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A conjecture of Ulam on the imnvariance of
measure in Hilbert’s cube*

by
'JAN MYCIELSKI (Boulder, Colo.)

Abstract. We prove in this paper that the standard product meagure in Hilbert’s
eube I? is invariant relative to various metrizations of I®.

1. Two sets X, Y in a metric space § are called isomeiric if there exists
an isometry of X onto ¥, i.e. a distance preserving map of X onto ¥.
A measure over a o-algebra of subsets of § is called invariant if isometric
measurable sets have the same measure.

Let I be the closed unit interval [0, 1], I* the Hilbert cube and u the
standard probability measure in I°.

Given a sequence a = (@, @,,...) of positive real numbers with
>a% < oo, we can introduce in I” the distance funetion

a9 = (St

S.M. Ulam agked whether x is invariant relative to d,. It is the pur-
pose of this paper to prove some fheorems related to this conjecture.
The conjecture, however, remains open and we give only a reduction to
a problem of finite-dimensional geometry (Theorem 5). First we apply a
theorem proved in [2] to show that, if two open sets in I“ are isometric,
then their measures are equal (Theorem 2). But I was unable to extend
this to closed sets, which would be enough to settle Ulam’s conjecture.
We prove, however, that p is invariant with respect to some other metri-
sationg of I® (Theorem 3). We prove also a theorem on the extension of
invariant Borel measures from Borel subspaces of metric spaces to invariant
Borel measures over the whole space (Theorem 6). Some of these results
were announced in [3].

T am indebted to A. Iwanik and A. Ehrenfeucht for their eriticism of
a first draft of this paper.

2. First I shall prove a theorem which irnplies the conjecture under
the additional assumption that X and ¥ are open in I°.

* This work was supported by NSF grant GP—43786.
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We need a slight refinement of Theorem 1 of [2].
Let S8 be a compact metric space. For any set X < § and any t>0
we pub

B(X,t) = min{card K: K is a covering of X with sets of diameters < t}.

A get A < 8 is called thin if for every ¢ > 0 there exists a > 0 and
an open set ¥V < 8§ such that 4 = V and for every compact set O = V
and every positive ¢t < § we have

L BO,h<

TEEOREM 1. If 8 is a compact metric space, then there ewists o complete
Borel measure v on S such that v(S) =1, if A = 8 and A is thin then
»(4) = 0, and for any sets U, V < 8 both open in 8, if U is isometric to V
then »(U) = »(V).

This theorem, except for the part about thin sets is proved in [2],
and it is obvious that the construction of the measure given there on p. 109
satisfies also this additional part. We could also refine the above theorem
in the style-of [2], removing the supposition that § is compact and. sub-
stituting the conclusion that »(8) = 1 by »(C,) = 1 for some €, compact
and thick in § and considering thinness relative to 0.

ProposITION. If A = 8 and for ‘every positive integer m there emists
a set V, including A, open in § and such that there ave disjoint sets Vq, ..., V,,
in 8, all isometric to V (the V,; need not be open in 8), then A is thin.

Proof. Given ¢ > 0 choose # such that 1/n < e Let V be ag in the

B (8,1).

assumption. Then for any compact set ¢ = V we have » disjoint compact

sets 0; = V,, all isometric to C. Put & = }min{d(z,
4 # j}. Then, of course,

y): weC;, yeO; for

E(OJ t)g——E(S,t)

for every t << 6. m
Levma 1. If 8 = I® and d is o translation invariant metrisation of
8, i.e., d{z,y) = d(x+2, y+2) whenever ©,y, z+2, y-+2e8, where -~ de-
notes vector addition, then the measure v of Theorem 1 is unique and v = y.
Proof. From the translation invariance of d we get that of » over
open sets. Consider a cover of I"™ with m® isometric m-cubes with non
overlapping interiors. Let C,, be the collection of cylinders in I® over
the interiors of those cubes. We want to show that
(0) v(K) = u(K) for all KeCpy,.

By translation invariance over open sets, we have »(EK;) = v(K,) for all
K,y KqeOpy- Hence, it is sufficient to establish that »(Boundary (U Opy))

icm
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= 0. This follows from Theorem 1; indeed by Proposition, it is easy to
check that Boundary ({JC,.,) is a ﬁmte union of thin sets.

Now, since the cylinders of U Coun generate the Borel o-algebra of
myn=1

1%, hence, by well known facts, (0) implies » = u. m

TEEOREM 2. If A, B < I° are open sets for which there ewists a translation.
invariant metrisation d of I° consistent with the product topology and an
isometry f of A onto B with respect to d, then u(X) = (F( X)) for every
p-measurable set X = A.

Proof. Theorem 2 follows from Theorem 1, Lemma 1 and the regu-
larity of u. m

Remarks and problems. 1. Theorem 1 yields a refinement of the
translation-invariance of the Haar measure in compact metric groups
with-a left (right) invariant metric. See also [2] for the locally com-
pact case.

2. The proof of Theorem 1 given in [2] uses the axiom of choice for
uncountable families of sets. Can one prove Theorem 2 without using
this axiom? (Perhaps the ideas of Cartan and Loomis [1], [4] could be
helpful in this problem.)

3. In connection with Theorem 2 let us recall that an open set in a
compact metric space cannot be isometric o a proper subset or superset of
dtself (see [0]). This fails in gemeral for F, or @, sets (the set {e™:
n=0,1,2,...} in the unit circle and its complement are counter-
examples).

4. Let A < I” be a closed set with u(4) > 0. Let f be an isometry
of A into I” with respect to d,. Must then f be extendible to an isometry

of B onto B, where B is the space of all bounded sequeneeﬁ of rea.ls with
the metric d,?

3. Now we consider the following metrisation of I® compatible with
the product topology. Let @ = (a,, a4, ...) be a sequence of positive real
numbers with a,—0 and let

0a(®, y) = max{a|z;—y,: ¢ =0,1,2, et

TuaeorEM 3. If there ewist constants o <1 and N such that

1) Oy < an, for all nz=N

then u is invariant relative to g.

First we prove a theorem which synthesises the construction of
Hausdorff measures for certain metric spaces. Let S be a complete metric
space and ¢ a non-empty compact subset of 8. For every t > 0 we denote
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by E(t) the minimum number of sets or diameters less than ¢ necessary
to cover C.

THECREM 4. Suppose thai there ewists a constant y >0 such that for
every finite sequence 1y, ..., 14, of positive numbers for which there ewists a
covering of C by n sets of diameters less than %y, ..., t,, respectively, we have

—_——=y.
fe=1 E(ik) -

Then there ewists an invariont Borel measure v over 8 such that »(0) = 1.

Proof in outline. We put h(f) = 1/HE (). We define the Hausdorff
outer h-measure ¢* for every X < 8 by the standard formula

@)

*(X) = limint 3 h(t;
24 (X) clmntl;" (t:),

where t = (t,, t,, ...) Tuns over all finite or infinite sequences of positive
reals with ¢; < d for all ¢ and for which there exist sets of diameters less
than t, t,, ..., respectively, covering X. It is easy to check that x* is a
Carathédory outer measure invariant under isometries of sets (see [6]).
Hence, (see [7]) all Borel sets are y*-measurable and the restriction y of
#* to Borel sets is an invariant Borel measure. By the definition of & it
follows that y(0) < 1.-Since C is compact the assumption (2) implies that
2(0) > 0. We set v (X) = y(X)/2(C) for every Borel set X = § and Theorem
4 follows. m

LeMMA 2. If O = I and the metric in C is o, with a satisfying (1), then
the hypothesis of Theorem 4 is true.

Proof. For any > 0 we put
M =max{i: a;=t}.
Let a and N Dbe as in (1) and

N
= ex (—a 2——1——— 1 )
Yo P N 4 1—al

1m0

We assume that ¢ is so small that M > X. Using a covering of I* with
parallelepipeds we see that

s< [ (o).

1=0

3

icm°
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The following inequalities follow from (1).

[10)/ [T %= T6+2)

Therefore, by (3),

(4)

=0

If X < I®is aset of diameter < ¢ with respect to g,, then the projection
of X into the ith axis of I, where i < M, is included in a segment of
length t/a;. Hence, the outer measure

M

i
*(X) < —
cm<] [+

Now we pub
M(k) =max{i: a; >}, for k=1,...,n.

It follows that, if there exists a sequence of % sets covering I® of diaimeters
less than t,, ..., %,, respectively, then

n M)
+ 1.
; @;

k=1 i=0
Hence, by (4), if M(k)> N for k =1,...,n, then

n n MK "
gm>'}’og gz??’o-
To get rid of the assumptions M (k) > N, we put
y = min(y,, 1/B(1)),

where ¢ is the largest number such that M > N, and Lemma 2 follows. m


GUEST


6 " J. Mycielgki

Proof of Theorem 3. Since g, is translation-invariant Theorem
3 follows from Lemma 1, Theorem 4 and Lemma 2. m

Remark 5. It is doubtful whether condition (1) is essential for the
conclusion of Theorem 3 because, in a sense, there seem to be very few
isometric pairs of sets in I* with regpect to g,. But I was nqt able to estab-
lish the hypothesis of Theorem 4 except in this case. See [2] for related
open problems.

4. Now we return to the metric d, of Section 1, where ¢ is a sequence
of positive numbérs with Y'a} < co. We put

00
T = ( 2 a/g)l/i

T

and define the parallelepiped
= [0, ag] X [0, ;] X ... X [0, @p_,].

Let d, be the ordinary Huclidean distance in Cf' and i™ the ordinary
Lebesgue meagure in . For every set P < (7 and every ¢ > 0 we put

{5) PO = {e0: dy (2, P)< 1},

ie., P® is the open {-neighborhood of P. Let now t(a, m) be the smallest
real number such that for every closed set P < O and every function
F: P—(OP such that

!dm(m,y)—dm(ﬂu )| <7, for all z,yeP,

we have
(6) {7 () ¢em™) > 2 (P).

It is easy to check that such a smallest number exists. :

The theorem which follows reduces Ulam’s conjecture to the following
one: If }a? < oo, then
({7) lim ¢(a, m) = 0.

M—r00 :

THEOREM 5. If a satisfies (7), then u is invariant with respect to d,.

Proof. By the regularity of u and the compactness of I, it is enough
to prove that closed isometric sets have equal measures. Thus let X, ¥
< I® be closed sets and f: X—Y be an isometry of X onto ¥ with respect
to d,. Let p,: I?—0y be defined by

(GBoy MyByy oeey Gy Bppy) Tor m =1,2, ...

pm(m) =
TFor every Borel set Z = O we put
Am(Z)

Z) = ——.
#n(2) Aoy .o Gy

icm
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‘We need several auxiliary facts. Since 4 is a produet measure,

(8) (P (D)) 1e(Z)
For any Z < I” and ¢> 0 we put:
ZH = (geI®: d,(2, Z) < 1}.
Then, by (5), we get’
(9) : Pn(Z9) = (pn(2))0.
Let us prove that
(10) If Z = I® is a closed set and 1,0, then
tin (D (Z™))>11(2)
y (8), for any positive integer n we can easily prove
3 () < i (P 2)) < i (Pt 2P (2.

Sinee' u(Z*)|u(Z), we get (10).

We define a function F': p,(X)— 07 by putting

F = ppofoq,
where ¢: p,(X)—X is any function such that
D) =u  for all uepy,(X).
Since f(X) = ¥, we have
(11) . F(pn(X)) S pu(T).

Let us prove that
(12)  |dm(w, 0) = (EF(w), F(0))| < 7m
It is clear that

(%, )

< dalg(w), ¢(0) < A, 0) + 73,

da(fla(w), Fla)) = dala(w), 2(0)),

"gince f is an isometry, and that

da(fla(w), flate
Hence (12) follows.

) =7 < A (F(w), F(0

for every closed set Z = I°.

for all u, vep,(X).

)< da(f (a(w), 7la (©)-
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Now we conclude the proof of Theorem 5. For any n > 0 there exists
an M such that for all m > M we have

()£ 2 ph (D (TEE™))) [by (7) and (10)]

= (P (7)) ) [by (9)]

> ton (B (2 (D)) @™)  [by (11)]

2 (P (X)) [by (6) and (12)]
> u(X). by (8)]

). And, by symmetry, u(X) = x(¥). n

5. The metrics d, and ¢, extend in a natural way to the space B of
all bounded sequences of reals. Can one extend x to the o-algebra of Borel
subsets of B preserving its invariance? Theorem 4 and Lemma 2 enable
this to be done for the metrics g, satisfying (1), but we can prove a more
general theorem.

Let M be a metric space and M, a Borel subset of M. Let u, be an
invariant Borel (not necessarily finite) measure over M,.

THEOREM 6. u, can be extended to an invariant Borel measure over M.

Proof. For every Borel set X = M we put

We conclude that u(Y)> u(X

w(@) = sup Zuo(fl

f)i=1

where (4, f) = (41, A4y ...), (i, fa;...)) Tuns over all pairs such that
A; are disjoint Borel subsets of X, f; is an isometry of A; into M, and the
fi(A;) are Borel sets. We have to prove the followmg three things.
(i) @ is countably additive;
(if) @ is invariant;
(iii) 4 is an extension of u,.

To show (i) notice first from the definition of w that, if X,, X,, ..
are disjoint Borel sets in M, then

(13) ) u( Q xX,) =

To prove the reverse inequality choose any ¢ > 0 and (4, f) satisfying the
above conditions with X = (X, such that

n=1

(14) 0 X< walfil i)+
= i=1

icm
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Since the X, are Borel, the sets 4;, = 4;nX, are Borel relative to 4.
Since f; is an isometry, fi(A;,) are Borel relative to f;(4,). Since the f;(4;)}
are Borel, the f;(4,,) are Borel in M,. Hence

0 o0

Z#Ofi ‘L)) "2 quof’t 'm

i=1 n=1

(15)

o oo

= ZZ/‘OU.; A{n Z (Xn)

n=l i=1 n=l

By (13), (14) and (15), we get (i )

(i) follows since isometry of Borel sets pre%erves Borel subsets.
(iii) follows from the invariance of u,.

THEOREM 7., If M is a metric space which has an uncountable compact
subset, then there exists an invariant Borel measure over M which is finite

and positive on some compact sels and vanishes on points.

Proof. If M is compact, then this theorem can be proved by an obvious
modification of an argument of Oxtoby [5], p. 220 ff. In view of Theorem
6 this implies the general case. m

6. We take this opportunity to recall the following results which permit
to solve a question raised in [2]. )

Let C be the axiom of choice for countable families of sets. R. M. Solo-
vay [8] proved among other things that C is insufficient to prove the ewistence
of sets of real numbers without the property of Baire. He also announced in
[8], p- 3, a theorem (proved independently by David Pincus, The strength
of the Hahn—Banach theorem, Victoria Symposium on Nonstandard Analysis,
Springer 1947, pp. 203—248) which can be stated as follows.

THEOREM 8. C implies that if there ewists a countably complete Boolean
algebra of sets B and a finite and finitely additive measure on B which is
not countably additive, then there ewists & set of reals without the property
of Baire.

By those results Theorem 3 of [2] cannot be proved without using
the axiom of choice for uncountable families of sets.
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On a class of Banach spaces

by
M. VALDIVIA (Valencia)

Abstract. A Banach space H with F**/H separable is the direct sum of a reflexive
subspace and a separable one.

The Banach spaces we use here are defined over the field K of the
real or complex numbers. If (&, F) is a dual pair of vector spaces, with the
bilinear form (&, y>, zeEB, y<F, we represent by o(E,F) the locally
convex topology on B such that the origin of F has as neighbourhood
sub-basis {U,: yeF}, being U, = {zeB: [z, yp| <1} I B 1s a Banach
space, we consider it as a subspace of its second conjugate E** by means
.of the canonical injection. If F is a subspace of ¥, we denote by F* the
subspace of B* orthogonal to # and by F-* the subspace of B** orthogonal
to FL. We say that B is weakly compactly generated space, or WOG space,
if there is in B a weakly compact fundamental set.

TuroREM. Let B be o Banach space such that E|H is separable.
Then B is a direct sum of a reflevive subspace and a separable subspace
{clearly, every separable subspace of B has its second dual separable).

We shall need the.following lemmas: B

LevMa 1. Let F be a closed subspace of a Banach space X. Assume
ihat every w**<X** that belongs to the o(X*™, X*)-closure of a countable
bounded subset of X is of the form w** = g +flt with veX and frteF+t.
Then the space X |F is reflevive.

Proof. Let (Z,) be a bounded sequence in X/F. If ¢ is the' canonical
mapping of X onto X/F, let (#,) be & bounded sequence in X such that
(@) =Ty, m =1,2,... If 5* is an accumulation point of (z,) in
X [e(X™, X1, we set

B =y fil,  meeX, frledtt.
Ti u is an element of F-, the sequence of elements of K, {u(,)), has an
accumulation point }*(u). On the other hand,
= (@ + 1) (w) = (),

w(@,) = (@), %" ()
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