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Boundary limits of Green’s potentials along curves
by
JANG-MEI GLORIA WU (Urbana; II.)

Abstract. On a disk, the boundary limits of the Green’s potential along level
curves of certain functions are zero almost everywhere. A similar problem on a Jordan
domain with rectifiable boundary is also studied. These extend the results by Little-
wood [2], Tolsted [4] and Arsove [1].

1. Introduction. Let % be the Green’s potential of a nonnegative
mass distribution on [¢| < 1. Littlewood ([2], p. 391) proved that the
radial limit of « is zero at almost all points on |2| = 1. For a fixed « in
{—mn/2, 7[2), Tolsted ([4], p. 640) showed that for almost all values of &,
%(2) tends to zero as z tends to ¢ along the line segment which makes
an angle « with the radius at ¢*. Zygmund ([4], pp. 644-645) pointed
out that the nontangential limit of a Green’s potential need not exist
at any point on || = 1. Therefore, it is natural to ask for curves I(£)
in |2| < 1 approaching 6%, 0 < & < 2=, 8o that we have lim %(z) =0 as 2
tends to ¢ along 1(&) for almost all £. The main result, Theorem 2, gives
2 broad family of curves, namely the level curves of a certain kind of
function. A similar result in Jordan domain with rectifiable. boundary
is-also obtained, which extends a theorem by Arsove ([1], p. 267) on
a very special domain of this type.

All the results can be applied to the subharmonic functions with
positive harmonic majorant instead of Green’s potentials, with the aid
of the Riesz decomposition theorem.

The author wishes to thank Robert Kaufman for some helpful con-
versations and the referee for pointing out a related paper on the “non-
tagential LP convergence” of Green’s potential by Ziomek [6].

2. Limits on the disk. From now on, we use s, o to denote 1—|z|
and 1 — |w|, respectively, whenever #, w are points in the complex plane.
Sets on 2| =1 are identified with sets on (—mn, n] whenever convenient.
We use I to denote an arc of 2] =1 in Rez> 0 and identify it with
[a,b]. We use p to denote a nonnegative mass districution on |w| < 1
satisfying
(2.1) [ odpw) < oo

jw| <1
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and u to denote the Green potential of u defined by
[ @z, w)du(w),

lw|<1

(2.2) u(e) =

where G is the Green function on |2| < 1. The symbols M and m denote
strictly positive constants independent of u; M and m may vary from
one line to another.

TamoreM 1. Suppose 3 < ¢ < 1. Let 1(£) be a Jordan curve in ¢ < 2]
<1 and Re z> 0 joining 6* to |2| = ¢ if £<I and let Q be the closed region
bounded by 1(a), (), I and |2| = c. Suppose | ) 1(§) = Q2 and whenever
2,we?, 2 on L(E), w on l(E+7), we have

@) le—w| < Ml —wl| if =0,

(i) [z—w|=mlz], and

(i) fe—wl < Mt if fo] = ol

Then lim u(2) = 0 as 2—6* along (&) for almost all & on I.

~ Proof. The value of Green’s function is given by

|1 — Zw|

(2.3) G{z, w) = log

le—w|
Ppp. 384-385) that

Mos
Iz wl*’

It can be proved ([2],

(2.4) Gz, w)

We shall give further estimates for G(z, w).

From (ii) and (iii) we see that two- different curves are disjoint and
no two points on the same curve have the same moduli. Fixing 2, we
locate w by the coordinates (o, 7); recall ¢ = 1 — |w|. We divide 2 into
three sets in terms of w as follows:

Bi:o< w1
Rzz e w <1
Byre<w| <1, |7l <s, lo—s| < 8/2.

L, || = s,

y Il <s, lo—s| 2 8/2,

We require

M
(2.5) Az, w) < T;rs on Ry,
Mos
(2.6) Gz, w) < e on R,,
' 2
(2.7) Gz, w) < ———log MS on R;.
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In fact, on B, we have, from (2.4) and (i),

Mos Mos
Gleyw) < le—wz  m2e?’
On E,, with the aid of (2.4) we have
G (o, w) < Mos < Mos _ Mos < 4Mos 8 Mos ‘
le—wl* = [l =l Jo—s]z T sttt

If w is on Ry, let p be the point on I(£) of the same modulus as w. Thus
from (i) and (iii) we see that
—w| < lg—pl+lp —w| < M[[z]

= Mloc—s|+Mt| < M

~pl|+ M ||

Also we observe |1/Z—z] < 4s because |2| > 1/2. Therefore, from (2.8)

and jo-—s| < 5/2, we have

1 |1/z2—w|? o
< — —_— K
G(z, w) 5 log P < p log

Ms?
mir?
We have proved (2.5)—(2.7).
The following part of the proof is a slight variant of Littlewood’s

proof for the radial limits; we shall not write too much detall and refer
the reader to [2].

Let &(gy) be [ odu(w) taken over Qﬂ{go lw] <1} (= 2(0,)) and

7(00) = Ve(gy). From (2.1) we have
lim#(gy) = 0.
o1

Let @(q) be [ odu(w) taken over 2(g)N{a
< 7(g0) in a set F(go) =

<7<g¢}. Then 0
(@, b) of measure at least b —a—y

< 9'(q)
(0o) It is enough

to prove

(2.8) lim sup f G(z, w)du(w) < Mny(a,)
-O(L’o)

as e~>¢" along 1(&) for all £ in H(g,) because

lim sup
AT {1l <1N2(eg)
for all & in (a, b). i
Let &eB(gy); we may assume & = 0. Let d = max {—a,b}, ¢ in
[0, d] and J () be [ odu(w) taken over Q(g,) N {lz| < 1}. By the characte-
ristic property of H, )

(2.9)

G (2, 0)au(w) =0

J
timsup LY < 9y g,).
=0
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Littlewood showed ‘that nonnegative, monotone increasing function J
on [0, d] with property (2.9) must satisfy:

a
ad(z)
Hm supsf——#)~ < Mn(oo),
850 s v
¢ (7)
lim sup s | <M
fan sup so‘ P 1(00) s
and
. 1 Ms
lim sup — log——:de(T)éMn(@o%
§->0 8 E T

Now (2.8) follows easily from the above three inequalities and the
estimates for Green’s functions (2.5)-(2.7). Theorem 1 is proved.

CoROLLARY. Suppose f is a real-valued C' function om 2| <1 and

f|06 % 0 on I. Then for almost all & in I, lim u(z) = 0 as z—>¢* along. -

the level curve ending at €%,

Proof. Let ¥ be a neighborhood of I such that [9f/90]>m on
VN{lzl <1}. From the implicit function theorem, there is a simple ¢
level curve I(£) from 0V to ¢* whenever £eI. Choo.e ¢ between 4 and 1
80 that |2| = ¢ meets each [(£); and the closed region 2 bounded by I(a),
L(b), I and |2} = ¢, is contained in V. Because 8f/d0 is of one sign in v,
each point in 2 is on some I(£), £<I; moreover on (&), {d0/dr| < M
uniformly for éeI. By the inequality |d6/dr| < M, (i) in Theorem 1 holds.

Assume |[Vf| < M on 2 and zel(£)NQ, wel(£+7)NQ. We observe
that

Miz—w| > |f(2) —f (w)] = {f(e%) —F(e+9) = mz].
"Thus (i) in Theorem 1 is true.
Assume, moreover, [¢| = |w|. With the aid of |f/06| = m, we have
mle—w| < |f(2) —f(w)| = |f(e¥) —f(e“)| < x|
Thus (iii) in Theorem 1 is true. Corollary follows from Theorem 1.

We shall consider limits of « along level curves of a function, required
only to be C' within triangles at the boundary points.

If 2 is on the boundary of a domain D, by a triangle at 2 we mean
a closed triangle in D with a vertex at z.

A TesoREM 2. Lot B be o st of positive measure on |2| = 1 and J be O*
n ]zfl < 1. Suppose for each 6 in B, f and Vf can be extended continuously
to ¢ through o triangle T(6) at ¢, Vf(e”) 5 (0,0) and is not normal
to |2| = 1. Then for almost all OcH, there is a unique lovel curve 1(0) of f

ending at ¢ nontangential to the unit civele and-lim w(2) =0 as z—>e
along 1(6).
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Here we regard two curves ending at ¢ the same if they coincide
in a neighborhood of ¢”. And we do not exclude the existence of tan-
gential level sets at ™.

Proof. We first give an outline of the argument. We shall reduce
to the special case: E is closed, f and Vf are continuous on | 7(6) and
E

all the T'(6)’s are identical and symmetric about the radius at . Then
we shall construct a saw-toothed region R in |¢] <1 with teeth at %,
on B we have uniform Taylor expansion of f and the lengths. of subares
of OB have some nice property. The idea of this construction is from
Zygmund ([7], Vol. IT, pp. 199-201) and E. M. Stein ([3], pp. 201-203).
Finally, we sball modify the function f outside R and show the level
curves of the new f satisfy the conditions in Theorem 1.

Step I. By reducing T'(0) if necessary, we assnme that the two sides
emanating from’'e* are of rational lengths, the two angles between these
sides and the radius at ¢” arve rational multiples of x. By splitting. B
into a denumerable family of subsets, we may reduce F to the case in
which all the T(0)’s, 8¢E, are identically situated. From Egoroff’s theo-
rem, we may also assume that ¥ is closed and f and Vf are uniformly
continuous on | T(6) (= 8). Let a(6)e[0, =/2) be the angle between

0cH !

Vf(€®) and the tangent at ¢* for 0<F and 8 be a rational multiple of =
such that =/2 > B> max {a(6)+3(x/2 —a(6)): 6<B}. For each point of
density 6 of B we may find a small triangle T™(6) symmetric about the
radius at ¢, with angle 28 at ¢” and T*(8) < 8. Since almost all points
in E are points of density, by considering a subset of points of density
and replacing T(0) by T™(6)-if necessary, we may assume that ¥ is closed,
each T(6) is symmetric about its radius, with angle 28 at ¢° and f, Vf
are uniformly continuous on (J 7'(6). As before, we may also assume all
the T'(6)’s are identical. 013

Step II. Let B = | R(0), where R(6) is the region bounded by the
B

two tangent lines from ¢ to the circle |2 = sin § and by the more distant
arc of [2] == sin B between the points of contact. Since E(6) and. T(6)
coincide near ¢, f and Vf are continuous on (J B(6) (= E because B
is closed). £

Several facts concerning R will be observed in succession. (a) E is
star-like with respect to the origin. (b) If 2, w ¢ R, then there exists a point
g in R such that the line segments 2, g, ¢, @ are in £ and [¢—gq|+ |g —w|
< Mz —w)|; here M depends on f..To see this, choose ¢ = 2 if Z, w < R,
otherwize choose ¢ to be the point of the largest modulus so that 2, ¢
and g, w are in E. (¢) If 2, we R, then f(w) —f(z) = (w —=z): Vf(2)+o(lw —2()
and “0” depends only on [#—aw|. This iy a simple consequence of (b)..
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{d) The total length of the subarc of OR in & << 0 < &4 is at most M+
and at least mr (0 < v < 2n).

Step ITII. Because R is star-like with respect to the origin. 0, we may
define f; on [¢| <1 as follows: if zeR, fi(2) = f(2); if 2¢ R, f,(2) = the

value of f at the intersection of AR and the radius through 2. We shalli

consider the level curves of f,.

For any fixed 6<HE, let ¥V be a neighborhood of ¢¥ disjoint from
l¢l <5in # and, if ze VNR, then |Vf(2)| > m and the angle between Vf(z)
and 2,0 is greater than § (x/2 —a(0)). For 2, wedRNYV, the angle between
Z w and 0,2 is at least 8, which is greater than a(0)+#(r/2 — a(6)),
thus the angle between Vf(2) and 2, w is less than /4 -+a(0)/2, which
is bounded away from =/2. Therefore through each point on ORNY,
there is a level curve of f, in V, composed of an arc in RNV excepl the
end points and a radial segment outside B. Let us assume e is in the
right half plane. We choose a short are I of |¢| =1 containing ¢ and
& number ¢ close to 1 in (%, 1) so that for every £eI there is a level curve
1(&) of f, joining €* to |2| = ¢, the closed region 2 bounded by Ua), 1(b),
2| = ¢ and I, is contained in V, and finally, whenever &, wel,

' 1 r  a(®) .
[0(]w—z])|<5 |¢ —w|cos (Z+ 5 ) :gg% [Vf]. .

We claim that | f(w) —f(2)] > m|w—¢| if 2, wedRN Q. In facet, from (c)
in Step II and the angle between Vf(e) and 7 % we have

B1)  1f(w)=f (@) = [(w—2)" Vf(2)| —|o(jw—=2])|

a(0)
2

> jw—z| |Vf<z)|cos(§ +- ) ~[o(lw—a))|
=

mlw—z},

where m is a constant dependent on 6.
.| a6
‘Now we shall show (i)~(iii) in Theorem 1. (i) is clear because o
is uniformly bounded on level curves in BN O and the level curves are
radial segments in Q\E. Let zel(£)NQ, wel (¢ )N Q2 and 2y, w, be
the intersections of AR with 1(€); U(é+7), respectively. We assume
|0f/06] = m, M > |Vf|=m on QNR. To prove (i), if 2, w¢R, it is cloar
from the construction of f, that |¢—w| = m|r|; if & and w ave in E, then
with the aid of (¢) in Step IT and the Inequality in the last paragraph
we have ’

Mz —wl = [f(2) ~f ()] = |f(20) —F(wo)| > m ey —10,| = mlzl;

if one is in R, the other is outside R ; by breaking #,w into two pieces,
we conclude |z—w|> m|z|. Thus (ii) holds.
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To prove (iil), we assume [2] = [w]. Clearly, | —w| < M |7] if 2 and w
are outside B. If # and w are in & and the circular arc %, w centered at 0
iy completely in &, then with the aid of 10f[06] = m, M > |Vf| on QnR

and (c), (d) we see that

me—w] < [f(2) —F(w)] = 1f(20) —f(w0)| < M f2o—1w4] < M z].
In general, we may always write 2, as sum of arcs with end points
falling into the above two types, therefore [z—w|<< M |z]. Thus (iii)
is true.

As a conseguence of Theorem 1, for almost all £ in I, lim u(z) =0
as 2—¢" along 1(&), where I iz an arc containing ¢®. Because the above
tact is true for every 6 in B, ¥ is closed under reduction and the non-
tangential level curves of the f are the same as those of f1 at B, Theorem 2
follows. .

Remark. A shorter proof can be based on Whitney’s extension
theorem. Since f is C''in R and f(w) —f(2) = (w—2)- Vf(2)+ o (jw —z])
whenever 2, we B Whitney ([3], p. 194, 4.7 or [5]1D. 65) showed that fIR
can be extended to a funection (* on the entire plane. A simple appli-
cation of tlie Corollary of Theorem 1 gives Theorem 2. We note that the
function f; is much simpler to construct but not smooth.

3. Jordan domains. Let A be a Jordan domain with rectifiable
boundary and ¢ be a conformal mapping from |2| < 1 to A. It is known ([71,
Vol. I, Chap. VII, §10) that (a) ¢ can be extended to a homeomorphism
of 2| <1, (b) dp(eo)/db exists and is different from, zero at almost every
point 2, on the unit circle, call these points 8, (c) for each 2ye8, iz’ (2)
tends to dp(ey)/06 as z—z, nontangentially and 94 has a tangent at
?(20), () if I"is & curve approaching zye§ from l?l < 1, intersecting with
the horizontal line through 2, at an angle a, then the image ¢(I") inter-

1 o
sects the horizontal line through ¢(2,) at an angle a--Arg [; —é%— (zo)],
0

(e) sets of measure zero on J¢] =1 correspond to sets of measure zero
on 94, and vice versa. On 4 we have the following theorem:

TrrorEM 3. Let T be a subset of 9(8) of positive linear measure.
Suppose g is C* in 4, g and Vg can be extended continuously to ¥ through
triangles at ', moreover Vg % (0, 0) and is not normal fo 04 at any point
in B If v is a Green’s potential, not identically -+ o0, on A, then for almost
all 2 on I, im v(2) = 0 as s>z, along the level curve of g ending at &,
nontangential to 0A.

Proof. Under 97}, the triangles at F become curvilinear triangles
at ¢(F) (= H). To each point ze¥ we introduce a triangle 7'(z) in the
corresponding curvilinear triangle.

4 — Studia Mathematica 60.2
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Let f = éo:p and write p = %170, Clearly, fis 0* in || < 1. Because
f ( uw+gal( ) Vs gccl(‘]))'”’y-i'gy(‘]’)vy)y

from (¢) we see that f and Vf are continuous up to B thrf)ugh triangles
T(2)’s. From (b), (¢), (d) and the Cauchy—Riemann equations, we have
Vf = (0, 0) and is not normal to the unit circle. Since the level sets are
preserved under conformal mappings, we conclude Theorem 3 from
Theorem 2. )

Exampres. (1) The following result of Arsove ([1], p. 267) is a simple
consequence of Theorem 3 and the Riesz decomposition theorem: if A
is a subharmonic function on {|#| < 1, |¢—1| < ¢} with positive harmonic
magjorant then lim h(re”) exists for almost all é® in {|z] < 1, [z—1] < 8}

r—r1

(2) A and v are defined as in Theorem 3. Then at almost all points
of 34, where the tangents of 94 are not horizontal, v has horizontal limit
Zero.
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Multipliers and unconditional Schauder bases in Besov spaces

by
HANS TRIEBEL (Jena)

Abstract. The paper contains: (a) Explicit representations for distributions
belonging to Besov spaces, (b) A system of analytie functions which is an uncon-
ditional Schauder bagis in Besov spaces, (c) A necessary and sufficient algebraic

condition for multipliers in Besov spaces, (d) Remarks on embedding theorems for
Besov spaces.

1. Introduction. The paper deals with isotropic Besov spaces B,
(= Lipschitz spaces 4 ;) defined in R,,, where —oo < § < 00;1 < p < oo
and 1< g< oo. There exists a large variety of different characteriz-
ations of distributions belonging to these spaces [3]~[7]. A summary may
be found in [9], Chapter 2. In Section 2 of this paper a new representation
formula is given. As an immediate consequence there is obtained a com-
mon unconditional Schauder basis in all the spaces B;, . (provided that
g < o0), consisting of entire analytic functions of exponential type, Sec-
tion 3. A second application of the 1ep1'esentation formula yields a necess-
ary and sufficient condition for multipliers in BS ,, Section 4. A more
detailed discussion of this result will be given later on. Section 5 con-
tains remarks on embedding theorems.

2. Representations, R, denotes the n-dimensional real FEuclidean
space. The general point in R, is denoted by = (24, ..., 2,). 8 (= S(R,,))
is the usual Schwartz space of all complex-valued infinitely differen-
tiable rapidly decreasing functions, defined on R,. As usual, 8’ (= S'(R,,))
is the space of tempered distributions, the dual space to S. The Fourier
transform in 8’ is denoted by F, its inverse by F~'. If feS, then

@)@ = em) * S o (w)m,

n
where #¢ = 2«:-5,—. If —i is replaced by 4, then one obtains the corre-
i=

sponding formula, for P71
Use the followmg decomposition of R,: Let o = (oy,...,0,) be
a vector in R,, where each of the components o; is either 41 or -3,
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