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Multilinear weak type interpolation of m #-tuples with applications
. by
ROBERT SHARPLEY (Columbia, §. C.)

Abstract. T'wo versions of & multilinear weak type interpolation theorem for
rearrangement invariant spaces 4,(X) are obtained by extending the Calderén oper-
ator § from the-linear case. Specific applications of each version of the theorem are
given to certain bilinear operators which include integral operators, tensor products,
convolution, and product operators. )

§ 1. Introduction. This paper is a natural extension of the methods
and ideas developed in [3] and [13] to study weak type linear or sublinear
operations. The setting here is multilinear operations satisfying m initial
estimates. Using an appropriate modified Calderén operator and Holder’s
inequality, we are able to obtain a multilinear (multisublinear) version
of the Stein~Weiss interpolation theorem for rearrangement invariant
spaces (Theorem (3.4)) and then apply the result to integral operators
(Corollary (4.3)) and tensor products (Corollary (4.6)). Using the same
techniques with slightly different. estimates, we deduce convolution and
product. operator theorems (Corollaries (4.7) and (4.8)).

In his extensive work examining the above operators on Lorentz
IP9([9], [11]) and Orlicz spaces ([10], [11]), O’Neil systematically attacked
each problem in the following manner.

Utilizing the endpoint estimates, he would derive for each type of
operator a “basic inequality”. Then, using this in conjunction with & “fun-
damental condition” relating the intermediate spaces, he was able in
most cases to give necessary and sufficient conditions for the operators
to be bounded. As a guide we outline the procedures followed for con-
volution operators. Convolution operators are defined as bilinear oper-
ators O which satisfy the conditions |C(f, ¢)ll < Ifllilgllz, O(Sf; Nl
< If 12190y a0 [O(F, 9lleo < f o llglls, Where |[B],, is the Liebesgue p-norm
of h. From these initial inequalities O’Neil [9] derived the “bagic in-
equality for convolution”

o

(1.1 Of, )™ () <™ g™ 0+ [ *(5)g"(s)ds

t
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and then proceeded to show that O satisfied

(1.2) NOCF s 9Mle,yy < const [1Fllp,sa9llg,1/8

5o long as the indices of the intermediate spaces satisfied the “funda-
mental condition for convolution?”

(1.3) -1 < const t¥P¢2 for all ¢
and the secondary index condition for convolution
(1.4) y<a+p,

where |||, , denotes the Lorentz L™% norm of h.

In this paper we show that various operator estimates of which
relation (1.1) is a special case can be established in & unified manner
using Calderén’s weak type theory. Inequalities of the form (1.1) are
obtained automatically for each class of operators by evaluating Oal-
. derén’s maximal operator 8 for the interpolation gcheme under con-
sideration and by using the fact that the relation

(1.5) T(f, )< 8(fN e ae.

holds. The appropriate “fundamental condition” for the class is obtained
by observing minimal conditions the operators must satisfy in order
%o be bounded. In short, the main purpose of this paper is to exhibit
an easy way to determine the form of the “basic inequalities” for variouy
- classes of operators, establish necessary conditions, and place the existing
theorems in an interpolation theoretic framework.

§2. 4,(X) spaces and Calderén’s operator. The spaces ,(X) [13]
are generalizations of the Lorentz L7 gpaces ([5], [3]) which retain
many of their properties. We mention only those properties which are
necessary for the development of the multilinear theory. For the proofs
of these facts we refer the reader to [13]. ‘

The distribution function of a measurable function f is defined by
(1) = m{s| |f(s)] > t}, where m is the measure involved. The decreas-
ing rearrangement f* of a measurable function is the non-increasing,
right continuous inverse on (0, oo) of My (). Two measurable functions
are called equimeasurable if they have the same distributions. The averaged

I

rearrangement of a funetion f is defined by f**(t) = 1/t [ f*(s)ds.
1]
A rearramgement invariant Banach function space is a Banach space
of measurable functiony which satisfy the following properties:
() 19l <If] ae., feX implies geX and [gi < [fl,
(i) 0 < fof aue., foeX, and [f,| < M, then feX and |f| < M,

(iii) mE < oo implies there exists Oz > 0 so that fds < Oglf]l in-
dependent of f, z };‘ < Oglfll
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(iv) mE < oo implies |lyg] < oo, and
(v) f and g equimeasurable, feX implies geX and |f|| = lgl.
The fundamental function of a rearrangement invariant space X,
ox(t) = lygllx, mB =1, can be shown to be concave and nondecreasing
for t> 0. The associate space X' of a rearrangement invariant space is
the ;space of functions g such that |lgllx = nfﬂ;i i f f*g*ds is finite. It is

not difficult to show that ¢x(t)ex-(t) =1 Two classes # and £ of thes.e
spaces are particularly -important in applications. X belongs to % if
for some M >0 and 6<1,

9x()  oongt (st) when M < sfi,
ox(t) :

while Xe% means there is 2 6> 0 and 6> 0 so that
?x(8) < const (s/t)® when sft<<d.
ox(1)

We define 4,(X), 0 < a<1, as the space of all measurable func-
tions such that the norm

ds\®
(2.1) -

15 s Ly ={ f () px () }
. 0 .
is finite. Tf X belongs to # N.%, it is not hard to see that 4%(X) is a re-
arrangement invariant space with a fundamental function equivalent to ¢x-
We define
AX) = {11 Iflag) = [ dpx < oo}

and ”

M(X) = {fl Iflux = Su‘P {F™ () px(t)} < oo}
It is not hard to show [12] that '
(2.2) A(X) s X c M(X)
with continnous embeddings and that 4(X) and M (X) have fundap’xental
function @gx. If 0< a<p<1, then 4,(X) < 4,(X) with continuous
embeddings where Ay(X) = M (X). If X belongs to %, then we can show
that 4,(X) = A(X) with equivalent norms. If X belongs to UNY, then
the simple functions with compact suppert form a dense subset of
Ay (X), 0 < a< 1. If the operators P and @ are defined by

t 00 d
(2.3) PO =11 [ f@as, N = [ 107
0 t

then it can be shown that P and @ are bounded operators on A,(X),
0<a<1, when Xe¥Nn¥ ([2], [18]). Using these operators, one can
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algo shew [13] that

13
ds
(2.4) Px(t) ~ f Px(s) =
and ‘
2.5 [ L&
' ox(t)  J ox(s) s
when Xe#ng.

We assume that the operators are bilinear in order to simplify the
notation even though the proofs are valid for multi-sublinear operators.
We do state the Stein—Weiss theorem, however, in its full form. A wealk
type ([ X, Y1,7Z) bilinear operator is one such that

(2.6) 1T (xms xr)lnnz < eonst px(mB)py (mF),

where the constant is independent of the sets 7 and F. We consider bilin-
ear operators T which are of weak types ([X(j), Y(§)), Z(j) forj =1,...
..., M. For this interpolation scheme the function

(7 8
(2.7) ¥(r, ;1) = min (——-—-———'px“’( o) (5) ))
1<i<m Pz (1)
is ured to define a modified Calderén operator

° dr lds
(2.8) 80w = [ [ fng@wr, 5592
(1] 0
which is maximal in the following sense: .
TEmoREM 2.1. If T is a bilinear operator of weak lypes ([X 4, ¥
Z(5)) with norm 0;, 1< j & m, then

(2.9) T(f, 9)™ (1) < max O;8(f*, ¢*)(t)
1<jsm

b

)

Jor all simple functions f and g with compact support.
Proof. Since T is of weak types ([X(f), X(j)],Z(j),
VT (xms 2wl r sy < 0. #x0)(mB) gy (m)

T(xm 20" () <
2 ka) () < Pz (%) = Pz (8

Therefore

T(xms 25)™ (1) < max (C)) ¥ (mE, mF; 1)
1<ism

1<jgm.

S F dr ds
<max () [ [ mnewe, 0",

1<i<m 5 ¢
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since gz = Xomm, 1y = Zo.mmyy and P(r,s;:8)/(rs) is a non-increasing
function both of 7 and s. Inequality (2.9) follows for simple f and g with
compact support by applying the sublinearity of T (yg, x)** in each
variable to covariant decompositions of f and g¢.
Using this result, we are able to extend 7 in a unique manner:
THEOREM 2.2. Suppose one of X or Y is separable. If T is a bilinear
operator of weak types ([X(j), Y(j)],Z(j)) of morm Gy, j=1,...,m, and

(2.10) I8(f*, 9"z < eliflxllglly
Jor all f in X and g in X, then T has a wnique extension to X x ¥ such that
(2.11) IT(f> 9z < ¢ (max 0)) |fxllglly.

<i<m 1

Proof. Buppose that X is separable. If we let E be o measurable
set with finite measure, then by (2.10) S(x}, ¢ belongs to Z for each g
in Y and must be finite almost everywhere. By slightly modifying the
proof of Corollary 4.4 and Theorem 4.5 of [13], T has a unique extension
to the pair (yz,¢) such that

T2z, 9™ () < 08 (xh, 9™ (1)

where ¢ = max 0;. Taking an arbitrary simple function f with compact
1<i<m

support. we may write f in covariant form

I
1) = > asgnf(s) 1z,(s),
i=]
where ;> 0 and E; 2 F,,,. Since the averaged rearrangement is sub-
linear, we have

13 &
T(f, 0™ ()< D) 4T (4z,, )™ (1) < 0 Y a:B (., ) (1) = OS(F*, g*)(2)
=1 q==]
&

by noticing f* = 3 a, %z, But this together with inequality (2.10) shows
de=l

that (2.11) holds for all g in ¥ and simple functions f with compact sup-
port. But the simple functions with compact support are denge in X,
8o I'(-, g) has a unique extension to X for each ¢ in ¥ so that (2.11) holds
for all f in X. It iy not hard to see that the extension remaing bilinear.

Remark 2.3. If in Theorem 2.2 we can assume both X and Y are
separable, then we can relax the definition of weak type ([X @, Y1,
Z(j)) to

S‘:-P (T(f, @*(t)v)Z(j)(i)) < O35 L aqzey V9l agry

for all simple functions f and ¢ with ecompact support.

Remark 2.4. If all the endpoint spaces X (j), ¥ (), and Z(j) belong
to #n2, then it is possible to show that § is a bilinear operator of weak
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types ([X(5), X()1, Z j)), j =1, ..., m. Therefore in the “non-extreme”
cages of weak mtarpola‘umn, a necessary and. sufficient condition for each
bilinear operator of weak types ([X ), YN, Z(j ) 1<j< m to map
X xY into Z is that S(f*, %) belong to Z Whenever f belongs to X and ¢
belongs to Y. As we shall see, however, the moxt important applications
start with the “extreme” estimates.

Tt would be interesting to find the proper definition of § o that
necessary and sufficient conditions can be easily formulated in these
cases as is the case for linear operators [13]. This would simplify con-
siderably the extension process and allow further applications for non-
separable spaces such as the M (X) spaces. " ‘

Remark 2.5. We should mention that the spaces 4(X) and M (X)
appear in [11] as K, and M ,, where X is the Orlicz space determined
by the Young’s function 4.

§ 3. Multilinear Stein—~Weiss theory. In this section we derive some
elementary intermediate results and use these to obtain the multilinear
Stein—-Weiss theorem with m 1n1131a1 conditions for the spaces A,(X).
The function
?2(1)
@1 F0 50 = e ®
will be important in our considerations as we will be making L* esti-
mates on Z(f, 9)™(f)@z(?) and

Y(r,s;t)

dr ds
(32) T(f, 0™ Wesh < O f f [ (1] L0" (6) e )1 (7, 80) - =

holds by inequality (2.9). We shall call the initial m triples of spaces
(X&), TG, Z2(), L<j< m, an interpolation segment o, and say that
a tw,ple of spaces ([ X, Y], Z) belong to # (o) if the operator § for o maps
X xY into Z. Having established this notation, we can now catalogue
several intermediate results of an elementary nature:
TeeorEM 3.1. If X, Y, and Z belong to UNZ, then
(i) ([M(X), A(T)], M<Z)eW ) iff

(3.3) M, == sup( f (r, s;t)ﬂ) < o0
8t § r
() ((4(X), M(X)], M(2))e ¥ (o) iff
> ds
(3.4) M, :SE})(‘I 1”(%8#)7)& 00}

(*) The author has gince obtained a proof of Theorem 2.2. which does not
require the separability of X or ¥. This allows to drop the condluon max (a, f) > 0
in Corollaries 4.7 and 4.8 below.
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(i) ([4(X), A(X)], A(Z))ew (o) iff

(3.8) = sup fmzﬂr 8;1) )< 003 ,
(iv) (L4(X), M(X)], A(Z))Os W (o) iff

(3.3 w, wﬁ‘lip( fm 6{wﬁ<r,s;t>f’§—%t—)< 03
(v) ([M(X), A(X)], A(Z)e W (o) iff

(3.4 N, max:p(jfolﬂ(r,s;t)—————)< o0;

(vi) ((M(X), M(X)], M(Z))eW (o) iff

(3.5") N=sup(f fﬁ(r,s;t)%%iF 003

(vi) ([M(X), M(X)], AD))e W (o)iff [ [ [ F(r,s; tﬂﬁfi’f

4
(vil) ([4(X), A(X)], B(2))e # (o) iff SHPF(T 8,1) < oo

78,1
Proof. It is clear that at the expense of brevity of notation, we
could shorten the statement of this theorem using mixed norms. We only
prove (i), since it is typical of the estimates used. Suppose f belongs to
M(X) and g belongs to A(Y); then

I]is(f, Ny < 18 (f*, 9" lag(z)

idr r(Jls
ﬁup(f Jpx(r supffg )z (8) F(r, 38— si
whele the first inequality follows from the fact that |[h(s)k(s)ds|
f B*(s)k*(s)ds applied to ¥(r, s; t)/ r$) which i3 decreasing in both
zmd $, and the second inequality comes from (3.1) and the definition of
8. Bince ¢ belongs to A(YX), we have
dr
18y PHlanzy < ||N!M(X)fg opw (s —*SUPfF" 83 t)

< ¢llf larz 191 sy Mo -

Using these estimates, we can now formulate v
TrmoreM 3.2. Suppose T is a bilinear operator of weak types {[X(j),
X(§)1,2(5), 1<j< m, and the rearrangement invariant spaces X, ¥, and
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Z hawe fundamental functions so that the corresponding function I sotisfies
(3.3), (3.4), and (3.5), then T has o unigue extension 8o that

(3-6) IT(f, Dllaye < OM F G M 1 1Lty 19 gy

where C =122X 0, C; the weak type X, Y1, Z(j)) norm of T, a-+p
m

>y+l, o =1—q f =1—F, and 0<q, p<

Proof. By the embedding A,(X)<S 4,(X) when a2b, we may
assume a+ f= y-+1. We may also assume y>0 even though. the follow-
ing proof is still valid in this case with simplified estimates at each
stage. From a+f = y+1 and y > 0, then a and f§ will both be positive.
Now we let @ =y/a and b =y/f, s0 0 <a, b1 Letting ¢’ =1—a
= f'ja and b’ =1—b = o' [f (with the standard modifications if o or
B’ is zero), we have

S(%, %) (s th)
=[] oL )0 e (G v (O Tl 05 -5

0 0

f f (Frex)* (N F(r,s;1) ‘d;r‘ ﬂi)ﬂ) X

[ §

<

—

* 8

® ©
x ( [ [ o 0g e ) 2y 550)
e ar s\
x( f f (g*«zvy)”"<s)1ﬂ(m;t)7—s-)
by applying Hﬁldef’s inequality with # 4y-+¢ =1 and weight

F(r,s;t)/(rs), so

N BIOIPTHES

dr ds )?‘
X

o] o0
s gw| [ [ metstrern L ] s o
0 0 L
Taking the LY* norm, we have by (2.9)

B1) I, Dz < OB MY 1F 19,030 19150y X

o 00 o

X{f ; of a0 6" e P9 B 550 S 5T -
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But by Fubini’s theorem,

dr ds dt

-+ ?0 (-] N ,
{ f j f (o) (g fpy)l/ﬂ(s)F(ms;t)—;TT}<liflliu(x)llyllﬁﬂ(myy;

but this together with (3.7) implies
WT(fy llayzy < OME MY g g 9 apiry-

Tt should be noted here that this proof is just a modified version
of a proof given by O'Neil (Lemma (10.1) of [11]) for integral operators
on L% gpaces.

Remark 3.3. If for the classicial interpolation scheme of L” spaces
we congider
ullzlh,lly}

O (w, v 1) = min{0;—
( ’ ’) Py i tllrj

instead of the function ¥(u, v;1), we can obtain the following refinement;
of the intermediate operator bound

(3.8) N Dl

020{"9 ( P1P2 )w( q19s )ﬁ'( 179 )7
<
< 5= o) gt Upamr) VeoneWlguaie

1 1 1 1 1 1 1 1 1
where |[—,-—,—| = (L—0 (——- —_— —) —l«@(—— — —) and C; is the '
(p’q’r) = AR g

weak type operator bound. Therefore, by evaluating the modified
M, M,, and M of Theorem 3.1, we are able to obtain the full power of
the classical theorem. '

Tn order to state the general multilinear theorem we need to develop
some notation. A multilinear operator is called weak type ([X (Lyd)y oo
ey Xy D)1, Z(5)) with norm Oy i

(3.9) T gy - Xmy)" (D02 () < O3 [ #x6.0(mB)
Al

and Oy is the smallest consbant for which (3.9) holds independent of the
sety 1, and £ We define ;

n
T oxe.n(8)
¥(s; 1) = min = ‘
vejem \ Pz (t)

where 8 = (8;, ..., 8,). I we let

F(s; 1) = ”qu(t) w(s;1)
!_:]1(7’2:(4)(34)
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and then set
00 o0
d d
M; = sup F(s;)—% and M =Hupf F(s;t)——t-,
8 8y, 1

s (i)t p

we can prove the following theorem using the same technigues as above.
T THEOREM 3.4. If T'is a multilinear operator of wealk types ([X 1, 5,...

vy X, )1, (), 1< <m, then T has a umique estension so that

n ¢
I (s eer Sy < M7 ﬂ (M3 11 ey
. -
whenever 3 a; > n—1 9.
=1

Remark 3.5. M. Zafran [19] has generalized the multilinear Stein~
Weisy theorem in another direction using the Peetre K-theory and has
obtained very nice applications of a different nature. Weak type inter-
polation with m initial estimates was established in [14] for linear op-
erators. Strong type interpolation of m pairs was carried out for Peetre’s

theory in [16] and [18]. Tt appears that this paper is the first attemps
at mixing these ideas.

Remark 3.6. It is not hard to see that a necessary condition for
(X (%), ..., X(m)1,2) to be weak intermediate for the interpolation.
segment of LP spaces with indices ([p(1,4),...,s(n, j)], a(d), 5 =1,2,
is that the X’s and Z must satisty ‘

n n "
(H#‘j ¢z(n8¥"i) < °n¢x@)(3f) all s,
= =1 =1

_ (i, 1)—a(i, 2)

) o 1
where m; = 3.7 y by =a(i, 1) —m, By, a(t, j) = m, and
1 L 1 P2 . s .
B =% "=1L-m j=1,2 For the case 'of linear operators this
i
reduces to )

Lpz(s™) < opx(s) all s,
1 Qg

a. N : s . .
where m = X b = a; —mp,. Using these conditions oné can eagily
17 P2

give sufficient conditions for weak Interpolation ([4], [17]).

One can obtain slightly more general theorems if the endpoint spaces
have fundamental functions which are compatible in the sense that they
behave like powers [17]. Although the weak type results proved in [17]
follow as special cases of the results Dresented here (actually of the results
in [13]), Torchinsky considers mixed weak type and strong type theorems,
as well as strong type theorems, which generalize the classical results
in a direction that allows recovery of endpoint estimates.

e ©
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Next we state a multilinear interpolation theorem of a different
character than Theorem 3.2 which will prove useful in the next se?c_tion.
The proof of the following theorem and its generalizm;ipn for I%mltll'mear
operators (which we leave to the interested reader to f‘orr'nula.te) is a simple
exercite in multiple applications of Holder’s inequality.

TusoreM 3.7. Suppose T is a bilinear operator of weak types ([X (1),
Y ()1, (), 1<j<m, and the spaces X, Y, and Z have famdammt/at
j’fuﬂoﬁ(}ns so that the corresponding function .Z«"mmsfws conditions (3.3'),
(3.4"), and (3.8"), then T has a unique extension so that

(S, 9 ayim < ONTNENYIF I 0 19

if atf=y and wax (a, f) >0, where 0 = fﬁffﬁ and 0, is the weal
wpe ([X(5), Y (4)1, Z(9) operator norm.

§ 4. Applications. In this section we apply the results of Section 3
to specitic bilinear operators: integral operators, tensor product fopﬁ?-
atiors, convolution, and product operators. Most’ of. the results. o tf i
gection have been obtained for I#? spaces by O’'Neil .([QJ, [111) and for
A,(X) spaces in [7] and [8]. The general approach of interpolation taken

for 1 ators seems new. . _
here ioii}il.rs:r ofsgl'ator I is called an integral operator if it satisﬁ(?s the
estimates: [X(f, )l < [F 1 9lle 804 IL(f; 9)lloo < [Ifleo gl - The prlma;y
example of an integral operator iy given by I( f,.g)(t) = i) {o(s,glg](s) ii
The interpolation scheme for these operators is (LI, LB], T}l a:m
(LL*, L*], L*) and so in this case W(r,s;?) = mm(v/:,s): v Theor
(2.1), we have the basic inequality for integral operators:

LimMMA 4.1. If T 8 an integral operator, then

(4.1) I(f, 9™ () < 8e(f% 4" (1) = f [(P+Q)f*1(st)g"(s)ds.
S
This th('mld be compared. with the basic inequality derived in [11]
I(f, 9™ () & [ f*(#)g" (s)ds.
. 0

ToovmA. 4.2. A mecessary condition that mt.emja:l operators frrt,aq; X ><.17
into 7 is that the. “fundamental copdition for integral operators
(4.2) apg(b) < const px(ab)gpp(s)  all a,b
hold.

Proof. If we consider the integral operator I ( £ ‘=If f(s, 1) fé?( d;
With 17 (8, %) = %(0,a(8) Xy (1) 304 a(8) = Z(,q)(8), then if T maps
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into Z, we have

1(f, g)*(t)qoz(t)) WZ(F, 9)lz
—_— ) S —_— K COnSt.
ﬁ?ﬁr(s‘%p Flxlgly | ez Iflxlgly
Bus I(fu,by ga)* = a%(o.b)af:,b = X(0,ab)s and g: = s SO

agz(b) )
gup {———————] < const.
a,§(¢x<ab)¢y<a> =

It is not hard to show that condition (4.2) is necessary and sufficient
in order for relations (3.3), (3.4), and (3.5) to hold. Typical is relation (3.3),

ot oD .
S“PU Felrs 838) )"S“P(f wx(’l?;’lw?%“f qoxq(’z)(t)sw) E?’)

<5 {ng:(s (stf P () (r) "d;‘)}

But by relations (2.4) and (2.5), we have

dr
qup f Fy(r, s; t) < const sup 5z (1) < const.

st Px(8)py(s)

Relations (34 and (3.5) follow similarly, so by Theorem 3.2 we have
COROLLARY 4.3. If X, ¥, and Z belong to ¥NZ and I is am integral

operator, then I has a umique exwtension so that
IZ(f, 9) ”Ay(z) consy ”f“Aa(X) HQUAﬁ(Y)
’bf a+B=y+1 and condition (4.2) holds.

Closely connected with integral operators are tensor product operators,
i.e., bilinear operators which satisty

V(s oo < Iflllgle  amd IZCf )Ml < f e ligla -

An example of such an operator is, of course, T'(f, g)(r,8) = (f& g)(r, 8)

= f(r)g(s). In this scheme we have Wp(r, 8;¢) = min (r8/¢, 1) and hence

the “basic inequality for tensor products” by Theorem 2.1 is computed o be
Levma (4.4). If T 4s o tensor produat operator, then

d&
(43) T(f, /") < f [(P+@)f"1(t/s)g"
LeEMMA (4.5). The “fundamental condition for tensor products”

(4.4) Pz(ab) < const gx(a)py(b)  all a,b

is necessary in order that T map X XY into Z.
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| Proof IET(f, g) =f®g and we let fu = 704,05 = g, then
T(fay 9" = Xary 20d We obtain

¢z (ab) - (Far 96)" (D pz(%)
"o rx@)gp®) R Sﬁ“’( #x(@) Py (D) )
IZ(f, 9)lz

< sup - < comst.
rexger flxlgle :

Ay before we can show that condition (4.4) is necessary and suf-

_oalt)
2x () gy (8) min (rsft, 1) to satisfy (3.3) th.rough

(3.8), and s0 by Theorem 3.2 we have

OorovLARY 4.6. If X, Y, and Z belong to UNZ and satisfy the “fun-
damental condition for tensor products” (4.4), and T is a tensor product
operator, then T has & unique ewlension so that

ficient for Hp(r,s;1) =

IZ¢f, g HAy(Z) const “f”Aa(.X)”g“Aﬁ(Y)

if a--f =y +1.

A bilinear operator O which satisfies the three estimates [|0(f, g)l
S I lalgllsy MO s Do < 1f oo lgl;  and [C(F, 9)llee < Iilellglloo is called a
convolution operator ([9], [11], [7]). O(f, 9)(t) = (f*g)(t) = [ f(t—s)g(s)ds
ig the common example of a convolution operator. Here the appro—
priate ¥ is Wy(r,8;¢) =min(r, s, rsff). As before we can compute
the “basic inequality for convolution”

(£5)  O(f, )™ (1) < 8o(f*, 9)(0) = ™ () [(P+@Q) ()]

+‘f [P +Q)f"1(s)g™ (s)ds
Compare this with the inequality in [9] {
(£.6) O(F, )™ (1) < W (O™ (0 + , f 7*()9*(s)ds

As before, the inequality (4.5) suffices to estimate convolution operators
on the interior of an interpolation segment. .
Sinee (x(,q%20,0)* (1) = (6—1/2) goaa (), We see by letting f =g
= %o.q) hat in order for )
3 " " y
‘ sup (sup M) < const
t £ 1% llgll

TeX,0e X
it is necessary that sup a9z(0) < const, i.e.
o Px(@)er(a)
(4.7) apg (@) < const px(@)pp(a) all a.
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The “fundamental condition for convolution” (4.7) is necessary and
sufficient in order for conditions (3.3') through (3.5') to hold for ¥ = F,
In fact, we now have, by Theorem 3.7,

OOROLLARY 4.7. Suppose X, X, and Z belong to #n%. If € is a con-
volution operator and condition (4.7) holds, then 'O has a unique ewtension
so that ‘

I0(f, Dllajm < const lIflla,en 19w

if a+f>y and max (a,p)> 0. .
Intimately related to convolution opérators are the product operators.
These are bilinear operators which satisfy the conditions [P(f, g)lle

< Wflboligloos IP(Fs Dl < Ifll1l9lleo 2 [P (F, 9)ll < 11 llollglly (00 [9]). The
common example of a product operator iz P(f, g) = fg. The ¥ in this

r s
case is ¥p(r, s;1) =min(-t— —, 1}
By letting f, = x,q = 9. 2and P(f,9) =fg, we may easily show
that a necessary condition for P to map X x ¥ into Z is the “fundamental
condition for product operators”

(4.8) ¢z(0) < const qox(a)qay(q) all a.

By computing Sp(f*, g*)(t), we can der've the “basic inequality for
product operators”

£ ¢
P(f, 970 < 7 [ 16°(@)+1(@41ds+ (@) (@4 (1-

Tt is not difficult to show that (4.8) is necessary and. sufficient for con-
ditions (3.3') through (3.5') to hold for Fp. Proceeding exactly as in
the case of convolution operators, we apply Theorem 3.7 to get

COROLIARY 4.8. Suppose X, ¥, and Z belong to UNZ and P i8 a prod-
uct operator, then P has a unique extension so that

IP(f) 9N a2y < const [Iflla,cx) l9aye
whenever a-+ B >y, max (a, ) > 0, and X, Y, and Z satisfy condition (4.8).

§ 5. Final remarks. In this section we briefly remark how, the tech-
nigues used in this paper and [13] may be used in the case of linear oper-
ators. It is well-known that the Calderén theory of weak interpolation
may be applied to many of the standard linear and sublinear operators
of Fourier analysis such as the Hilbert transform [2], Hardy—Littlewood
maximal funetion [2], Fourier transform [1], Laplace transform [6], and
fractional integrals [157. We illustrate the power of the these techniques

icm°®
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by concentrating on the real Laplace transform given by
Lf(t) = ff(s Ye~*ds, - t> 0.

It is easy to see that % must be a bounded operator from I to L% and

I® to L' In this case W(s,!) = min ( (8,1/t), and therefore the basm
inequality (from [137) is

(5.1) 2 <2 (7).
Since .Q’(x(o,a))*(t) = (L —¢"[t, then a mecessary condition for % to
map X to ¥ iy that the “fundamental condition”

(5.2) apy 1/a const gx(a), all a:
holds. In fact,

, o -
(1 ....g"l) sup .{EZ.(]_/‘_QE < sup (ﬂupi_L ‘?y(t) ) .
a vx(a) a ¥ ] px(a)
”-g’l(o,a)“M(r)
< sup
o ealx
L,
» 191l < const.

Srex fllx

Condition (5.2) implies that both sup [ F(s, t)%’i and sup | F(s,t)%
t g g
are finite, so % has a unique extension so that

12 (Fllayr < const |flayx)y, 0<a<l.

This theorem generalizes Corollary (10.12) of [11] and was first obtained
in [6].

Finally, the author would like to express his thanks to Proffesor
Alberto Torchingky for conversations relating his work [17] to earlier
work of the author which motivated this article.
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Equivalence of Haar and Franklin bases in I, épacee*
by
7. CIESIELSKI (Sopot), P, SIMON (Budapest) and P. STOLIN (Stockholm)

Abstract. The main result of this paper states that the Haar and Franklin
orthonormal sets do form equivalent bases in Ly<0, 1> for each p, 1 < p < oo, ie.
the spaces of coefficients for the two bases are identical. The proof depends on the
unconditionality of Haar and Franklin bases. The original proof of S. V. Bockariev
of the unoconditionality of the Franklin basis is rather complicated and a simplified
version is presented in this paper. As a consequence of our main result we obtain
the L, version of the maximal inequality for the Fourier partial sums of the uni-
formly bounded orthonormal system of polygonals introduced earlier by one of the
authors. .

1. Introduction. In his recent paper 8. V. Bockariev [1] (see also {2})
proved that the Franklin system is an unconditional basis in Iy,(I),
I=2{0,1> 1<p< oo. His ingenious proof reguires only, appart
from the properties of the Franklin functions established by Z. Ciesielski-
in [4], & modification of the A. Zygmund lemma on decomposition of
functions and the weak type L, estimate for the Hardy-Littlewood maxi-
mal function. It appears thay with the help of some.technics known in
the theory of singular integrals the original proof of Bockariev can be
modified considerably. Such a simplified version of the proof of uncon-
ditionality of the Franklin basis iy presented below, and the additional
tools used in it are the Whitney’s decomposition lemma of open sets
into dyadic cubes, the Marcinkiewicz integral and distance function.

The unconditionality of the Franklin basis (S, V. Bockariev) and of
the Haar bagis (J. Marcinkiewicz) in L,, 1 <p < oo, is the starting
point in the proof of our main result, i.e. the equivalence of the Haar
and Franklin bases in L,, 1< < co. The essential step leading to the
desived. result is an application of the Fefferman—Stein inequality (Theo-
rem E) to both Haar and Fianklin systems. To do this, it is necessary
to compare maximal functions of the function belonging o one system
with the corresponding functions from the other system. However, this
can be done on the basis of the estimate for Franklin functions obtained
by 2. Ciesielski in [4].

* It has been proved recently by P. Sjolin that the Haar and Franklin
bakés ave not equivalent in Iy,
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