sigma$. But

$$\overline{S^3-T_0} \cup T_1$$
 and $h_1(\overline{S^3-T_0} \cup T_1)$

are both regular neighborhoods of $\Sigma \cup \Sigma'$ in S^3 , therefore there is a homeomorphism $h_2 \colon S^3 \to S^3$ such that $h_2 | \Sigma \cup \Sigma'$ is the identity on $\Sigma \cup \Sigma'$,

$$h_2h_1(\overline{S^3-T_0} \cup T_1) = \overline{S^3-T_0} \cup T_1, \ h_2h_1(\overline{S^3-T_0}) = T_1 \text{ and } h_2h_1(T_1) = \overline{S^3-T_0}.$$

If we let $h_2h_1 = h$, then $h(\overline{S^3 - T_0}) = T_1$ and $h(T_1) = \overline{S^3 - T_0}$ which implies that $h(\overline{S^3 - T_1}) = T_0$.

The complement of Σ_p in S^3 is connected, but $S^3 - \Sigma_p$ is not simply connected since its singular homology $H_1(S^3 - \Sigma_p; Z)$ is isomorphic to the p-adic rationals (the set of rationals of the form k/p^n , where k is an integer and n is a non-negative integer). To see that $H_1(S^3 - \Sigma_p; Z)$ is isomorphic to the p-adic rationals, we view Σ_p as the inverse limit of the sequence

$$S^1 \stackrel{\varphi}{\leftarrow} S^1 \stackrel{\varphi}{\leftarrow} S^1 \stackrel{\varphi}{\leftarrow} \dots$$

Then $H^1(S^1; Z)$ (the singular cohomology) is isomorphic to Z so $H^1(\Sigma_p; Z)$ (the Čech cohomology) is the direct limit of the sequence

$$Z \xrightarrow{\varphi_*} Z \xrightarrow{\varphi_*} Z \xrightarrow{\varphi_*} \dots$$

where $\varphi_*(m) = pm$, by the continuity of Čech cohomology ([8], Thm 3.1, p. 261). But this direct limit is the p-adic rationals. By [10], Thm. 17, p. 296 we have an isomorphism

(1)
$$H_2(S^3, S^3 - \Sigma_p; Z) \approx H^1(\Sigma_p; Z)$$

and, by using the exact homology sequence of the pair $(S^3, S^3 - \Sigma_p)$

...
$$\rightarrow H_2(S^3; Z) \rightarrow H_2(S^3, S^3 - \Sigma_p; Z) \rightarrow H_2(S^3 - \Sigma_p; Z) \rightarrow H_1(S^3; Z) \rightarrow ...$$

we obtain $H_2(S^3, S^3 - \Sigma_p; Z) \approx H_1(S^3 - \Sigma_p; Z)$ since $H_2(S^3; Z) = H_1(S^3; Z) = 0$. From the last isomorphism and (1) we have $H_1(S^3 - \Sigma_p; Z) \approx H^1(\Sigma_p; Z)$.

75

In order to prove the main result we shall view Σ_p as the intersection of solid tori, i.e. $\Sigma_p = \bigcap_{i=0}^{\infty} T_i$ (see 2, above). If we let $Y_i = \overline{S^3 - T_i}$, i = 0, 1, 2, ... then

$$X = S^3 - \Sigma_p = \bigcup_{i=0}^{\infty} (\overline{S^3 - T_i}) = \bigcup_{i=0}^{\infty} Y_i.$$

Each Y_i is a solid torus and is imbedded in Y_{i+1} the same way T_{i+1} is imbedded in T_i , by Lemma 2.

THEOREM. The complement of the p-adic solenoid in S^3 , $S^3 - \Sigma_p$, admits a mean. Proof. We shall prove the existence of a p-mean on $S^3 - \Sigma_p$ by induction on k. We have $S^3 - \Sigma_p = \bigcup_{i=0}^{\infty} Y_i$, where $\Sigma_p = \bigcap_{i=0}^{\infty} T_i$, $Y_i = \overline{S^3 - T_i}$ and $Y_i \subset \operatorname{Int} Y_{i+1}$, $i=1,2,\ldots$ Each Y is a solid torus, hence homeomorphic to $S^1 \times D^2$ (D^2 is the 2-dimensional disc) so we can assign to each point of Y_i coordinates (t,x), where $t \in [0,1]$ and assume that the diagram

commutes. Here i denotes the inclusion map, π_1 is the projection onto the first factor and g is defined by $g(t) = pt \mod 1$, where 1 denotes the length of S^1 normalized to unit length.

Letting $Y_{-1} = \emptyset$ (empty set) we assume that

$$h_k: Y_k^p \to S^3 - \Sigma_p$$

has been defined for some k such that

- 1. $h_k(z, ..., z) = z$ for every $z \in Y_k$,
- 2. $h_k(z_1,...,z_p)=h_k(z_{\sigma(1)},...,z_{\sigma(p)})$, for every p-tuple $(z_1,...,z_p)\in Y_k^p$, and every permutation $\sigma\in S_p$,
 - 3. $h_k(Y_k^p) \subset Y_{k+1}$, and
 - 4. if $\hat{h}_k: Y_k^p \to Y_{k+2}$ is defined by $\hat{h}_k(z_1, ..., z_p) = h_k(z_1, ..., z_p)$, then the diagram

$$(2) \qquad Y_{k}^{p} \xrightarrow{\hat{h}_{k}} Y_{k+2}$$

$$\downarrow \downarrow \qquad \qquad \downarrow \pi_{1}$$

$$Y_{k+1}^{p} \xrightarrow{\bar{\sigma}} S^{1}$$

commutes if \bar{g} is defined by $\bar{g}((t_1, x_1), ..., (t_p, x_p)) = (t_1 + t_2 + ... + t_p) \mod 1$.

We shall show that with these assumptions on h_k we can extend h_k to h_{k+1} : $Y_{k+1}^p o S^3 - \Sigma_p$ so that h_{k+1} satisfies the above four conditions. Toward that end we let T be a relation on $(S^3 - \Sigma_p)^p$ such that $(z_1, ..., z_p)$ is T-related to $(z'_1, ..., z'_p)$ if there is a permutation $\sigma \in S_p$ such that $(z_{\sigma(1)}, ..., z_{\sigma(p)}) = (z'_1, ..., z'_p)$; then T is

easily shown to be an equivalence relation and for each k we can form the quotient space Y_k^p/T . We let $\pi: Y_k^p \to Y_k^p/T$ denote the quotient map and consider the following diagram

$$(3) \qquad Y_{k+1}^{p} \xrightarrow{h_{k}} Y_{k+1}^{p}$$

$$Y_{k+1}^{p} \xrightarrow{\bar{g}} S^{1}$$

where $g' = \bar{g}\pi^{-1}$. That g' is well-defined can be seen from the following argument. Let $[(t_1, x_1), ..., (t_p, x_p)]$ be a point in Y_{k+1}^p/T , and let $((t_{\sigma(1)}, x_{\sigma(1)}), ..., (t_{\sigma(p)}, x_{\sigma(p)}))$ be a point in the equivalence class of $((t_1, x_1), ..., (t_p, x_p))$. Then

$$\bar{g}\left((t_{\sigma(1)},x_{\sigma(1)}),...,(t_{\sigma(p)},x_{\sigma(p)})\right)=(t_{\sigma(1)}+...+t_{\sigma(p)})\,\mathrm{mod}\,1=\bar{g}\left((t_1,x_1),...,(t_p,x_p)\right).$$

Thus q' is well-defined.

To show that g' is continuous, let U be an open subset of S^1 . Then $(g')^{-1}(U) = \pi(\bar{g})^{-1}(U)$ and since \bar{g} is continuous, $(\bar{g})^{-1}(U) = V$ is open in Y_{k+1}^p . But $\pi^{-1}(\pi V) = V$, and since π is a quotient map, hence an identification, $\pi(V)$ is open, therefore $\pi(\bar{g})^{-1}(U)$ is open and g' is continuous. Thus g' is well-defined and continuous and, by the way it was defined, the lower part of diagram (3) commutes. Let ΔY_{k+1} be the diagonal of Y_{k+1}^p , i = 1, 2, and define $\varphi : [\pi i(Y_k^p)] \cup \Delta Y_{k+1}/T \to Y_{k+2}$ so that $\pi_1 \varphi = g'$. The restriction $\varphi|_{\pi i(Y_k^p)} = \hat{h}_k i^{-1} \pi^{-1}|_{\pi i(Y_k^p)}$ is single-valued, thus well-defined. If $[(t, x), ..., (t, x)] \in \Delta Y_{k+1}/T$, $\varphi((t, x), ..., (t, x)) = (pt, x')$, so φ is well-defined.

To show that φ is continuous let A be a closed subset of Y_{k+2} . Then $\varphi^{-1}(A) = \pi i \hat{h}_k^{-1}(A)$. Now $\hat{h}_k^{-1}(A)$ is closed in Y_k^p and $i(\hat{h}_k^{-1}(A)) = V$ is a closed subset of Y_{k+1}^p since Y_k^p is imbedded in Y_{k+1}^p as a closed subset. Since $\pi^{-1}(\pi(V)) = V$ and π is an identification, we conclude that $\pi(V)$ is closed, therefore $\varphi^{-1}(A)$ is closed and φ is continuous.

If π_2 : $Y_{k+2} \rightarrow D^2$ is the projection of Y_{k+2} onto its second factor, we have the map

$$\pi_2 \varphi \colon [\pi i(Y_k^p)] \cup \Delta Y_{k+1}/T \rightarrow D^2$$

defined on a closed subset of Y_{k+1}^p/T . Since D^2 is an AR (absolute retract), $\pi_2 \varphi$ can be extended to φ over all of Y_{k+1}^p/T . If we let φ^* be defined by

$$\varphi^*([(t_1, x_1), ..., (t_p, x_p)]) = (g'([(t_1, x_1), ..., (t_p, x_p)]), \hat{\varphi}([(t_1, x_1), ..., (t_p, x_p)])),$$

then φ^* : $Y_{k+1}^p/T \to Y_{k+2}$ is an extension of φ , and we shall show that diagram (3), with the dotted line now filled in, commutes. To do this it will suffice to show that

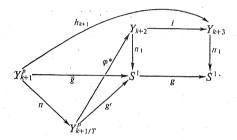
 $\pi_1 \varphi^* = g'$, since the rest of the diagram is commutative. But this is so because $\pi_1 \varphi^* ([(t_1, x_1), ..., (t_p, x_p)]) = \pi_1 (g' ([(t_1, x_1), ..., (t_p, x_p)]), \varphi ([(t_1, x_1), ..., (t_p, x_p)]) = g' ([(t_1, x_1), ..., (t_p, x_p)]).$

To complete the inductive step we let $h_{k+1}(y) = \varphi^*\pi(y)$ for every $y \in Y_{k+1}^p$, $\hat{h}_{k+1} = ih_{k+1} = i\varphi^*\pi$, and verify that the diagram below

$$(4) \qquad Y_{k+1}^{p} \xrightarrow{\hat{h}_{k+1}} Y_{k+3}$$

$$\downarrow \downarrow \\ \downarrow \\ Y_{k+1}^{p} \xrightarrow{\bar{g}} S^{1}$$

commutes. From the definition \hat{h}_{k+1} , the following diagram



is commutative, and we have $\pi_1 \hat{h}_{k+1} = \pi_1 i h_{k+1}$ and $\pi_1 \hat{h}_{k+1} = g \pi_1 h_{k+1} = g \bar{g}$. Now let $((t_1, x_1), ..., (t_p, x_p)) \in Y_{k+1}^p$. Then

$$\pi_1\,\hat{h}_{k+1}\big((t_1,x_1),\ldots,(t_p,x_p)\big)=g\big((t_1+\ldots+t_p)\,\mathrm{mod}\,1\big)=p(t_1+\ldots+t_p)\,\mathrm{mod}\,1\;,$$
 because of the last equality above. But

$$\bar{g}i((t_1, x_1), ..., (t_p, x_p)) = \bar{g}((pt_1, x_1'), ..., (pt_p, x_p')) = (pt_1 + ... + pt_p) \mod 1
= p(t_1 + ... + t_p) \mod 1.$$

Thus $\pi_1 \hat{h}_{k+1} = \bar{g}i$, and diagram (4) commutes.

This completes the inductive step and it is seen that each h_{k+1} is an extension of h_k . We now define inductively $h_1, h_2, ...$ and set $m = \bigcup_{i=1}^{\infty} h_i$. It is easily verified that m is a p-mean on $S^3 - \Sigma_p$.

COROLLARY. The fundamental group of $S^3 - \Sigma_p$ is isomorphic to the p-adic rationals.

Proof. We have seen earlier that $H_1(S^3 - \Sigma_p; Z)$ is isomorphic to the *p*-adic rationals. By the Theorem $S^3 - \Sigma_p$ is an *m*-space so $\pi(S^3 - \Sigma_p)$ is abelian, therefore $\pi(S^3 - \Sigma_p) \approx H_1(S^3 - \Sigma_p; Z)$.

References

- [1] E. Artin and R. H. Fox, Some wild cells in spheres in three-dimensional space, Ann. of Math. 49 (1948), pp. 979-990.
- [2] J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. USA 10 (1924), pp. 8-10.
- [3] G. Aumann, Über Räume mit Mittelbildungen, Math. Ann. 119 (1943), pp. 210-215.
- 4] P. Bacon, An acyclic continuum that admits no mean, Fund. Math. 67 (1970), pp. 11-13.
- [5] M. Brown, A proof of the generalized Schoenflies Theorem, Bull. Amer. Math. Soc. 66 (2) (1960), pp. 74-76.
- [6] B. Eckmann, Räume mit Mittelbildungen, Comm. Math. Helv. 28 (1954), pp. 329-340.
- [7] T. Ganea and P. Hilton, Generalized Means, Studies in Mathematical Analysis and Related Topics, Stanford Univ. Press, 1962.
- [8] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press 1952
- [9] W. S. Massey, Algebraic Topology: An Introduction, Harcourt, Brace and World, Inc., 1967.
- [10] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.

UNIVERSITY OF SOUTH FLORIDA DEPARTMENT OF MATHEMATICS Tampa, Florida

Accepté par la Rédaction le 7, 4, 1975