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Equivalence of Haar and Franklin bases in I, épacee*
by
7. CIESIELSKI (Sopot), P, SIMON (Budapest) and P. STOLIN (Stockholm)

Abstract. The main result of this paper states that the Haar and Franklin
orthonormal sets do form equivalent bases in Ly<0, 1> for each p, 1 < p < oo, ie.
the spaces of coefficients for the two bases are identical. The proof depends on the
unconditionality of Haar and Franklin bases. The original proof of S. V. Bockariev
of the unoconditionality of the Franklin basis is rather complicated and a simplified
version is presented in this paper. As a consequence of our main result we obtain
the L, version of the maximal inequality for the Fourier partial sums of the uni-
formly bounded orthonormal system of polygonals introduced earlier by one of the
authors. .

1. Introduction. In his recent paper 8. V. Bockariev [1] (see also {2})
proved that the Franklin system is an unconditional basis in Iy,(I),
I=2{0,1> 1<p< oo. His ingenious proof reguires only, appart
from the properties of the Franklin functions established by Z. Ciesielski-
in [4], & modification of the A. Zygmund lemma on decomposition of
functions and the weak type L, estimate for the Hardy-Littlewood maxi-
mal function. It appears thay with the help of some.technics known in
the theory of singular integrals the original proof of Bockariev can be
modified considerably. Such a simplified version of the proof of uncon-
ditionality of the Franklin basis iy presented below, and the additional
tools used in it are the Whitney’s decomposition lemma of open sets
into dyadic cubes, the Marcinkiewicz integral and distance function.

The unconditionality of the Franklin basis (S, V. Bockariev) and of
the Haar bagis (J. Marcinkiewicz) in L,, 1 <p < oo, is the starting
point in the proof of our main result, i.e. the equivalence of the Haar
and Franklin bases in L,, 1< < co. The essential step leading to the
desived. result is an application of the Fefferman—Stein inequality (Theo-
rem E) to both Haar and Fianklin systems. To do this, it is necessary
to compare maximal functions of the function belonging o one system
with the corresponding functions from the other system. However, this
can be done on the basis of the estimate for Franklin functions obtained
by 2. Ciesielski in [4].

* It has been proved recently by P. Sjolin that the Haar and Franklin
bakés ave not equivalent in Iy,
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There is a natural way of obtaining the Walsh orthonormal system
from the Haar orthonormal systemn. The same procedure was applied
by Z. Ciesielski in [5] to obtain a uniformly bounded orthonormal com-
plete system of polygonals (polygonal lines, i.e. splines of degree 1). I
was an open problem whether this set is a system of convergence a.e.
in L,, 1<p<co. For p =2 the positive answer was obtained by
F. Schipp [L1], and for arbitrary p, 1 <p < oo, the positive answer
to this question is a consequence of the maximal inequality (Theorem 5.1)
which. is an analogue of the maximal inequality for the Walsh system,
established by P. Sj6lin [12] (Theorem O). The proof of the maximal
inequality in Theorem 5.1 as well as the proof of F. Schipp depend on
the Sjolin’s inequality. Moreover, our proof uses in essential way the
equivalence of Haar and Franklin bases — more precisely Theorem 4.2,

It should be mentioned in this place that the results of this paper
can be extended to the spline systems of higher orders {f{™, j = —m,
—m+1,...}, m> —1, as defined e.g. in [6].

2. Preliminaries. In this section notation is being.introduced and
some necessary known results are quoted. '
‘ The L, (I) and O(I), spaces over I = (0,1), are considered as real
Banach spaces of real-valued functions with the usual norms | [, and | |,
respectively. Moreover, (f, g) is defined as the integral [ fg.
T

The Haar {y,, » =1, 2,...} and Franklin {f,, » = 0,1, ...} ortho-
normal sets are defined as in [3], the Walsh {w,, n =1, 2, ...} and the
{6ns » = 0,1,...} orthonormal sets are defined as in [B].

The construction of {¢,} can be described briefly as follows. We
know that g, = w, and there is for each x>0 an orthogonal matrix
24X 2% transforming {y,. ., .-; Xpusa} ONTO {0y g1 oo0s Oy} Similarly,
we put ¢, = fy, ¢, = f;, and define {cz,,H, 14y Cpuqa} B8 8 Tesult of appli-
cation of the same orthogonal matrix to the vector (N /PTITRTRTS oy
It was shown in [5] that the system {¢,, n=0,1,...}is unifori'flly bouﬁded.

The nth Fourier partial sums with respeet to {y,} and {w,}, and the
(n+1)st Fourier partial sums with respect to {f,}, {c,} are denoted by
H,, W, and F,, (,, respectively. '

For given #, n>1, the dyadic partition 0 = S0 < oo < 8y =1 08
defined as follows: if w = 1, then ' ’

0=¢,,<8,, =1,
and if n =24y 1< v<2% 40, then

A2 for  i=0,..., 21,

(2.1) =1 1" .
(T—»)2"  for 4 =2 ...,n. -

4

e ©
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Now, let I, = {8441, 8p¢) for 1<i<n and I, = (8pp 1, Snnd-
The Haar function corresponding to n = 2"+, 1<y < 2% u= 0,
has the following properties

V2, tel,,, 4Vl
(2.2) liall = VB, gal = § 77 S e
0? t¢In,2v——1UIn,2v'

For the Franklin function f,, n = 2"+, the following estimate was
established by Z. Ciesielski (cf. [4], Theorem 1)

(2.3) ot -‘/Eftq!h-(zv-—l)l < ( *l)k_‘-lfn(sn;lc) < qu]k—-(zv—m’

where & = 0,...,n; ¢ = 2.-V3 and O is a positive constant.

J. Marcinkiewicz [8], using the decomposition theorem of R.E.A.C.
Paley [9] on Walsh system, proved that the Haar system is an uncon-
ditional bagis in L,(I), 1 < p < co, His result, on the ground of Khin-
chine’s inequality, can be formulated as follows:

TumnoREM A (J. Marcinkiewicz). Let feL,(I) and let 1 < p < oo. Then
there is a constant O(p), depending on p only, such that

E%KHH@<M;§U,%Yﬁr

The analogous result for the Franklin system was proved recently
only. .

TerRorEM B (S. V. Bockariev [1], [2]). Let fe L,(I) and let 1 < p < 0o.
Then, for some constant O(p) depending on p only, we have

0@ 1l

oy <X 0 s

This result follows from Theorem 3.1, rather simple proof of which
is presented below. i

In the remarkable paper of R.E.A.0. Paley [9] it was shown. that
the ‘Walsh system iz a basis in L,(I), 1 < p < co. After the Oarleson’s
work on the convergence of Fourier series a much stronger result was
obtained by P. 8jblin. It implies that {w,} is an a.e. convergence system
in L,(I), L<p< oo

TegoreM O (P. Sjslin [12]). If feL,(I), 1 <p < oo, then there is
a constamt O(p), depending on p only, such. that

llsup W, (f)lllp < O(0) IS llp-

A gimilar vesult for the Franklin system, although easier to prove,
will be needed later too.

,< 001l
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TaroREM D (Z. Ciesielski [6]). Let fe.L,(I), and let 1 < p < oo, Then
there is a constant O(p) such that

lsup 17 ()l < C(0) 1l

It has been proved recently by 8. Ropela [10] that {c,} is a basis
in L,(I), 1 <p < co.

Finally we need to state an inequality of 0. Fefferman and B. Stein [7].
To do this, let us compare the two definitions of maximal functions on
B =(—o0, oo) and on I. If FeI!®(R), then let us define

to-r

1
(aB)0) = sup f Fds,  teE,
and, if feL,(I), then let ’ ’
C 1
) ). = swp—— [ if(e)ds, s,

where the sup is taken over all intervals o contained in I and containing ¢.

For given f on I let us denote by fthe extension of f to B by defi-
ning f(t) = 0 for teR\I. One f.nds easily that Mpf(t) < Mf(t) < 2.Mpf(t)
for ¢el. In view of this, the general inequality of Feffermann and Stein
gives, in particular,

TrEOREM B (C. Fefferman and B. Stein [7]). Let 1 < p < co and
let g1y g2y ... be the sequence of f@mcm‘onsjn L, (I) with the property that

(3 19al"]" eI (3.
. n
Then, there is a constant C(p) depending on 7 only such that

I3 o, < ow (e,

3. The unconditionality of the Franklin basis. For a given geLy(I)
and for a given' sequence & = (g,)§, & = =1, we ot

Tng(t) =F 'Een(.‘q,fn)fn(t)'

L]

The following Theorem 3.1 is due to 8. V. Bockariev and it claims

that the operator T! is of weak type (1,1). On the other hand, 7, is of
type (2, 2). Consequently, by Marcinkiewicz’s interpolation theorem, T, iy
of type (p, p), L < p < 2. This and the duality argument imply that 7,
is of type (p,p), 1<p < oo, and therefore Theorem B is implied by
Theorem 3.1: i o ‘

In the proof of Theorem 3.1 the following lemma will be needed.’

icm
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Lomma 3.1, There is an absolute constant C such that

2

[t~8]> A sBcnepitl
P1g

t,sel.

, B 1
Ifn(t)fn(sn < Omy

Proof. It follows from (2.3) that

£ )
a0 < O-27¢O,  |fa(s) < 0-2 g0,

where n = 2"+, 1 < » 2" and ¢y is the unique integer such that
> —1 < 284 << (t). Now, it is easily seen that to each », g < r <.1, there
is a constant O(r) such that

o

Y o] 1 i
th‘ kR 0 (r)rk f|7
froes

whence we infer, putting for ingtance r = ¢ that

B ok
D f0fas) < 022 3 gt
FH<nahtl ‘ r=i

L 2|y~ 020, 2H|E—s|
< 0-2%y < 0 2%y .

8l u c
22[1,'42 (12 ]] < .
ZJ S t—sp?

However,

1
|t——al>-;’7

and this completes the proof. X ‘
TaroREM 3.1 (8. V. Bockariev [2]). IfgeL (I)ande = (e,q)g‘f«;s given,.
then there exists a constant O independent of g and ¢ such that .

0
(3.1) {{teI: 1Tg(0) > 9} < m lgli, 9> o.
Proof. For fixed y >0 let us define @ = {tel: Myg(t) > y} .&nd
P = I\@Q. From the weak L, estimate for the Hardy-Littlewood maximal
function (gee [13], p. 8) it follows that :

5
(3.2) RS E—y- ligll -
Now, if 0 <y < 5lgly, then (3.1) holds with C = 5. Therefo?e, we:
may assume that y > blgll,, so that the set P is non-empty. In this case.

let (@)%, be a Whithney’s decomposition of @ (see [13], p. 167-168), i.e.
each @, == (u;, ;> is » dyadic interval of the form (27#(»—1), 27"},
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and )
o
(3.3) Q=@ int@;nint@, =@ for s *j,
iml
(3.4) Q,I< dist (@, P) < 41Q4

¥or each ¢ there is therefore a point p;e P such that dist (Qy, 1) < 41Qy.
Since, by the definition of P, My(p;) <y it follows thai;

(3.5) [ l9(8)1dt < By (@4l
1]

Next step is to decompose (as in the original Bockariev’s proof)
the function g into a bounded function g, and a nice function g,. Let
us denote by T; the orthogonal projection of L,(@y) onto the two-dimen-
sional subspace generated by the functions 1 and ?. Now lel us set

' g(t), teP,
@8 1O =\ 10, teinbQy;

Now, the first two Legendre polynomials in I,(I) (i.e. the first two
Franklin functions) are given as follows .

fol) =1, fu(t) =VB(2t-1), tel.

Thus, the corresponding basis in the range of I is

o = §—4x-

1 1 1 —
 ult = f,,f(t>—~=wfl(7¢$—‘-), 1@

and therefore
Tig(®) = [ 9(8)fo,a(8)fou () +F1,0(8)fue(8)1ds,
Q,
whence we infer ' .
gl <— [ lg@ids, teq.
'Qll Q4 ’
This, (3.5), and (3.6) give
(3.7) ‘ 19, (1)] < 20y a.e. in I.

The properties of g, are described as follows. Rirst of all, g,(1)=0
for teP, then, g, on each @, is orthogonal to 1 and #, and therefore

(3.8) [oat=0, [Gna =0,
[} Q@
1
where Gy(t) = [g(s)ds. This implies
[]

i
(3.9 . G(t) = [gals)ds  for teqy.
uf

e ©
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Now, the combination of (3.9) and (3.7) gives !
t .

Ga(t) < [(lg(s)| +20y)ds, teQy,
tl.‘
whence by (3.5)

(3.10) [ 16a(t)] @t < 25y Q412
N
We are ready now to start proving (3.1).

The estimate for T,g,. The operator T, is an isometry on L,(I), and
therefore (8.7) and (3.2) imply

1,943 FA |
¢ 1Znt0) > )| < e = 8 = [ guopass [ ouorarl
P Q

20 2020
<= Pf 0a(81d-+209191} < = Ik
The estimate for T,g,. Let

ga = Zbufm by = (923 fn)-

n=(
The properties of g, imply that by = b, = 0. Now, for n =2+v>2,
(3.8) gives )
by = [0a(a)fa(8)ds = [gu()fuls)ds = 3] [ guls)fa(s)ds
i Q

i=1q

= - Zn‘ [@@fas)ds =~ D' [@u(s)fa(s)ds.

=1 gy Q2" &

In getting the last equality we have used the fact that @, are dyadic
and that f, is constant on @, if 1@ < 2@+, Now, if teP and se@y, then
(3.4) implies |t —s| > |@;]. Thus, Lemma 3.1 and (3.10), for teP, give

Lr.gzun:a:.ﬁ‘ PINAULE

fima) 2H<p<b L

<3 3 [16.6) 1fa0fateids

) gl <nattl Q> H @y

IR ACACILS

=1 ¢y |Qqiza—H abengartl

< f Jie@( X 3 ifaofae)as

=1 gy {—sl>a—H shanabtl
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<0- D) [16a(s)l [t —s|*ds

i=1Qy

<0- D' [ (s)ds[dist (¢, Q)1

i=1 Qg
00
<015y D]1Qu [dlist (4, Q)17
iml

Notice that (3.4) implies |Q;| < dist (s, 14’) for se@, and dist (¢, Q,) = [t —s]
for se@,, teP. Thus, for each i we have

19, [dist (¢, @)1 < 4 f
[*]

and consequently,

e [
@L(s,f) s,
8]

l'._...

Tt < 0y [ B2 g yep,
g 1t—sl

It now follows from a property of Mareinkiewicz’s integral (see [137],
p. 14-15) that for some constant O

[1Tgo(0)dt < 0-y-1Q).

P
This and (3.2) are used to complete the proof as follows

{t: 172 () > 9} < 1Q1+ [{EeP: | Togy () 1> 9} |
1
<101+ [ 1Lgu0lai< 14010 <510 120

4. The equivalence of Haar and Franklin bases. To prove our main
result, i.e.- Theorem 4.1, we mneed

Levma 4.1, Let 2% < n <2 and let A> 1. Then there is o constant
O such that for tel:

(4.1) ) < O-Mf,_y(t)  for 2*41<m,
(4.2) i (] < C-Mf, 1 ()  for =92 +1,
(4-3) faoa ) < O-My,(t)  for 241 <,
(4.4) oD S O-Mip () for m =241,

where f(t) = f(1—1).

Proof. Let us consider at first the cate of 2*--1 < n. Then n—1
=241, n =224k and 1<l =k—1 < k< 2% In this case it is suf-

ficient to eheck (4.1) according to (2.2) for

%
5 <t<270 only. Ilow-

©
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ever, since f,_y i8 & polygonal line, (2.3) gives for some constant 0> 0

RS
o

2 [ Ifa-a(o)lds > 028,
11

o . ¢

and this implies (4.1). Now (2.3). gives

A
pa (] < 027 g2,
and. since

T R Y S P T TP
2 q = O 2 1_[_23”__"12-—1' = Xn( )
we geli (4.3). .
Now, let n == 2*-+1, ie. n—1 = 2"~ 427", Thus it suffices to check
(4.2) for 1 —27* < ¢ < 1. However, in this interval |g,(t)| = 2" and by
(2.3)

; ,
28 [ |fama(8)ds = C-2%
21
%

which implies (4.2). Pinally, (4.4) is being obtained with the help of (2.3)
ay follows ’
My, (1) > C- 2% — = 0’-2%1_221—1”““ =07 faa (B,
nit) = A2 =1 :
and this completes the proqf.
TunoreM 4.1, The series ) !
o«
2 Gy fpa
Nl

comverges o Ly(I), 1< p < oo, if and only if

o
2 W Ko !

el . '
converges in L, (L). In other words, the bases {f,} amd {y,} are oquivalent
in Ly(I), 1 <p << oo .
Proof. Tor the proof, let A, = {1,2}, A, = {n: 2P 41 < n <2,
A1} and Ay = {n: n = 2*1, A3 1} Clearly, the three sets are disjoint
and. their sum gives all the positive integers. To prove our theorem we
need to show

W Sl s

where ~ means equivalence of the norms.
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The case of ¢ = 1 is trivial. For 4 = 2 (4.5) i3 obtained from Theorem
E and inequalities (4.1) and (4.3). To obtain (4.5) for ¢ = 3, we use Theorem
B, inequalities (4.2) and (4.4) and the fact that the transformation -1 —¢
is measure preserving. The relations (4.5) imply

(46 I Sl et

To complete the proof it remains to combine (4.6) with Theorems A
and B.
‘THEOREM 4.2. T'he series

00 0
aufo and  Yayg,
n=1 New=l
are equiconvergent in L,(I), 1L <p < co, and their norms are equivalent.
The proof is similar to that one of Theorem 4.1.
Using Theorem 4.2 we can establish easily
TrEorEM 4.3. The series

o0 o0
Zb,,wn and Zb,, Oy
o=l ne=l

are equiconvergent in L,(I) 1 <p < oo, and their norms are equivalent.

5. The maximal inequality for the {c,} system. The aim of this section
i3 to prove, for the {¢,} orthonormal set, the amalogue of Theorem O.
To do this we need the following

Lemma 5.1. Let r,, be the m-th Rademacher function and let for u >0

y -1
o [frnlt),  —mse< 2,,, 1<y < 2
Guty 8) = 7,5 ()2° 1 »
. y—1
Sarp(t), "57‘5: LES = 2K,

Then there is a constant C such that ‘

UG,,(t, )h(s)ds| < O-Mh(t), tel, heLy ().
I

Proof. The estimate (2.3) implies
|Fa(t, 8)] < Q-22g"1¢1 o< g1,

- Now the proof can be continued in the same way as in [6] (cf. Theorem 3.3),
and therefore the details are omitbed.

icm®
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Let us recall the definition of ¢,. Let n = 2"+», 1< v < 2¥; then

(B1) o (l) = 2'-1'/22@0 ( ;’lwl )fz' g (1)

Feul
= [w,,(s)r,m (8)G,(t, 3)‘13 = fwzi‘+v(3)Gu(t7 8)ds.
. T
It is now time to prove
TumoreM 5.1. Let 1 < p < oco. Then there is a constant C(p) such

that
Hsup 10 (f) Hl,, 0D fllpy  feLn(D).

Proof, We use the fact that Ow(f) = Fou(f) and write
sup 10, ()] < sup [Fou(f)}--sup sup Oy, (f) —Can(f)]-
" w20 20 Lo

According to Theorem D, we geb

(5.2) lsup | Fou( Il < C@) ISl
s
Now let
= Zancm
fim 0
and let
fﬂ,v = 2 Ay Cpy
M <t +v
hyy = Uy Wy, «
ab<n<af4r

It follows from (5.1) that
Fup(® = [ I, (8)6(t, 8)ds,
I

whence, by Lemma 5.1,
fup ()] < O- MMy, (8),

(5.3) ) < 0-MA* (),

where
¥ =sup sup |ful

w0 1 <t

¥ =psup sup |kl
30 1<raat

(-]
=3
b= Z Uy Wy

ne=l

It we define
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then, by Theorem 4.3,

(5.4) : B, < C(0) 11
On the other hand,
(5.5) 1< 2 sup (W, (h)].
n>1

It follows mow from (5.3) by the Hardy-Littlewood maximal theorem
that

(5.6) 17y < O (@)1 1],
and from (5.4)-(5.5), by Theorem U, that
(8.7) ¥, < O (@) Il

Thus the combination of (5.7) and (5.6) gives

IF*ls < C(@) 1 lp-
- This jointly with (5.2) gives the required result.
THEOREM 5.2. Let 1 < p < oo and let feL,(I). Then the series

0

(5.8) : I, enen(t

. =0
converges a.e. on I. ’

The standard proof of this result, in view of Theorem 5.1, is omitted.

We conclude this section with the remark that a recent result of
8. V. Bockariev on uniformly bounded orthonormal systems implies the
existence of feZ,(I) such tha‘u the series (5.8) diverges on a set of positive
Lebesgue measure.

6. Estimates for the constants and some of their consequences. It
has been shown by G. Watari [14] that the operators W, are uniformly
in n of weak type (1, 1), i.e. for n > 1 with some constant O

(6.1) [{E: (W, f(t >y} < “‘"“f“ly ¥ >0,

On the other hand, the Wn’s are uniformly in » of type (2, 2). This,
(6.1) and the Marcinkiewicz interpolation theorem (see [15], Vol, LI,
(4.6)) imply that there is an zbbh'olute constant ¢ such that
(6.2) IWa(f)llp < 0~-—~ llfl\p, l<p<oeo

For the system {,} we have a similar inequality

(6.3) 10, ()1l < Orllfllm 1<p<eo

icm°
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To see thix we follow step by step the proof of S. Ropela [10] that {e,}
is & basis in Ly (I). Firt of all, we notice that there is O such tha (cf. [3])

(6.4) (Pl < Olflpy  1<p< 00

Since Fyu = Oy, it follows from (6.4) that for 2% < < 2%+
(6.5) 1Ca(F)llo < Ol lp+ I Co —Cos) (£l

The argument in [10] gives for some constant ¢

(6.6) (Chy w%n)(f)ﬂﬂ <0 W(p) ”(02/‘4'1."02“)]‘”127

where W(p) = sup {|W,(f)lp: lifl, <1, n> 1}. Thus, combining (6.5),
(6.6), (6.4) a,nd. (6.2), we obtam (6.3).

TumoreM 6.1, For the system {e,} the following statements hold.
If feLlog™ L, then for some consiant C

10, (Nl < O [ 1£(2) log* £ (1) dt+0,
I

and, moreover, |0, (F)—Ffl, = o(1) as n—»oo.
There are absolute positive constants )\ and C such that

f oxp [0, A< O for  [ffle<1

This result follows from (6.3) by a general Theorem (4.41) in [15],
Vol. II.

To obtain some results concerning
Ox(f) = sup |Cu(f)]
n

in the limitting cases of p =1 and p = oo, we need to take more careful
look at the proofs of Theorems 5.1 and 4.3. Moreover, rather delicate
results on

W*(f) = SEP |Wn(f)'

and arguments from [12] will be needed.
The following operators

T(f) = D) (fs #a)us

Nl ¥

QU = 3 (fsF) s

7yl

8

2

are well defined for Haar and Franklin polynomials, respectively.
By a Franklin-Eaar polynomiel we understand a finite llnear com-
bination of Franklin—Haar functions.

7 — Studia Mathematica 60.3
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THEOREM 6.2. There is a« constant O such that

‘ ¢
(6.7) [I{e: le(i)I>?/}l<—y—,llfllu y>0,
and
(6.8) 1 !Qa( N>y < ——. lgl, . y>0,

hold for arbitrary Hoar ond Franlklin polynom'mls [ and g, respectively.

Proof. Inequality (6.8) can be proved exactly in the same way
as Theorem 3.1. The proof of (6.7) is even simpler, it requires only inytead
of inequality (3.10) the following one

PG f lga(t)] @ < Q4] f lga (1)1 dt < Oy 1@,

where Q] =27F, amd no mtegra.‘nmn by parts in 1,110 formula for coef-
ficients is needed.

Now it follows from (6.7) and (6.8) that TH,(f} and QF,(f) converge
in measure for each feI,(I), and the limits are used as definitions of
T(f) and Q(f), correspondingly. It is therefore clear that with such defi-
nitions (6.7) and (6.8) hold for all f, gLy (I). Thus, the operators I' and ¢
defined on I,(I) are of the weak type (1, 1), According to Bessel’s in-
equality, both of them are of type (2, 2). Thus, the Marcinkiewiczs intier-
polation theorem (cf. [15), Vol. IIL, (4.6)) gives

Wil < == Wflor  1QFlp < —— Iflpy 1 <p<2

Thus, T: L,~L,, 1<p 2, is bounded. Consequently, ity .conjugate

/i L+—>1},1, Where 27 4+¢ =1, is bounded too and [T, = [IT%,.
However, T* = (, whence we infer
pﬂ
(6.9) |1QH,,»~ 0——~—]~, l<p< oo,
Similarly, @* =T, 19", = @y, Le. [Tl = IQll,, whence we get
(6.10) 17, < 017:1", l<p< oo,
Notice that QTf =f for feL,, and therefore IR0, 1Ty 2 1. Thix,

(6.9), and (6.10) give then
(6.11) , (Cp9) ™ If lp < 1T lp < O PG [1f lhys
where p~' +¢™ =1, 1 < p < oo, and, clearly, this implies Theorem 4.3.

icm
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TiceormM 6.3. There is o constant C such that

(6.12) 101 < O [1fI(log* |f 1)+ C
I
and
(6.13) lim O, f(f) = f(t) a.e. if feL(log L)

MO0

Morcover, there are positive constants 2 and € such that

(6.14) J exp [AOW)PI< O if Ifllo <1

Proof. To vhow (6.12), we use the inequality (cf. the proof of Theo-
rem B5.1)

(6.18), Ouf < C{Mf+MW.Qf},

where O ix a constant and M is the Hardy-Littlewood maximal operator.
It is proved in the P. Sjslin’s paper [12], p. 567, Lemmar 3.3, that
e,

IWazplp < € 1<p<?

(p—- )2

where y 18 the characteristic function of the set ¥. It follows that -

1MW s gl < O I, 1<p <2,

1
(p—1)?

whence, in the same way as in the proof on pp. 568-569 of [12], we get

IMW,f1,< O [ 1](og* f1)s-+C.
‘ I

Therefore (cf. [15], Vol. II, p. 119)
nMW*czm <0 f 1QF | log*|Qf )*+0 < @ f If1(log*£1)* +

)

and ‘uhw in. combination with (6.15) gives (6.12).
To prove (6.13), we use Theorem (B) of [12], ie.

IWafll < O [1£1(log* £ 1) +0
x

which implies

(6.16) | MW*Qf(z»y};' <oimash< [ f a1 tog* 1a7+0]

ST[G’flfl(log*lfl)“rO],
v L
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Now (6.15) and (6.16) give
@ 0uf) = <=0 1910087 10 40], 9 >0,
I

from which (6.13) follows.

Tt remains to prove (6.14). It is known that, for p = 2, |Mfl, < OlIf |,
and it is shown in [12], p. 569, that |W.fll, < Cplif I, for p 2 2. Moreover,
according to (6.9), we have ||Qf|l, < Opllfi, for p = 2. The combination,
of these three inequalities and (6.15) give [[Cafll, == Op®llfil, for p = 2.
The inequality (6.14) follows now from a general result (ef. [15], Vol. II,
Theorem (4.41)).

References

[1] S.V. Bockariev, Ewnistence of basis in the space of analylic funatiomgm the
disc, and some properties of the Tranklin system, Mat. Sbornik 95 (137), (1974),
pp. 3-18 (in Russian).

— Rome inequalities for the Franklin series, Analysis Mathematica 1 (1975),
pp. 249-257.

7. Ciesielski, Properties of the orthomormel I'ranklin system, Studia Math.
23 (1963), pp. 141-157.

— Properties of the orthonormal Franklin system LI, ibid, 27 (1966), pp. 280-328.
— A bounded orthonormal system of polygonals, ibid. 31 (1968), pp, 339-346.
— CQonastructive function theory and spline systems, ibid. 43 (1975), pp. 277-302.
C.L, Pefferman and E. M, Stein, Some mowvimal inoqualities, Amer. J. Math,
93 (1971), pp. 107-115.

J. Maxeinkiowicz, Quelques théordmes sur les séries orthogonales, Ann. Soo.
Polon. Math. 16 (1937), pp. 85-96.

R.E. A.C. Paley, A remarkable series of orthogonal funclions, Proc. London
Maith. Soe. 34 (1932), pp. 241-279.

S. Ropela, Propeiiies of bounded orthonormal spline bases, in Approwimation
theory 1975, Banach Center Publications, Vol. 8 (to appeax).

F. S8chipp, On a.e. convergence of ewpansion with respect to a bounded ortho-
normal system of polygonals, Studia Math. 58 (1976), pp. 287-290.

P. 8jo6lin, An inequality of Paley and convergence a.c. of Walsh-Tourier series,
Arkiv Mathematik 7 (1968), pp. 551-570.

E. M, S8tein, Singular Inmtegrals and Differentiabilily Propertics of Iunstions,
Princeton, N.J., 1970,

Ch. Watari, Mean convergence of Walsh Fourier series, TOhoku Math. J. 16
(1964), pp. 183-188.

A. Zygmund, Trigonometrio series, Cambridge 1959,

2]
3]
(4]
[5]
6]
(7]
18]

)
[10]
11
[2]
(1]

14
18]

MATEEMATICAL INSTITUTE OF THR POLISH ACADEMY OF SCIENCHS, WARSAW
DEPZRTMENT OF COMPUTER MATHUMALTICS, BOTVOS LORAND UNIVERSITY, BUDARRST
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF STOUKHOLM, STOCKHOLM

Received November 11, 1975 (1088)

icm°®

STUDIA. MATHEMATICA, T. LX, (1977)

Quelques propriétés des opérateurs uniformément convexifiants

par
B. BEAUZAMY (Palaiseau, Trance)

Répumé, Soient 7 ol F' deux espaces de Banach entre lesquels existe une
injection continue 4. Bn utilisant les constructions de Brunel~Sucheston, nous mon-
trons que 4 n'est pas uniformément convexitinble &i et seulement si'on peut construire
deux espaces de Banach Ky et 7y, munis do bases E.8.A. (¢,) ot (fy), et une injection
continue 4, do 7, dans ¥, qui onvoio (e,) sur (f,) et qui est finiment représentable
dang 4. Nous on déduisong en particulier que si ¢ n’est pas uniformément convexi-
fiante, on peut trouver des carrés homothétiques dans B et F (et aussi dans n’importe
quel espace intermédiaire entre B ot F). Nous étudions auvssi les rapports avec les
ultrapuissances ot Vinterpolation.

1. Carrés dans les espaces intermediaires. Soient H ot I' deux espaces
de Banach, et 7' un opérateur linéaire continu de ¥ dans F. Nous dirons
que B et I ont des carvds lids par T si, pour £t ¢ > 0, on peut trouver
dans B deux points u, v, avec
Tw T

2 7
= (1 —e)sup ([Tullp, 1 T0]7)-

‘ 1w
(L) Mgl |vlg<1, } 5

=z 1—e, }

iz

8i T est une injection continue de B dans F, et si B et F ont _des
carrés 1:és par T, nous dirons qu’ils ont des carrés homothétiques: les points
(%, v) forment un carré dans H, et les points

w v
sup (lullg, o), — sap (lullg, lule)’

considérés comme des points de I (c’est-b-dire B étant plongé dans r
par T) forment un carré dans I

Oen définitions s’étendent an cas odt ront donnés » espaces de Banach
Xy, ..., Xy, ob des opérateurs linéaires continus Ty Xy—>Xyppy, ¢ =1,...
vovy % —1. L encore, si les 7'y sont des injections, nous parlerons de carrés
homothétiques dans (Xy, ..., L) ’ o

Nous renvoyons & [1] pour la définition et les premidres propriétés
des opérateurs uniformdément convexifiants. Nous emploierons. s.e1.11e~
ment 1a caractérisation ci-dessous, qui est équivalente % la défmmog.

Rappel. T, opérateur linéaire continu de F dans F, n'est pas uni-
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