Complements of solenoids in S* are m-spaces *
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Abstract. An m-space is a pair (X, m), where Xisa topological space and m, called an n-mean
on X, is a map from X" (the n-fold cartesian product of X, n> 1) to X satisfying the two conditions:

1. m(x, x, ..., ¥) = x for every x € X,

2. M1, Xas ooy Xn) = MAXa(1); Xo(2)s -5 Xalm)) for every n-tuple (¥, Xy, es Xn) € X7 and
every permutation o e Sy, where Sy is the symmetric group of n elements.

Tt is known that compact finite polyhedra are m-spaces if and only if they are contractible.
In this paper we examine the existence of a mean on a class of non-compact, infinite polyhedra,
namely the complements of solenoids 2 in S?, and we show that they are indeed m-spaces. As
a corollary to this and from some properties of the homotopy groups of m-spaces we deduce that
the fundamental group of §3—X, is isomorphic to the p-adic rationals.

An z-mean on a space X is a continuous function (map) m from X, the n-fold
cartesian product of X, to X satisfying the following two conditions:

1. m(x, .., x) = x for every xe X,

20 1(X1, vy Xg) = M(Xggays vees Xoqm) fOT EVELY n-tuple (¥, ..., %) € X", and
every permutation ¢ & S,, where S, denotes the symmetric group of z elements.

A space that admits an n-mean will be called an m-space. We shall assume
that n>2 since, for n = 1, every space becomes an m-space with m being the
identity map.

Examples of means are the arithmetic 7-mean on the real line and the geometric
n-mean on the non-negative real line. Investigation of the existcn'e of n-means
on topological spaces and some consequences was done in [3], [6], [7]. For example
in [7] it was shown that compact connected finite polyhedra admit a mean if and
only if they are contractible. In this paper we examine the existence of a mean on
some non-compact polyhedra (infinite), namely, the complements of p-adic solen-
oids, Z,, in S and show that these are m-spaces. Since X, is itself an m-space [3]
one may ask whether complements of compact m-spaces in S" (the n-dimensional
sphere) are necessarily m-spaces. That the existence of a mean on a compact space
is neither necessary nor sufficient condition for the existence of amean on its comp-
lement can be seen from the following examples.

* This is a part of the author’s dissertation written at the University of Georgia under the
direction of R. B. Sher. '
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1. Let K be a Fox—Artin arc ([1] Ex. 1.1) in $° whose complement $°—K is
not simply connected. X is homeomorphic to I, hence an m-space, but $3—K does
not admit a mean since its fundamental group, =(S®—K) is not abelian, a necessary
condition for the existence of a mean [6].

2. Let ¥ = {(x,7): 0<x<1, y = sin(1/x)} v {0, »): —1<y<1} be a sub-
set of S2. Then Y does not admit a mean [4], but $*— ¥ does because ¥ is cellular
and 82— ¥ is homeomorphic to S2—p, p being a point of $2, [5], which in turn is
homeomorphic to R* (the Euclidean plane),

From the last example we can make the general observation that if X is cellular
in §", then S"—K is an m-space since S"— K is homeomorphic to R"

A p-adic solenoid, X,, where p is a positive integer greater than, or equal to 2,
can be described in two different ways.

1. As the inverse limit of the inverse sequence

¢ @ [3 [
Sle- St St<- St .,

where S* is the multiplicative group of all complex numbers z with |z] = 1 and
¢ (2) = 2, and b
©0
2. As the intersection (} T; of solid tori, where Ty, cIntT; and Ty “wraps
i=0
around p times” in IntT;. For the precise meaning of “wrapping around p times”
see .[8], p. 230 exc.4.
LemMA 1, Let S° be the one-point compactification of R3,i.e. 8* = {(z,§)e Cx C:
|22 +|s|? = 13}, where C denotes the complex numbers. Then S* can be written as
the union of two closed subsets

T= {(xls X3, X3, x4) € Ss: xi+x§>x§+x:}
and

T = {(x1, Xz, X3, X4) € 8% X3 4+x5<x3+x3}

such that T and 7" are solid tori and their intersection is a torus.

For the proof of this well-known Lemma see [9], p. 138 and also [2].

The torus T n T” of Lemma 1 corresponds to a torus imbedded in R?® in the
standard way. Since T'n I” is the boundary of 7" and T, T corresponds to the
standard solid torus in R>. If a solid torus in the interior of the standard solid torus
goes around p times, then this will correspond to a solid torus Ty <IntT that goes
around p times (see above).

In the following lemma a solid torus in §* corresponding to the standard
solid torus in R*® will be referred to also as the standard torus.

DEeFINITIONS. By a spine of a solid torus we mean a subpolyhedron of lower
dimension to which the torus collapses.

A simple closed curve is said to be unknotted in R® (equivalently S%) if there

is 2 homeomorphism %: R*—+R* (h: S*—S% which sends the simple closed curve
to the circle x>+3y* = 1, z = 0.
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LemMa 2. Let T, be the standard solid torus in 8> and let Ty <IntT, be a solid
torus that goes around p times in the interior of Ty. Then Cl (S3—T)) = 83T is
a solid torus and there is a homeomorphism h: S*—S* such that h(S*—T\) = T
and h(S*—Ty) = T4, ie. S3_T, is imbedded in S>—T, the same way Ty is im-
bedded in Ty.

Proof. By Lemma 1, S3—-—7_‘; is a solid torus. To show that §°—7T7 is a solid
torus we shall show that there is a homeomorphism /: $3—S° such that n(S*—T)
=Ty.

Let X and X’ be spines of g’TTO and T, respectively. In this case ¥ and X’
are both unknotted simple closed curves hence there is a homeomorphism /7, of N
onto itself such that ,(2) = X’ and 7 (Z") = X. But

S—TeUT, and (S =T, U Ty

are both regular neighborhoods of X U 2’ in S3, therefore there is a homeomorphism
Byt §3—S8? such that [ U X’ is the identity on Z U X',

hyhy (S5 =Ty UTy) = S5—To U Ty, hyhy(S—Tp) =Ty and hyhy(Ty) = S°—To
O -

If we let hyhy = h, then A(S®—Ty) = Ty and A(Ty) = 83 —T, which implies that
h(S*—T,) = T,.

The complement of X, in $° is connected, but §3—Z, is not simply connected
since its singular homology H(S*-Z2,;2Z)is isomorphic to the p-adic rationals
(the set of rationals of the form k/p", where k is an integer and # is a non-negative
integer). To see that H,(S®—X,; Z) is isomorphic to the p-adic rationals, we view
%, as the inverse limit of the sequence .

12 a1l al
St St St <.

Then H(S'; Z) (the singular cohomology) is isomorphic to Z so H 1(2,; Z) (the
Cech cohomology) is the direct limit of the sequence

O _ 05 _ s
Z>Z>Z> ..
where @,(m) = pm, by the continuity of Cech cohomology ([8], Thm 3.1, p. 261).

But this direct limit is the p-adic rationals. By [10], Thm. 17, p. 296 we 11ave an
isomorphism

M

and, by using the exact homology sequence of the pair (S°, 8°—X,)

Hy(S?, 83 ~3,; Z)ymHY(Z,; Z)

S HY(S%; Z) o Ha(S, 8P = 2,5 Z) = Hy (P — 3,5 )~ H(S*; Z)— ...

we obtain H,(S3, §3—2,; Z)~H(S3—2,; Z) since Hy(S%; Z) = H(S%;, 2)=0.
From the last isomorphism and (1) we have H (S*—Z%,; Z)~H YZ,5 2).
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In order to prove the main result we shall view X, as the intersection of solid

0 R ]
tori, i.e. %, =) T; (sec 2, above). If we let Y; = §3—Ty, 1=10,1,2,.. then
‘ i=0

F-Ty=U 1.

i=0

X=8-3,=

ics

Fach Y, is a solid torus and is imbedded in ¥}, the same way T, is imbedded
in T;, by Lemma 2. ‘

THEOREM. The complement of the p-adic solenoid in S, S°—Z,,, admits a mean,
Proof. We shall prove the existence of a p-mean on S°— ¥, by induction on k.
o0

We have S3—Zp=ip0Y;, where Z,,=iﬂoTi, Y= 8~T; and Y,cInt¥,,,,

i=1,2,.. Each Y, is a solid torus, hence homeomorphic to S* x D? (D? is the
2-dimensiona! disc) su we can assign to each point of ¥ coordinates (¢, x), where
te[0, 1] and assume that the diagram

Y, —> Yy
(D ml m
St 8t
g

commutes. Here i denotes the inclusion map, =, is the projection onto the first

factor and g is defined by g() = prmod1, where 1 denotes the length of S* nor-
malized to unit length,

Letting Y_, = @ (empty set) we assume that
b Yi-S8*-3,
has been defined for some k such that

1. h(z,..,2) =z for every ze ¥,

2. BZys s Zp) = BlZoqrys o5 Zogy)s fOr every p-tuple (z, ...
every permutation e S, B

3. (YD Y,yy, and
4. if By: Y7 Y,",,2 is defined by hy(zy, .., z,) = Iy(zy, ..., 2,), then the diagram

»Z)€ YE, and

Fiee
= Yirz

L)

Yy

@ 3
Yy S !

¢ i
commutes if § is defined .by G((t1s %0)s oo (1) X)) = (ty+ 1ty e+ tymodl,

, We ihall show that with these assumptions on %, we can ex‘end By 10 Byt
18—, s0 :chat Byt satisﬁeg the above four conditions. Toward that end
we let T~be a relation on (S*~ZX,)? such that (z, ..., zp) is T-related to (24, ..., z})
if there is a permutation o €S, such that (Z,qy, .-» Zogp) = (245 s z,); then T is

icm

©
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easily shown to be an equivalence relation and for each & we can form the quotient
space YP/T. We let n: ¥P— Y2/T denote the quotient map and consider the following
diagram :

i,

P .
Yi———> Y

, A
i /|
/

Y
p /ol
Ym-"‘g,——r*s
" 1/
o 4
Yier1

where g’ = gn~ 1. That g’ is well-defined can be seen from the following argument.
Let [(t15 X0, -ues (2, ¥,)] be a pointin Y%, /T, and let ((Zo1ys Xo(1)s +-r> Cotpys Xom))
be a point in the equivalence class of ((f1, *y), ., (£, X)). Then

T a1y Foa))s o> (otoys Xagm)) = (tay T oo +igm)mod1 = FI(GRED N N

Thus g’ is well-defined.

To show that g’ is continuous, let U be an open subset of S*. Then (g")~*(U)
= n(§)"*(U) and since § is continuous, (@~Y(U) =V is open in ¥ly;. But
a~i(n¥) = V, and since = is a quotient map, hence an identification, n(V) is
open, therefore 7(§)"*(U) is open and g’ is continuous. Thus g is well-defined and
continuous and, by the way it was defined, the lower part of diagram (3) commutes.
Let AY,.; be the diagonal of YF,;, i = 1,2, and define ¢: [ri(YD] v 4Y,4,/T
- Y., so that m; ¢ = g'. The restriction ¢luyp) = Jii ™7™y is single-valued,
thus well-defined. I [(z, X), ..., (t, D] € 4 Y /T @ ({2, %), ..., (2, X)) = (pt, X"),
so ¢ is well-defined.

To show that ¢ is continuous let 4 be a closed subset of ;... Then o~ (A4)
= nifi; 1(4). Now fiy }(4) is closed in ¥ and i(h; '(4)) = V is a closed subset
of ¥7,, since YZ is imbedded in Y7, as a closed subset. Since 7~ *(n(¥)) = ¥ and
7 is an identification, we conclude that 7z(¥) is closed, therefore ¢ ~*(4) is closed
and ¢ is continuous.

If my: Y,.,—D? is the projection of Y., onto its second factor, we have
the map '

@z [ni(YD]u 4 Yi4,/T-+D*

. defined on a closed subset of Y7, /7. Since D? is an AR (absolute retract), 7, ¢ can

be extended to ¢ over all of Y/y,/T. If we let ¢* be defined by
(P*([(tl, xl): sy (tp’ xp)]) = (gl([(tlv xl)a ey (tp’ xp)]): @([(tl ’ xl)a seey (t;u xp)])) 2

then @*: ¥7,1/T— Yy, is an extension of ¢, and we shallshow that diagram (3),
with the dotted line now filled in, commutes. To do this it will suffice to show that
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1, @* = g’, since the rest -of the diagram is commutative. But this is so because
Ty (P*([(t], kl)’ e (tp: xp)]) = ﬁl(g,([(tl H xl): sy (tpa xp)])’ @([(tl’ xl)é "": (t[): xp)]))
g’([(fli xi)a [RLE (tp’ xp)]) .

To complete the inductive step we let f..(¥) = o*n(y) for every ye Y0,
hiss = ihyyy = ip*n, and verify that the diagram below

I

~
['Z3}

Yl —> Yiuq
@ 1 -
Yivs T st
g

commutes. From the definition Ay, the following diagram

Y 5 s!

14
Yierur

is commutative, and we have m, k.., = n i, and Ty herys = gm, Ry = 9d.
Now let ((ty, %)), ..., (t,,%,)) € Y7, (. Then

Ay R (B %0)s s (1, X)) = g (11 + oo +t)mod1) = p(t, + ...+, mod 1 ,
because of the last equality above. But

Gi((t1s %15 oo (1, X)) = (P11, XD, vy (P2, X0)) = (pt, + ... +pt,)mod 1
= p(ty+ . +1,)mod 1 .
Thus myfy.( = §i, and diagram (4) commutes. ,
This completes the inductive step and it is seen that each My is an extension
Le]

of k. We now define inductively iy, A,, ... and set m = U ;. Tt is easily verified
that m is a p-mean on S*-J,. o
COROLLARY. The fundamental group of S*—3%

) p IS isomorphic to the p-adic
rationals.

. Pr]o o]fs. \1\: 1’1;.}:16 seen e?rlier that H,(S*~2,; Z) is isomorphic to the p-adic
rationals. By the Theorem §°~%, is an m-space so m(S®~2) is abeli theref
e (55 RS » ») elian, therefore

C ’1 fo Of T, i
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