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either @ = 0 or a = 1. Thus either P, (f) =for Py(f) = 0. Let =, =
d .
{4,)%,. Then I = Y P,. Therefore P, (f) =f for some . But then
f=1 .
N(f) = N(P4(f)) < &, Since lime, =0, f = 0.
n~r00

Finally we let K = [F, —F]. Therefore K = {af—(l——a)g:_f, ge F,
since F is a compact convex set. Now & is not an extreme point of 13?,
gince F < K and if fe F with f 5= 0, then 3f-+-3(—f) = 0. Suppose g is
an extreme point in K. Then ¢ = af;+(L—a)(—f.) for fi, f, ¢ F. Bub
then either @ = 0 or @ = 1. Thus g F' or ge — F. Without loss of gener-

ality, we may suppose ge F. Since g == 8, g is not an extreme point of F.
Thus K has no extreme points. This completes the proof.
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On the Jordan model of C, operators

by
- HARI BERCOVICI (Bucharest)

Abstract. The aim of Part I of this note is to find a Jordan quasisimilarity model
for 0, operators acting on Hilbert spaces of arbitrary dimensions. In § 1 the “non-sep-
arable” quasisimilarity invariants of a 0, contraction are found. The main result of
Part Iis Theorem 1 (§ 2) which asserts the existence and the uniqueness of the Jordan
model. In our proof we use the existence of the Jordan model, already known for O,
operators -acting on separable Hilbert spaces ([1]).

The second, part of this note is a continuation of [3]. We apply the Jordan model
of (), operators to the problem of classifying the representations of the convolution
algebra I'(0,1). In §3 the canonical representations of I'(0,1) are defined and
they are shown to be unitarily equivalent to some “obvious” representatioms. The
main result of Part IT is Theorem 2 (§-4) where each representation of I(0, 1) into
a Hilbert space is asserted to be quasisimilar to a wunique represemtation whioh is
the direct (orthogonal) sum of a canonical representation and a trivial representation.

In [2] the C, operators acting on a separable Hilbert space were
shown to be quasisimilar to Jordan operators. The main result of Part
I of this note is to extend this result to arbitrary C, operators.

The general result of Part I has been suggested by the particular
case used in Part IT. In the particular case of nilpotent operators, the
problem of the Jordan model is already solved in [1]. The problem of
clagsifying the representations of the convolution algebra ZL'(0, 1) has
been suggested by C. Foias.

Preliminaries. () Let us recall that 0, is the class of those completely
nonunitary (cnu) contractions 7' of a Hilbert space, for which there exists
a function we H®, w 5 0, such that «(T) = 0. Among the functions u
satisfying the relation % (T) = 0 there is an inner one which divides all
the others. This function, determined up to a scalar multiplicative con-
stant of modulus one, is called the minimal function of T and is denoted
by mgp. The function myp is constant if and only if 7' acts on the trivial
space {0}. )

For each nonconstant inner function m there exists an operator T
of class €, for which my = m. Such an operator is S(m) acting on H (m)
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= B*©mH? 8(m)u = Py, (eu(2)) or, equivalently,
S(m)*u =i(u(z) —u(0)) for weH(m).
(b) For a cardinal number N we define 8 (m)" as
(1) the operator 0 on the trivial space {0}, if X = 0;
(2) the direct sum of ¥ copies of S(m), if N 0.
(e) We consider the set of the inner functions in H* ordered by div-

isibility. We put m, < m, if m, is a divigor of m,, and m, < m, i m, < m,

and m, # my. If my < my, we denote by (my, m,) the set of all inner func-
tions m such that m, < m < m,; similarly, [m,, m,) = = (M, M) U {my},
(1myy Mg ] = (M, M) UM}, [y, My] = (103, my]U {my}.

If mg, is an inner function for each ae 4, we denote by /\ my, the greatest
common divisor of the functions m, and by \/ m, the least (ommon multiple
of the functions m, asd

(@) For an order relation <, the opposite relation <’ iy defined by

<'y if and only if y < . An ordered set (M, <) is well ordered if ea(h
nonvold subset of M contains the least element. We say that (M, <
is & well anti-ordered set if (M, <') is a well ordered ret. Bach set of amdi-
nal numbers is well ordered. .

(e) We will frequently use in the sequel the following assertions:

If ¥, and N, are cardinal numbers and N, is transfinite, then N, N,
= max (Ny, ¥s), No'N; = N,. Here ¥, denotes, as usual, the first transfinite
cardinal number. For the facts from the cardinal number theory, see
e.g. [6].

(f) Let us consider an operator of the form

(*) T = @S(m)“m,

where for each inner function m, Ny, is a cardinal number (possibly N,, = 0).
DEFINITION 1. The operator (+) is a Jordan operator if :
() the seb 4 = {m: N,, 5 0} is well anti-ordered (by divisibility);
(b) if my, mye A, my < m, and R, >N,, then le> 5’ ?\m,
(c) the set .4y = {m: me 4,8, < D} is a decreasing (powmbly finite)

sequence (this means that 4, = { i}ia1; Where m < oo and My > Mgy
for each j).

Remark 1. If the operator 7 acts on a separable space, then, after
a permutation of the terms in the direct fum, we have

T=@S(mj), n< oo,
J=1

~and for each §, my,, divides m;, if T is a Jordan operator.
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(g) Let us recall that a linear hounded operator X from a Hilbert
space H, into another H, i3 a guasiaffinity, if it has a densely defined in-
verse. A bounded operator T, acting on H,is a quasiaffine transtorm of a
bounded operator T, acting on H,, if there exists a quasiaffinity X
from H, into H, such that T,X = XT,. We denote this relation by
T, 3T, or by T, &T,. The relation -3 is reflexive and transitive, and
T, 3T, yields Ty 3 T7.

Two operators are quasisimilar if each one is a quasiaffine transform
of the other. If T, and 8, are quasisimilar for each ae 4, then @ T, and
® 8, are quasisimilar. aed

aed

ProposrrioN A (Theorem 1 in [2]). Bach C, operator acting on a sep-
arable Milbert space is quasisimilar io o Jordam operator. Let Ty and T,
be Jordan operators acting on separable spaces. If T, -3 T, then T, = T,.

(h) We recall the definition of the Nevanlinna dass Ny. For a cnu
contraction T, K is the class of those ue H* for which % (7T) has a densely
defined inverse. Then we can define Ny as the elass of the functions of
the form f = wu/v, we H®, ve KF. For f = w/ve Ny, f(T) is defined as

o(T)u(T).

For the properties of the functional caloulus thus defined see [4], Chapter IV.

PART X

1. The multiplicity functions f and g. Let T be a 0, operator acting
on. the Hilbert space H. We can decompose H into a direct sum H = @H P

each H, being a separable space, reducing for 7. Aplying Proposmon A to
T, = I[,,a, we see that T is quasisimilar to an operator T of the form

(%) T = @S(’m)gm

where for each divisor m of the minimal function mg, ¥, is a cardinal
number (possibly ¥, == 0).
Tor a divisor m of my we define

(1.1) flm) = 3,

where the sum is extended to all functions m’ such that m’ non < m
Since m (8(m')) = 0 if and only if m'<m, it follows that f(m) co-
incides with the number of the nonzero terms in the direct sum m(T")
= @m(8 (m'))*n". For m'non< m we have 1< dimRange(m (S (m')) < No;
"
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thus, if we put
(1.2) g(m) = dimRange (m(T")),
we have the relations

(1.3) flm) < g(m) < Rof(m).

Tt follows that f(m) is transfinite if and only if g(m) is transfinite, and
in this case we have f(m) = g(m). ) )

Now let us consider two operators 7', T" acting on H, H , respect-
ively, and a quasiaffinity X from H into H such that XT = T"X. If
T,T are cnu contractions and meH®, then Xm(T) = m(T)X.
Therefore X (Range m(T)) = m(T')(XH) thus  X(Range m(T)) =
Range m(T"), dim Range m(T) = dim Range m(T").

From this remark it follows that the function g defined by (1.2) is
an invariant of the ¢, operator I' with respect to quasiaffine transforms.
In [1] it is shown that in the particular case of nilpotent operators, the
function g provides & complete system of invariants of T, with respect
to quasiaffine transforms. As we shall see later, this is not true for any
C, operator.

~ DEFINITION 2. A divisor m of myp is a saltus point for f if there is no
m’ < m such that f is congtant on (m’, m]. The cardinal number

(1.4) . k(m) = min{f(m'): m' < m}

is the saltum of f at m.

We shall use the notation 4,, for the set of those saltus points m
for f which satisfy -h(m) > N,.

We now state the facts we need about f and ¢ in the following prop—
osition.

PROPOSITION 1.

(i) f and g are cardinal number volued decreasing functions on the
set of the divisors of myp.

(i) f(mg) = g(mg) =0, g(1) = dim H.

(iii) 1 s not o saltus point for f.

(iv) Ay coincides with the set of those saltus points for g at which g has
a saltum > X,

(v) Aoo and the cardinal numbers h{m), me Ay, are invariant with
respect to quasiaffine transformations.

(vi) If flm) <N for me (my, my) and my = A -m, then f(m,) <N

) me(mny,my)
(vid) f(mynme) < f(my) +f(mg).
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(viil) If me Ay, m’ non < m and m non <m', then

him) < 2 \‘ml

ml non<m'

(ix) The sot Aoy is well anti-ordered (by divisibility) and at most count-
able.

(x) JLf my = ]'rlib"{(zioou{l} then f(mg) <N,

Proof, (i)-(iii) are obvious.

(iv) follows from the relation (1.3).

(v) obviously follows from (iv) and from the quasiaffine invaridnce

of g. o . -
(vi) Lot m'e (my, my),j =1,2,..., be such that mi>mi* and
o i
my = A m’. Because an inner function divides my, if and only' if it div-

. dma
ides m’ for each j, we infer by (i) that

Flmy) = supf m) <N

(vu) Axn inner function divides ml/\ my if a.nd only if it divides. m,
and. my; thus

flmamg) = 3 s,< 3 N+ }_7 Am = Flmg) +f(mg).

muonsmy Ay mnon<m;y mnonsmy

(viii). One and only one of the following two situations can ocour:

—_ n
(a) there exists my< m such that m, non<m'; (b) m(z) = (f fl ) 3
—az
g—q \"1 2—a . ’
w (z) = i y ; ivi "
(%) (l—ﬁz) m'’(2), where 1% does not divide m” (z).

In case (a) if we denote by § the sum appeazting in (viii), ‘we have
h{m) < f( m(, < 8+f(m) = max (8, f(m)). But h(m) > f(m ; we conclude
that h(m) = S

22— n=1 .
In  care (b) woe have h(m) = f((l ;ﬂ) ): N Ef(m) = 8+

“-f{m) and the conclusion ix obtained in the same way.
(ix) A g 18 well anti-ordered. Let B < Ay Do a nonvoid set and denote

(1.5) ¥ = min{h(m): me B} = h(m,).

Let m’e B, m' # m,. The relation m, < m’ implies h(m’) < f{m,) < ()
== §, in. contradiction with (1.5). If m’ non < m,, we obtam by (viii) & (m')
< f(mg) << h(my), again in contradiction with (1.5). If follows that m’
5 My thus m, I8 the greatest element of B. :

. 4—Studla Mathematica 60.3
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Aqo 8 at most countable. It mp is a Blaschke produet, the assertion
is obvious. If mg is & singular inner function:

2 it
e 42

m,:mpkj"w_zwm}

0

then each me A, has the same form, with u replaced by a measure uy,
majorized by u. With each me 4,, we associate the total mass a,, of u,.
The assigement m > a, is increasing, and thus {Gm}mey, 15 2 well anti-or-
dered set of real numbers. But such a set is at most countable (indeed, for
each me Ay, there exists b, < a,, such that the interval (b, a,) containg
DO Gy M € Agg; thUS {Bpn}medyy 18 equipotent to a set of pairwise disjoint
open intervals).

Combining the two particular cases we obtain the general assertion
(that is, for arbitrary mg).

(x). From (vi) and (vii) we infer that the set of those inner functions
me [mg, my) which satisfy the relation f(m) <, is an interval [my, mqp].
If m, = m,,(x) is proved.

Suppose that m, 7 in,; we claim m, ¢ Ay. Indeed, let m' < m;.
If m’ > m,, we have f(m') > X, by the definition of the interval [m,, mg]-
It m' <m,, we have f(m')>= flmg) >R, by (i) It m' non < m, and
my nON < m’, we infer by (vii) No < f(mo) < h{my) < f(m'). Thus we have
always f(m') > N, = f(my). Bub mye A, implies my < mq, & contradiction.

2. Quasisimilarity to the Jordan model. Due to the well anti-ordering
of Ay, each element me 44, with at most one exception, has a preceding
element in Ay, denoted by m’. If m has no predecessor in Aq,, we put
m’ = 1. Using Zorn’s lemma, we can find for each me 4,, 2 maximal set
8,, of sequences of inner functions with the following properties:

(a) if s = {m};2 e Sy, we have j\/lmj = m and m,;non < m’;

(b) each inner function m, appears at most N,,, times in the sequences
of §,,- '

Lemma 1. card 8, = h(m).

Proof. Let us suppose that card 8, < h(m). We put m, == \/ m,, where

m

\/ is taken for those inmer functions m, such that m, <m, ml1 non =5 m’
and m, appears fewer than N, times in the sequences of 8,,. If my = m,
we can choose a new sequence s = {my}j>,, which can be added to S
without changing the condifions (a) and (b); thus the maximality of S,, is

" contradicted. It follows that m, < m; thus f(m,) < flm)+card 8N,
< f(m)+h(m) = h(m), in contradiction with the inequality f(mg) = h(m)
which follows from the definition of & (m).
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) Bemark 2. For distinet elements m,, m,e Ay, the elements appear-
ing in the sequences of 8, are distinet from the elements appearing
in the sequences of Sy
PROPOSITION 2. The €, operator

(%) T = @S(m)“m

8. quasisimilar to another one, of the same form, which satisfies N, = h(m)
Jor me Ay, "

Proof. For a sequence s = {m;}i2, of inner functions we put
Ty = @ 8(my).
i=1

Then (after a permutation of the terms in the direct sum) 7' can be
written 4s

T=re( o (o).
medg, 8eSp,
From the.c.ondition (a), the minimal function of T, is m if se 8, Thus,
by Proposition A, T\ is quasisimilar to an operator of the form S(m)® T,..
It follows that 7' is quasisimilar to -

(2.1) "0 © (@ 8(m).

Med gy 868y,

The sums@S} 8(m) contains, by the preceding lemma, &(m) terms; thus
€ m '

the operator (2.1) is of the form

(2.2) D 8(mm
m
with N7, > h(m) for me A,,. Now, by Proposition 1(v), we have Ny, < B (m).
The proposition is proved. ‘

We use in the sequel the notation m, = max (A4 {1}).

We now want to eliminate from the sum (2.2) the terms §(m) with
m < my and m¢ 4,,.

.LEMMA 2\. Let T and 8 be acting on H, H', respectively. If & is unitarily
equivalent to the restriction of T to am mvariant subspace H'' < H , then

00

(@7 ©82 ®T
1

1

3 ) o i o) 0
Proof. Let d: @H->@®H be defined by 4 = @}.—IH and let
1 1 ) J=11
B: H’-—>1@ H De defined by Bh = (—D—jl,—Xh, where X: H'->H" is a unitary =
F=1 ’

operator satisfying the relation X8 = T]HHX. Then the operator
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y;(éﬂ)@ﬂ’»%ﬂ defined by Y (h@®k) = Ak + Bk is a quasiatfinity (it
1 1

is one-to-one because Range 4N Range B = {0} and has dense range

oo

because 4 has dense range) and satisfies the relation Y (@ T)@®8)

] ' . 1
=(@nY

1

COROLLARY 1. Let m, > my be inner fumctions. Then §(m M and
8(m, @ S (my) are quasisimilar.

Proof. The conditions of Lemma 2 are satisfied for T = § (my),

8 = 8(m,) and for T = 8(m,)*, § = 8(my)* by [5], Lemma 1. Thus,
by Lemma 2, we have .

(& 8tm)) © 5 (m) 3 & S(ma),

)

(515 S(my))* @ 8(me)* 3 (@ 8 (my)",

-

and from the second relation it follows that
(=] 0
(©8(m) &S(my) & ©8(my).

These relations prove the corollary.
" Remark 3. If X, is an increasing sequence of cardinal numbers
then sup N, = 3N,
n n

Let us consider an operator of the form
() T = @ 8(m)m,
where the sum is extended to the divisors of the minimal function mgp
and. X, = h(m) for me Ay.

We denote by A the set of all the direct summands S(m) in (wx)
sueh that m < my, m¢ Ay, each 8(m) being taken X, times.

Lomma 3. With each me Ay, we can associate a subsel 4,, < A with
the following properties:

1) 4 =1J 4y;
medgg
(2) 4pyn Ay =@ if m #=m';

3) for m'e A,, we have m' < m;

(4) card 4, <N, (= h(m)).

Proof. For each m'e 4yU{l} we denote by
8(m,)e A with the property

Ap the set of all those

(2.3) m =max{m: me Ay U{l}, mnon > m,}.
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Obviously we have

(2.4) Udp =4, 4, =0,

My

and from the definition of f we infer
(2.5) fom') =

If m haﬂ an immediate successor m in 4.y, we associate all the el-

emenm of Ay, to m. If m’ has no immediate successor in Ao, let us put
= A My, /\ bemg taken for mye 4y, such that m, > m'. I m! = w/,

we obVJquly have A4,, = @. Let us suppose that m! > m’. Then we can

> card 4,,.

write m! = /\ M, Where mye Ao and m; > my,, for each j.

Now, we hzwe m*¢ Ay, and, by the definition of m?,

Adpn(m', m'] =0

It follows that f is constant on [m’', m'], and so f(m') = f(ml). To comp'ute'
f(m') we observe that: ;
(1) f(m') = k(my), by the definition of h(m;);
(ii) f(ml)SZf(m supf m;) by Remark 3.
i
It follows that f(m f mt) = suph(mj) thus by (2.5) and Remark

3 it follows that we can write

[=+}
= U 4;,

card 4; < h(my),
J=1

the sets 4; being pairwise disjoint. For each j, we associate with m the
elements of 4;.

Let us denote by A,,, me Ay, the set of all the elements associated
with m by one of the precéding procedures. Because the set Aoou{l}‘
is at most countable (Proposition 1 (ix)), it follows that

h(m) = h(m).
From (2.4) if follows that 4 = (J 4,,

med gy
obvious; thus the lemma is proved.

PROPOSTITON 3. The operalor (xx) is quasisimilar to

%) (® Smlor,

medgy

card d,, < Ny

. The properties (2) and (3) are

Here T’ coincides with the sum of those terms 8(m) in
mpon < m, and it acts on a separable Hilbert space.

(%) for which
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Proof. After a permutation of the direct summands, the operator
(+x) can be written as

@ ((@8(m))® 8(m)

medgy Ay

m@ 1,

* where A, are the sets from Lemma 3. Because h(m) >
h(m) =N,y-card 4,,+h(m); thus

(2.6) (A@ (m))@ 8 (m ’L(m)——@(s Y @ 8(m

card 4,,, we have

) @ 8 (m)em),

From Corollary 1 it follows that, form’e 4,,, S(m
to & (m)¥;

"} @ 8(m)%is quasisimilar
o; therefore the operator (2.6) is quasisimilar to
(@ S “0)@ S h(m) - S(m)so~o&rdzl,,“+h(m) - S(m)h(m).

The last assertion of our proposition is obviously eqﬁivalent to as-
sertion (x) of Proposition 1.

LEMMA 4. For two inner functions m, and m,, the Jordan model
of S(m;) @.8(my) is 8(myV my) ® 8(myams,).

Proof. The minimal function of the C, operator I' = §(m,) P S (my)
is mg =m;vm,. T iy of multiplicity <2, and its Jordan model is
8(ny) @ 8(ng) with 5, = my = m; v m, and ny < ny. To find n, we use

the relation =n;ny = m,m, (relation (1.7) in [B]); thus we obtain
” Moy My
= = My A M,.
2 My 1 1 2
THEOREM 1.

(a) Hach C, operator is quasisimilar to a Jordan operator.
(D) If T and T are Jordan operators and T -3 T, then T = T'.
Proof. (a) We have already seen that each operator of class 0,

is quasisimilar to an operator of the form (%). If m, = 1, our assertion
follows from Proposition A.

Let us suppose that 'm,0 7 1. From Proposition A. it follows that the
operator 7' appearing in (%) is quasisimilar to a Jordan operator

n

j@lﬂ(mj), n K 00, My = My, .
Bince h(m,) > N,, the operator (%) is quasisimilar to
(2.7) (® S(mm)e Sm >"oe3( (s my) @8 (my))).
medgo

By Lemma 4, S(mj) @S(mo) is quasisimilar to S(m;) @ 8(m;), where
m "< my < mJT and m > mj +1 for each j. It follows that the operator (2.7)

icm
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is quasisimilar to

@28  ( © Sm)@8(m, “o@(@ 8(m )@(@a 8(m))
medog
=(,© SmP) (& (8tn)) ©S (me)) @ (& S(m).
medoo =1

Finally, because m; < my, it follows by Lemma 2 that §(m;’) @S (m,)™
is quasisimilar to §(mg)¥; thus the last operator in (2.8) is quasisimilar to

(@ SmMm) @8 m.,“o@(® S(mj)) = @ 8( m)"(’"))@(@ 8(mj).
medgg medgg
The last operator is obviously a Jordan operator.
(b) Proposition 1(v) implies that the set Ay, is the same for T and T°
and moreover the saltum h(m), me Ay, is the same for 7 and T°. Thus

=(® 8m M’"’)@(@ 8(my)), =(® 8(m)

med g medgq

M) @<5@1 8 (m3)),

With n < 0o, 0 < 00, My 3 Myyy, My My yy, My > My, My > My
pp. 106106, it follows that

From [5]s

7, = Tlxmmemo(r) = @ 8 (mym), T =1 Inmgemo(z') (‘B 8( ’m’j/mo
Since T, 3 T;, from the uniqueness assertion of Proposition A, we infer
that # = u’ and m,/m, = m;/m, for each j, such that m; = m, for j = 1,
2, ... It follows that 7 = 7" and the theorem is proved.

Let us remark that the proof of Theorem 2 in [2] can be applied,

with minor modifications, to arbitrary €, operators. Thus we have
COROLLARY 2. If T is a O, operator and X< (T)",
fe Ny such that X = f(T)
Here (T)” denotes, as usual, the set of operators commuting with
each operator which commutes with 7.

then there exists

PART II

3. Canonical representations of L'(0,1). We consider the space
L*0, 1) as a Banach algebra with the convolution
(t—s)ds,

(3.‘1) (Fxq) () ff Fyge L0, 1).
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A representation of Z'(0, 1) into a Hilbert space H is a continuous linear
map, f>T;, which assigns to each fe L*(0,1) a linear bounded operator
acting on H, and satisfies the relation T, = T,7,. A representation
f>T; of (0, 1) is complete if -

V Range T, = H.
feL(0,1)
Here “\/” means the closed linear span. With each representation f =T
of LI(O 1) we associate the adjoint representation f |——>T, = (_’l’) (here
F&) = £
Let us consider a strongly continuous semigroup of contractions
{T'(t)}o acting on H, such that T'(1) = 0. We can verify ([3]) that

' 1
(3.2) feC = [ FO)T()a
. . 0

is a complete representation of L'(0, 1). Such a representation is called
a quasicanonical representation.

Remark 4. The adjoint representation of (3.2) is still quasicanonical
and is defined by the semigroup {T'(¢)*}u,.

Let us recall that a strongly continuous semigroup of contractions
{T'(#)}i»o is uniquely determined by its cogenerator 7' ([4], XII, §8). T is
a contraction without nonzero invariant vectors and

(3.3) I =), o) = exp(t%), i>0.

Because the unitary part of I' ([4], T, § 3) is the cogenerator of a semigroup
of unitary operators, from 7'(1) = 0 we infer that T is completely nonuni-
tary. Moreover, I'(1) = 0 is equivalent to ¢,(T) = 0; thus 7' is a C, oper-
ator and its minimal funection is e, @ < 1.

- DeFivizIoN 3. The quasicanonical representation (8.2) is canonical
if the cogenerator T' of the semigroup {Z'(!)}s, is & Jordan operator.
A representation T, of L*(0,1) into H is trivial it T = 0, fe L*(0,1).

Olearly, a trivial representation of I*(0, 1) is characterised by dim H.
PRrOPOSITION 4. Hach canonical represeniation oj L1(0 1) is unitarily
equivalent to a representation of the form

(3.4) - (® e C—B Oupr)

aedgq

where Ay 18 @ well anti-ordered set of elements of (0,11, b is o cardinal

number valued decreasing fumotion on Ay, such that hia) >N, for ae Aoo )
0<n<o00,1202a0>. .., ¢;>a for acdy, and for each ae(0,1],
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Fr>0qpis a representation of L'(0, 1) into L*(0, 1) defined by

(3.5) Oar(@ f fW)g(@—ija)as

" Proof. Letus consider the strongly continuous semigroup of contrac-
tions {T'(?)}0, acting on Z7(0, 1) and defined by
flw—t) if  w@e(t, o0)n (0, 1),
0 otherwise.

T(@)f () =

Then it is clear that _
(3.6) 1) =0, T@#) <0 fort<l.
If we denote by {T,(1)}s, the semigroup defined by
Ta(t) = T(ifa),

we have for ae(0,1]
1
(3.7) Oog = f FO)Ta(t) @t

Now let us remark that for a C, opemtor for which'e,(T) = 0, the
Jordan model takes the form

h(a)

(@ S )(S Sie),
where 4, is a well anti-ordered set of elements of (0,1], and % is a decreas-
ing function on 4,,, taking ag values cardinal numbers > Ny, 0<n
Koo, lza=a=...,0>a if acdy. Thus, by (3.7) it follows thatb
to prove the proposition it suffices to show that the cogenerator of the
semigroup {T',(f)}so is unitarily equivalent to S(e,). It is clear that it
is enough. to prove the last assertion for a = 1. .

If A is the generator of the semigroup {ZT'(f)}m, then 4 = (34)7*
is the Volterra operator:

A'flo) =i [ fo)ds.

Because the imaginary part of 4’ is of rank one, it follows that its Cayley
transform

= (A —4I) (A i),
which coincides with the cogenerator of our semigroup, is an operator
of class O,(1) ([4], IX, §§2, 4) unitarily equivalent fo S(e,), by relation
(3.6). The proposluon is proved
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Remark 5. Another representation, which iy unitarily equivalent
to the canonical representation associated to the semigroup whose cogener-
rator is 8(e,), is associated to the semigroup {T,(t)}s, acting on I2(0, a)
and defined by t
fla—t) i w@e(t, 00)N(0,a),

Tt ==
o (D) () 0 “otherwite.

For the corresponding representation frCj ;, we have
C,rg( _-ff w—t)dt, axe(0,a).

4. Quasisimilarity models for the representations of IL'(0,1). Let
Ty, f+>T; be two representations of L*(0, 1) into H, H’, respectively.
The first representation is a quasiaffine transform of the second if there
exists a quasiaffinity X: H—H’ such that

T;X = XT;, feL'(0,1).
Two representations are quasisimilar if each one is a quagiaffine transform
of the other.

Remark 6. The representation fi>T, is a qummaffme transform
of fr>T}, if andl only if the adjoint representation f =T is a quasiaffine
transform of f »—»T,

LemMA 5. Bach quasicanonical representation of L'(0,1) is quasi-
similar to a canowical representation.

Proof. Let us consider the gquasicanonical representation (3.2).
Let T be the cogenerator of the semigroup {7'(f)}s,,. By Theorem 1 there
exists a Jordan operator T” and two quasiaffinities X, ¥ such that

T'X =XT, TY=2XYT.
If {T (N}=o I8 the strongly continuous semigroup of contractions whose
cogenerator is T, we infer from (3.3)
T')X = XT(t), TMY =YI'(), 130,
such that X0y = 0pX, C;Y = YOy, where f+>C; is the canonical rep-
resentation determined by the semigroup {Z"(f)}s.,-
The main result in [3] can be reformulated as follows:

ProrosrrioN B (Theorem 1 in [3]). Hach complele representation
of I}(0, 1) into a separable Hilbert space is o quastaffine transform of & quasi-
canonical representation.

Let f T, be a representation of L'(0,1) into a Hilbert space H,
Let & be a constant such that

(4.1) T4l < Bllfllsy  fe L'(0,1).
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Because L'(0, 1) is a separable Banach space, H can be decomposed into

a direct .sum H = @ I, of separable spaces, each space being reducing
for Ty, fe L' (0, 1), %4

Let us a,m)lv the proof of Theorem 1 in [3] to each representation
fo,[H y e A. We obtain the existence of a family {H,( 1)} of Operators
acting on H,, with the following properties:

(1) 1Ha(OII <k, t—>H,(t) is strongly measurable;
(if) {H,( }mo is & commuting family;

(iti) Tylg, = f S Ho(t) e
(iv) the range of H,(t) is contained in

K, = V Ty(H,);
FeLl(0,1)

(v) there exists a strongly continuous semigroup of operators,
{Z4(t)}i0, acting on K, such that T,(1) = 0 and the restriction H, () JKa
coincides almost everywhere with T,(¢ ). (The properties (ii) and (iv)
are not explicitly proved in [3] but can be easily obtained by the methods
used there.)

Let us consider the orthogonal decomposition
Hu = Ka@(Ha@-Ka) .

With respect to this decomposition H,(¢) has almost everywhere a matrix

of the form . ]
T,(t) By(1)
o o |

where {T,(t)};so i the semigroup given by (v). From the properties (i)
and (v) we infer the existence of an operator of the form

b ol 1l

in the weak closure of the family {H,(t)}s,. Thizs operator will commute
with H,(t), thus we have almost everywhere the relation

(4.2) To() X, = By(1).

The opoerator
I —X,]
Zy =
0 I

<k

is invertible, ity inverse is
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and we have ‘
(4.3) 1Z <14k, [1ZM<14+5E.

From (4.2) it follows that

[Ta(t) Ba(n] s -2, [Ta(t) 0].
0 0 0 0

From (4.3) it follows that the operator
Z = ®Z,

acd
is invertible. The strongly continuous semigroup of operators {I'(1)};,
defined by

T(t) = @ Ty(t)
aed
is acting on
K=@K,= \ RangelTy.
aed £eLMo,1)
From the preceding relations it follows that, with regpect to the orthogonal
decomposition H = K @(H © K), we have the relation

T 0
Z‘leZ = [ ! ]
0 0

1
where fi>T} = [ f(1)T(1)d¢t is a complete representation of L*(0,1).
Q

From the lagt part of the proof of Theorem 1 in [3] it follows that
the representation f»>T; is a quasiaffine transform of a quasicanonieal
representation. ‘

Finally, an application of Lemma 5 gives the following result:

PROPOSITION 5.

(a) Bach representation of L'0,1) into a Hilbert space is similar
to the direct sum of a complete vepresentation with a trivial representation.

(b) Bach complete representation of L*(0,1) is a quasiaffine transform
of a camonical representation.

Let us suppose that f1—T, is the direct sum of a canonical represen,
tation with a trivial representation. Thus, T acts on a divect sum H, @.H-

and
! () 0
T,:ff(t)[o() O]dt.

The following relations are obvious:

(4.4 H, = \ RangeT H, = Ker T,.
) 1 wzio) ge Ly, 2 Mf&n 7
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If f Ty is a second representation of the same form,

Y oTm o
Ty = f(t)[ ]dt
d Of o 0

" with respect to the orthogonal decomposition Hy@H,, and X: H,DH,

~Hy@H, is & quasiafiinity such that T;X = XT,, fe L*(0,1), we infer
from (4.4) that XH, = Hy, HX, c H;, such that X = X,@®X,, where
X, Xyp-+Iy, Xy Hy->H, are quasiaffinities and

1
(4.5) ( [ f(t)T'(t)dt)X1 - Xl( fl f(t)l’(t)dt).
[] 0

From. (4.5) it follows that I ()X, = X, T(#), thus I'X, = X, T, where
T', T are the cogenerators of the semigroups {T"()}smo, {T(F)}mo, TESPECH-
ively. Bocause T' and T are Jordan operators, from Theorem 1 (b) it follows
that T" = 7. Finally, from the fact that X, is a quasiaffinity we infer dim H,
= dim H,.

We are now able to prove:

THEOREM 2. (a) Hach representation of L*(0,1) into o Hilbert space
8 quasisimilar o the direct sum of & canmonical representation with a trivial
representation.

(b) Two representations, both being the direct sum of o canonical rep-
resentation and o trivial representation, and one of them a quasiaffine transform
of the other, coincide. (More precisely, they have the same canonical part and
their trivial parts act on spaces of the same dimension.)

Proof. (b) follows from the preceding considerations.

(a) It we apply Proposition 5 to the representation f>T, and its
adjoint representation f|—>1’; and if we use Remarks 4 and 6, we infer
the existence of two repregentations of the form :

canonical @ trivial

sueh that the representation f->T, s a quasiaffine transform of the first
and thoe second is a quasiaffine transform of fi—Ty. An application of (b)
shows that the throe representations considered are pairwise quasisimilar.
The theorem iy proved.
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A property of determining sets for analytic functions

by
JAN CHMIELOWSKI and GRZEGORZ LUBCZONOK (Katowice)

Abstract. Any locally determining set at OeK”(K ‘Ror K = O) for analytic
functions (1) contains a sequence convergent to 0« K", which is itself locally determining
at 0e K".

1. In this note we prove the following theorem. ‘

TurorREM. Let B < C" be a locally determining set at 0e C™ for holo-
morphic functions. Then there is a sequence {a,} = E convergent to 0 C*
which is a locally determining set at 0e C” for holomorphic functions.

This theorem is an answer to Question 2 posed in [2]. Its proof is
based on a lemma concerning locally complete sets in separable Hilbert
spaces. The lemma seems to be interesting by itself.

The authors would like to thank Professor J. Siciak for his valuable
suggestions.

2. Let H be a separable Hilbert space with scalar product (-, ->
and the norm ||| = -, >¥. A subset 4 < H is called complete if and
only if the equations {(z, &> = 0 for each ae 4 imply x = 0.

LeMMA. Assume that A is a subset of a separable Hilbert space such
that for every constant 0 < r <1 the set A,: = {mwe A: |w| < r} is complete.
Then there is a sequence {a,} = A convergent to 0eH which is complete.

Proof. Let {¢;} be an orthonormal base in H and let #, be a positive
number. Then the set 4, is complete. Hence the closure of the linear
subspace spanned by 4, is equal to H. Thus there exist scalars 5", ..., ,5(‘)
and veetors af?, ..., af* ’e 4, —{0} such that

1B af? +... + B al) —ey)l < 277,
Put ry = min{|e’ll, ..., lal)l, 27%}. Then afd¢ 4, for k=1,...,8.

As before, we can chooqe scalars BY, ...y B and vectors a®, ..., a)

(*) A subset B of K" (n > 1) is called, a locally determining set at 0 e K™ for analytio
funetions, if for each connected neighbourhood U of 0e K™ the subset B ~ U is determin.-
ing for the analytic functions in U, i.e. if a function fis analytic in U and vanishing
on B U, the function f is identically zero ([1]).
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